
A TREATISE ON SYSTEMS, VOLUME 2

This second volume describes the systematic application of Promise Theory to systems,
representing a significant step forward in describing functional systems with both dynam-
ics and semantics. By combining quantitative and qualitative descriptions in a single
framework, Promise Theory provides the first impartial language for multiscale system
phenomena. The closer one is the intrinsic scale of a system component, the more its qual-
itative semantics dominate its behaviour. As one scales out to large numbers, dynamical
patterns dominate the average behaviours.

This book serves as guide to graduate students and researchers in the development of a
new science of systems, and contains an outstanding number of examples and lessons
accumulated over ten years of working in the field, unified by a single theoretical Promise
Theoretic model.

‘...a landmark book in the field of network and system administration. For the first time,
in one place, one can study the components of network and system administration as an
evolving and emerging discipline, rather than as a set of recipes, practices, or principles.’
– Alva Couch, Tufts University 2002, from the Foreword of volume 1

‘Mark Burgess’ new book brings an analytical, scientific approach to bear on the general
subject of systems and network administration. This original perspective opens up a
wealth of ideas and possibilities which will be of interest to both the researcher and
advanced practitioner’
– Paul Anderson, Edinburgh University 2002

‘An unusual book ... in that it describes the theory which relates the components —
computers and networks to the users and administrators. It is the only book I know that
covers the ‘science’ underpinning systems administration.’
– Morris Sloman, Imperial College London, 2002

Also by the author:

PROMISE THEORY: PRINCIPLES AND APPLICATIONS

MONEY, OWNERSHIP, AND AGENCY—AS AN APPLICATION OF

PROMISE THEORY

SMART SPACETIME: HOW INFORMATION CHALLENGES OUR IDEAS ABOUT SPACE,
TIME, AND PROCESS

Other reviews:

‘A landmark book in the development of our craft...’
–Adrian Cockcroft (about In Search of Certainty)

‘Proud to say that I am a card-carrying member of the [Mark Burgess] fan club. And I
think that it wouldn’t be too much of a stretch to say that he’s the closest thing to Richard
Feynman within our industry (and not just because of his IQ).’
–Cameron Haight (about Smart Spacetime)

‘...our whole industry is transforming based on ideas [Mark Burgess]
pioneered’
–Michael Nygard (about Smart Spacetime)

‘The work done by [Mark] on complexity of systems is a cornerstone in design of large
scale distributed systems...’
–Jan Wiersma (about In Search of Certainty)

‘Some authors tread well worn paths in comfortable realms. Mark not only blazes new
trails, but does so in undiscovered countries.’
–Dan Klein (about Smart Spacetime)

A TREATISE ON SYSTEMS

THE SCALING OF INTENTIONAL SYSTEMS
WITH FAULTS, ERRORS, AND FLAWS

VOLUME 2

MARK BURGESS

χtAxis press

Text and figures Copyright c©Mark Burgess 2015-2019.

First published by χtAxis press 2020.
This printing with current state of corrections on September 28, 2020.

Mark Burgess has asserted his right under the Copyright, Design and
Patents Act, 1988, UK, to be identified as the authors of this work.

All rights reserved. No part of this publication may be copied or
reproduced in any form, without prior permission from the author.

Disclaimer: Although he always tries his best, the author of this work
may only be marginally pleased with its successes, while more deeply
ashamed of its shortcomings. After all, he promises only best-effort in
formalizing the large mass of disparate experiences and topics contained
herein. The material, claiming complete innocence in the matter, reserves
the right to contain naivités, errors, on the author’s behalf (or bewhole),
even cases where the author decides to change his capricious mind (he
can be a bit like that from time to time). Comments may be welcomed, if
reasonably polite, and readers should absolutely look for free updates as
corrections and minor improvements are made to this edition online.

Cover design by Zhaoling Xu.

CONTENTS

1 Principles and assumptions 1
1.1 Promise theory . 1

1.2 Intentional systems . 2

1.3 Impartiality . 3

1.4 Promises as expressions of intent . 4

1.5 Functional systems are intentional . 7

1.6 System boundaries, open and closed
systems . 8

1.7 Emergent or effective promises . 11

1.8 Trust . 11

1.9 Principle of conservation . 12

1.10 Scale and conservation in transport
processes . 14

1.11 Configuration space . 15

1.12 Direction in configuration space . 16

1.13 Channels of communication and
promise-keeping . 17

1.14 How we count interactions and their
outcomes . 17

1.15 The intended ‘purpose’ of a system
(semantics) . 18

1.16 System characteristics and outcomes 19

1.17 Super-agency and scaling . 21

1.18 Predictability and promise . 21

1.19 Drifting into failure . 21

1.20 How to use this volume . 22

i

2 Human systems 23
2.1 ‘Soft topics’ and Promise Theory . 23
2.2 Influence in a human system . 24
2.3 Leadership in a human system . 25

2.3.1 Seeking cooperation and support of other agents 26
2.3.2 Invitation, attack, and command 27
2.3.3 A more refined view of invitation vs attack 30
2.3.4 The intent to disrupt or sabotage 35
2.3.5 Accusations, the imposition of judgement, and

taking offense . 37
2.3.6 Does the final outcome justify the means? 38
2.3.7 Can we expect agents to know better?

The problem of common knowledge 40
2.3.8 Damned if you do, damned if you don’t 40
2.3.9 Context and opportunity for agents 41

2.4 Responsibility . 42
2.4.1 Subjectivity in assessments 43
2.4.2 The role of conditional promises in pointing to

responsibility . 43
2.4.3 Downstream principle . 45
2.4.4 Assuming responsibility . 47

2.5 Rights, permission, and privileges . 48
2.5.1 Rights defined . 48
2.5.2 Seeking rights and permissions 51

2.6 Authority, power, and delegation . 52
2.7 Trusted Third Parties and Webs of Trust 55

2.7.1 When is invitation preferred over command? 58
2.8 Human fidelity within a system . 59

2.8.1 Agent anomalies: machines and humans 60
2.8.2 Feedback and testing . 61
2.8.3 Blame and responsibility . 62

2.9 The human action perspective . 62
2.10 Human values and optimization . 64
2.11 The remainder of the book . 65

3 Observation, Semantics and Assessment 67
3.1 Observation and measurement of promised behaviour 67
3.2 The role of the observer . 68

3.3 Mean Time to Keep a Promise . 70
3.4 Characteristic scales: space and time 71
3.5 Change and the role of timescales . 73
3.6 The principle of separation for dynamical scales 74
3.7 On the separation of semantic scales 75
3.8 Dynamical scale separation and coupling

strength . 77
3.9 Qualitative and quantitative assessments 79
3.10 Characterizing process time . 80

3.10.1 Interior and exterior time . 82
3.10.2 Events, clocks, and proper time 82
3.10.3 Missed and dropped samples 83
3.10.4 Definition of clocks . 84
3.10.5 Distinguishability (non-local) 85

3.11 Propagation, distortion, and loss of
system semantics . 86
3.11.1 Tampering by ‘men in the middle’

(serial distortion) . 86
3.11.2 Crosstalk or channel separation 86

3.12 Measuring and assessing outcomes 87
3.12.1 Promises as a semantic ‘coordinate basis’ for

measurement . 87
3.12.2 Basis for assessment: relativity and scale 88

3.13 Observations passed through tiers and stages 89
3.14 Consistency of multiple sources during

observation . 91

4 Processes 96
4.1 Process causality and order of events 96

4.1.1 The transmission of influence 97
4.1.2 Global equivalence, or symmetry 97
4.1.3 Order and partial order of states 97
4.1.4 Preorder . 98
4.1.5 Causal sets (non-local) . 99

4.2 Interior and exterior processes . 100
4.3 Locality and processes . 100

4.3.1 Promises (local) . 101
4.3.2 Propagation of influence . 103

4.4 Processes as trajectories in spacetime 105
4.4.1 Causal and acausal propagation in extended

cooperation . 106
4.4.2 The meaning of adjacency and local order 107
4.4.3 Observing causal order . 109
4.4.4 Conditional promises and scaling of order 111
4.4.5 Scaling of causation, its relation to conservation and distinguisha-

bility . 113
4.4.6 Ordered agents . 115
4.4.7 Scaling of processes . 117
4.4.8 The meaning of a link . 119
4.4.9 The end to end problem, link semantics, and

distinguishability . 120
4.4.10 Scale dependent arrows of spacetime: how is 6= different from

> and <? . 122
4.4.11 Distinguishability of causal pathways 124

4.5 Scaling locality with co-dependent entanglements 124
4.5.1 Interior and exterior time and observability 126
4.5.2 Irreducible superagent picture of spacetime grains 128
4.5.3 Single-valued co-time for paired agents 129
4.5.4 Fundamental assumption of homogeneity 130

4.6 Process mass . 130
4.7 Process velocity . 132
4.8 Subordinated workflows: forced processes 133
4.9 The General Practitioner problem . 133

5 Spacetime considerations 138
5.1 The role of space and time in processes 139
5.2 Hierarchical networks of processes 140
5.3 The time-series model of processes 141

5.3.1 Events, clocks, and proper time 142
5.3.2 Clocks at different scales . 143
5.3.3 Informal ideas about time . 147

5.4 The role of timescales in predictability 148
5.4.1 Separation of timescales . 148
5.4.2 Dynamical coupling defined 149
5.4.3 Coupling strength, memory, and consensus 150
5.4.4 Memory processes . 151

5.5 The observational sampling model 152
5.5.1 Sampling rate . 152
5.5.2 Shared resource counters (kernel metrics) 154
5.5.3 Instrumentation of processes 154
5.5.4 Significant events as spatio-temporal signposts 155
5.5.5 From metric to semantic coordinates: naming 156
5.5.6 Reversibility versus traceability 157
5.5.7 Partial order of agents and events 158
5.5.8 Translation operator and Noether’s theorem 159
5.5.9 Traceability (inference) . 160
5.5.10 Reversibility (causation) . 160
5.5.11 Metric distances . 162

5.6 The role of dimensionality . 163
5.7 Separation of scales again . 164
5.8 The scaling of regions of agency . 166

5.8.1 Subspaces . 166
5.8.2 Independence of agents under aggregation 166
5.8.3 Composition of agents . 167
5.8.4 Superagent surface boundary 170
5.8.5 Subagents as the subject of a promise: emission and absorption 172
5.8.6 The existence of a ground state 173
5.8.7 Agent scales . 174
5.8.8 Gauss’ law for promises . 176
5.8.9 Coarse-graining and aggregation 177
5.8.10 Coarse-graining directories 179
5.8.11 Promisee coarse graining . 181
5.8.12 Intra-agent language uniformity 182
5.8.13 Irreducible promises at scale M , and collective behaviour . . . 182
5.8.14 Scaling of promise impact, and generalized force 185

5.9 Propagation of influence by state messages 186
5.9.1 Scaling of local state . 188
5.9.2 State localization at different scales 189

5.10 Stateful (memory) processes . 191
5.10.1 Time dependence and memory processes 191
5.10.2 Short memory processes: linearity 193
5.10.3 Long memory processes . 195
5.10.4 Invariant definitions of statelessness 196
5.10.5 Transactions on scale T . 197

5.10.6 Scale dependence of state and causality 198
5.11 Causality and event driven propagation 198

5.11.1 Past, present, and now . 199
5.11.2 Facts, messages, and event horizons 201
5.11.3 Repeatability and singularities (fixed points) 201

5.12 Singular regions and centralization 204
5.12.1 Calibrated consistency of promises 204
5.12.2 Time ticks slower for superagent promises 206
5.12.3 Equilibration of replicas to singularity 208
5.12.4 Timescales implicit behind consistency 214

5.13 Centralized and monolithic systems 216
5.14 Blocking and non-blocking promises 225

5.14.1 Shared time processes . 226
5.14.2 Entanglement: synchronous and asynchronous

signals . 227
5.14.3 Encapsulation of exterior messages 229
5.14.4 Irreducible superagent picture 230

5.15 Spacetime involvement in quantitative
scaling . 231
5.15.1 Linear scaling of output from agents 232
5.15.2 Comparing centralized and decentralized efficiency 232
5.15.3 Deriving Metcalfe’s law from promise networks 235
5.15.4 Economies of scale . 236
5.15.5 Embedding space volume as estimator 237
5.15.6 Euclidean approximations to a network 239
5.15.7 Conditional dependency and output scaling 241

5.16 Geometry and topology of systems 245
5.17 Specialization and modularity under the spotlight 248

6 Interactions and influence 250
6.1 Distinguishability, agent types, and labels 251
6.2 Promise valency and saturation . 252
6.3 The languages of promised interactions 253

6.3.1 Transmission of intent . 255
6.3.2 Continuity or spatial homogeneity of semantics 257
6.3.3 Inter-agent language translations 259

6.4 Propagation of influence (causation) 261
6.4.1 Dynamical and semantic influences 262

6.4.2 The importance of scale on causation 264

6.4.3 System state and causation as a clock 265

6.4.4 The notion of a root cause . 267

6.4.5 Distributed intent and central calibration 268

6.4.6 Rate of fault propagation . 270

6.4.7 Separation of dynamical and semantic outcomes 270

6.4.8 Promise trajectories . 271

6.4.9 Basics of propagation of influence 272

6.4.10 Trajectories and process propagation 274

6.4.11 Promise types that propagate intent transitively 276

6.4.12 Conditions for extended propagation (chains and processes) . . 277

6.4.13 The instantaneous response function 278

6.4.14 Propagation of uncertainty 280

6.4.15 Speed of response propagation 282

6.4.16 The instantaneous intentional gain 282

6.4.17 Impediments to propagation 283

6.4.18 Propagation of information (awareness) 285

6.4.19 Implicit and explicit awareness by repetitive
promise keeping . 285

6.4.20 Distorted propagation - ‘Chinese whispers’ 285

6.5 Propagation with branching . 288

6.5.1 Branching with instantaneous serial amplification 288

6.5.2 Cumulative amplification of response 291

6.5.3 Branching processes with uncertainty 291

6.5.4 Dependency chains, workflow pipelines, agent
reducibility, and promise propagation 292

6.5.5 ‘Pull’ versus ‘push’ in a chain 297

6.5.6 Propagation with convergence 298

6.5.7 Intrinsically converging systems 298

6.6 Can we define responsibility for keeping a promise? 299

6.6.1 Subjectivity in assessment of faults and errors 299

6.6.2 Smart and dumb agent responses 300

6.7 ‘Push versus pull’ causal influence 300

6.7.1 Definitions of push and pull 301

6.7.2 Properties of push and pull 302

6.7.3 Situation awareness in pull and push 304

6.7.4 The relative stability of push and pull 305

6.7.5 Resolving conflicting dependencies
(split brain problem) . 306

6.7.6 Scaling differences between push and pull 308
6.8 Services . 312

6.8.1 Services defined . 312
6.8.2 Self-service vs serve-to-order 314
6.8.3 Master and slave roles . 317
6.8.4 Workflow logistics: pipelines versus services 317

6.9 Communication networks . 319
6.9.1 Protocols as promise recursion 319
6.9.2 Ethernet . 320
6.9.3 Internet Protocol . 322
6.9.4 VLAN: L2 channel containment 324
6.9.5 Virtual circuits . 324
6.9.6 Tunnelling addresses and transducer pattern 325
6.9.7 Addressability with scope or namespaces 326
6.9.8 Message quantization and job size 329

7 Scaling of agents and their promises 330
7.1 Scale and scaling . 330
7.2 Lessons from effective coarse descriptions 331

7.2.1 Ensemble scaling and universality of characters 332
7.2.2 Dimensionless ratios and similarity in continuum systems . . . 333
7.2.3 Discrete agent systems and breakdown of scale

invariance . 334
7.2.4 Scaling semantics: system function 335
7.2.5 Flaws in scaling: what semantics can change? 335

7.3 Scaled agents (sub and superagency) 336
7.4 Superagent surface boundary . 338
7.5 System modularity . 339

7.5.1 Modules as agents and scales 340
7.5.2 Modularity, scope, and human cognition 340
7.5.3 The limits of propagation . 341
7.5.4 Separation of concerns . 342
7.5.5 Human-computer systems . 343
7.5.6 System equivalence: dynamic and semantic

invariance . 344
7.5.7 Monolithic and centralized systems 345

7.5.8 Service oriented or decentralized systems 346
7.5.9 The microservice hypothesis 348
7.5.10 Summary: what does modularity really mean? 351

7.6 Distribution of state in processes . 351
7.6.1 Informal ideas about state and causality 352
7.6.2 The role of scale in localization 352
7.6.3 Popular ideas about statelessness 354
7.6.4 Process history, entropy, and timescales 355
7.6.5 The point of usage . 358
7.6.6 The importance of forgetting and

indistinguishability . 360
7.6.7 Summary: proper and improper invariants 362

7.7 Locality and distinguishability . 363
7.7.1 Localization or spatial partitioning 363
7.7.2 Scaling of state . 364
7.7.3 Sequences or temporal partitioning 366
7.7.4 Distinguishability, partitions, and redundancy 367
7.7.5 Invariance of distinguishable promises 368
7.7.6 Sharing versus partitioning 370

7.8 Agent scaling hierarchies . 371
7.8.1 Resolving interior details of superagent structure during coupling 372
7.8.2 Distribution or dispatch of promises at superagent boundaries . 372
7.8.3 Transparent adjacency . 375
7.8.4 Semantics of promise scope for superagency 377
7.8.5 Coupling to a superagent boundary (gateways and advertisements)377
7.8.6 Addendum on scaling of scale transduction itself: queue dispatch 381
7.8.7 Addressability in solid structures, and the tenancy connection . 382
7.8.8 Conditions for a uniform coordinate covering of agents 385
7.8.9 Efficiency of addressing in a semantic space 386
7.8.10 Summary of agency properties in semantic spaces 388

7.9 Occupancy and tenancy of space . 390
7.9.1 Definitions of occupancy and tenancy 390
7.9.2 Laws of tenancy semantics 392
7.9.3 Forms of tenancy . 395
7.9.4 Tenancy and conditional promises 398
7.9.5 Remote tenancy . 398
7.9.6 Asymmetric tenancy . 399
7.9.7 Scaling of occupancy and tenancy 400

7.9.8 Extending tenancy with structural memory 401
7.9.9 Scaling of the tenancy law 403
7.9.10 Distributive scaling of tenancy relationships 404
7.9.11 The significance of functional asymmetry 406
7.9.12 Tenancy as a state of order 408

7.10 Multi-tenancy, and co-existent ‘worlds’ 410
7.10.1 Defining multi-tenancy . 410
7.10.2 Branching processes: subroutines, worlds, and hierarchy 411
7.10.3 Tenant segregation, and resource multiplexing 413
7.10.4 Mouth formation and gateways 414
7.10.5 Tenancy formation and privacy as an additional promise 415
7.10.6 Spacetime sharing by tenants: serial time and parallel space . . 417
7.10.7 Multi-stage multi-tenancy, and fabrics 417
7.10.8 Cross-cooperation . 423
7.10.9 Scalability of mergers . 425
7.10.10 Namespaces and hierarchies as multi-tenancy in identity space . 426
7.10.11 Topology and the indexing of coordinate-spaces in solid-state . 427

7.11 Applications of multi-tenancy . 428
7.11.1 Example: Processing element in IT infrastructure 429
7.11.2 Example: tenant-oriented hosting infrastructure 432

7.12 Abstract agents, and knowledge modelling 437
7.12.1 Classification, categorization, and disambiguation of tenants . . 438
7.12.2 The economics of identity scale: branding 438

7.13 Summary of scaling issues . 439

8 Scaling of process and workflow 441
8.1 Distributed pipelines: force driven work 442
8.2 Continuity and discretization . 442
8.3 Event driven systems . 443
8.4 Event-based workloads, arrival processes, and queues 444
8.5 Scaling throughput with multiple servers 445
8.6 Horizontal and vertical scaling of

workloads . 446
8.7 Economies of processing scale . 450

8.7.1 Amdahl’s law for parallel processing 452
8.7.2 Gunther’s universal scalability law for

processing . 454
8.7.3 Effective power law scaling from Amdahl’s and Gunther’s law . 456

8.8 Data pipelines again . 457
8.8.1 Topology of workflows . 457
8.8.2 Intentional and unintentional sources 458
8.8.3 Staging and caching intermediate results 459
8.8.4 Timescales in cooperative chains and pipes 460
8.8.5 Arrival processes and events 461
8.8.6 Time measurement and so-called ‘realtime’ 461
8.8.7 Dynamical scaling: convolution or confluence of streams . . . 462
8.8.8 Jobs and batch jobs . 463
8.8.9 Imposition and promise semantics 464
8.8.10 Semantic scaling of data: batch aggregation 465
8.8.11 Scaled forwarding, by window and batch 466
8.8.12 Ordering of arrivals and batches 466
8.8.13 Scaling of order and chaos 468
8.8.14 Windows and batches . 468
8.8.15 Completeness . 469
8.8.16 “Correctness” . 470

8.9 Smart human spaces . 470
8.9.1 What is smart? . 471
8.9.2 Smart spaces as systems . 472
8.9.3 Purpose of a space . 473
8.9.4 Discovery and connectivity 474
8.9.5 Participation: a sense of purpose 475

8.10 Power consumption . 476

9 Faults, Errors, and Flaws 480
9.1 Reliability and trust . 480
9.2 Drifting out of promised alignment 481
9.3 Semantics of system anomalies . 482

9.3.1 Errors (of execution) . 482
9.3.2 Agent accuracy or fidelity . 483
9.3.3 Flaws of design (fitness for purpose) 483
9.3.4 Faults (anomalous states) . 484
9.3.5 Discoveries (classification anomalies) 485
9.3.6 The usefulness of these definitions: the matter of design 485

9.4 Instability and the limits of promises 486
9.4.1 Could all promises be kept and still yield

unpredictable outcomes? . 487

9.4.2 Catastrophes, epidemics, and critical phenomena 489

9.4.3 Intrinsic stability: convergent outcomes 489

9.5 Agent responsibility, causal memory 490

9.6 Agent fidelity and faults . 491

9.6.1 Accuracy of active components (intentional agents) 492

9.6.2 Passive assessment of intended outcomes 493

9.7 Promises and their relationship to faults 494

9.8 The basic promise failure modes . 495

9.8.1 Standalone agent promises 496

9.8.2 Timing of promise keeping and assessment, and the Nyquist
sampling frequency . 498

9.8.3 Coverage: behaviours that are promised and
not-promised . 498

9.8.4 Design flaws resulting from missing promises 499

9.8.5 Faults in communication . 499

9.8.6 Shared assumptions . 500

9.9 Agent interactions . 501

9.9.1 Cooperation faults arising from non-neutral promise bindings . 501

9.9.2 Faults in interactions between agents 503

9.9.3 Serial repair versus parallel failover
versus fault tolerance . 505

9.9.4 Redundant alternatives—mitigating a serial
dependency . 506

9.9.5 Semantic fault tolerance by averaging - requisite diversity versus
redundancy . 507

9.9.6 Serial fault tolerance: adding margins for error 507

9.9.7 Tolerance of service inconsistency during
selection from redundant parallel alternatives 508

9.9.8 Convergent local repair . 509

9.9.9 Partially ordered promises . 510

9.10 Fault propagation and failure domains 510

9.11 Innovation with and without intent 513

9.11.1 Bugs and emergent behaviour 513

9.11.2 Surprises: exploration and innovation 513

9.11.3 Mixing and separation of concerns: innovation and mutation . . 514

9.11.4 Forces and specialized roles 515

9.11.5 Promise networks that percolate 517

10 Classical reliability theory 520
10.1 The limit of perfect cooperation . 520
10.2 The assumptions . 521
10.3 Quantitative reliability—traditional

approach . 522
10.3.1 Conditional promise law (dependency) 522
10.3.2 Serial dependency of components 523
10.3.3 Redundant components—alternative handlers 524

10.4 Combining dependency and redundancy 525
10.4.1 Redundant arrangement of dependent serial

sub-systems . 526
10.4.2 A single system made from fully parallelized

(redundant) components . 528
10.5 The folk theorem for redundant fault

tolerance . 530
10.6 Fault trees . 531
10.7 Queues and detailed balance . 531
10.8 What is the limit of perfect cooperation? 532
10.9 Why not logic and rules? . 532
10.10Shortcomings of classical reliability

theory . 533
10.11Summary . 534

11 Recovery, Repair, Replacement, Resilience 536
11.1 Agent readiness—expectation and intent to prepare 537
11.2 Tales of the unexpected . 538
11.3 Promise continuity under perturbation 540
11.4 Promise discontinuity, risk, and impact 542
11.5 Scaling resilience in promise networks 543

11.5.1 Scaling and resilience . 544
11.5.2 Bulk properties of material fabrics 544
11.5.3 Rigid bodies and fragility . 547
11.5.4 Stress and strain in promise networks 547
11.5.5 Stress concentrations in workflows 549
11.5.6 Load-bearing structures . 551
11.5.7 Serial repair networks (epidemics) 554

11.6 Recovery by renewal processes . 556
11.6.1 Agility for avoidance and recovery 557

11.6.2 Can agents be repaired or replaced to improve
reliability? . 558

11.6.3 Prevention is perfection, but repair is realistic 558
11.6.4 Maintenance by detailed balance 559
11.6.5 Transactional ‘atomic’ change and locking 560
11.6.6 Rollout and rollback . 564
11.6.7 Staging, testing, and safety nets 565
11.6.8 Intended change by push and pull 566
11.6.9 Convergent repair and ‘rollforward’ 567
11.6.10 Repeatability and fixed points 569
11.6.11 The phase averaging trick for noise reduction 570

11.7 Security . 570
11.7.1 Defining security . 571
11.7.2 The dynamics and semantics of security 572

11.8 Planning continuity . 573
11.8.1 Design without flaws . 574
11.8.2 System isolation . 575
11.8.3 Scaling roles to eliminate single component

failure . 575
11.8.4 The ins and outs: boundary conditions 576
11.8.5 Shrinking the potential fault surface (context) 576

11.9 Summary . 578

12 System knowledge 579
12.1 Scales of knowledge . 580
12.2 From observation to knowing . 580

12.2.1 Composition . 581
12.2.2 Performance analysis . 581
12.2.3 Smart or effective cognitive systems and dumb

systems . 583
12.2.4 Learning systems . 585

12.3 Context for adaptability . 586
12.4 Defining the knowledge problem . 588

12.4.1 What is intended and what is promised? 588
12.4.2 Three perspectives about scale and relativity 588
12.4.3 Diagnosis . 589
12.4.4 Diagnostic messages . 589

12.5 Observability of messages . 590

12.5.1 Preliminaries about intent . 591

12.5.2 Events and sampling . 591

12.6 Aggregation of source data . 592

12.6.1 Sampling resolution (timescales again) 593

12.6.2 Metric significance . 593

12.6.3 Learning and coarse graining defined 594

12.6.4 The Mashed Potato Theorem 594

12.6.5 Separation of concerns . 595

12.6.6 Retaining semantic context for events 596

12.7 Histories: logs and journals . 598

12.7.1 Causal linkage . 598

12.7.2 Dropping hints . 599

12.8 Model extraction . 599

12.8.1 Invariant sequences form explanations 600

12.8.2 Promising semantic maps . 600

12.8.3 Storytelling from spacetime semantics 604

12.8.4 Models, sharding, idempotence, and
forgetting . 606

12.9 Knowledge summarized . 607

13 Afterword 609

A Empirical examples: cases and remedies 613
A.1 Observed faults and their avoidance 613

A.1.1 Key parameters were unexpectedly modified 613

A.1.2 Wrong modifications applied in batch 614

A.1.3 Deletion of key resources by mistake 616

A.1.4 Parameters or attribution are wrongly configured 616

A.1.5 Configuration of key resources or parameters is missing 617

A.1.6 Inconsistent configuration . 617

A.1.7 Non-Optimal configuration 618

A.2 Challenges . 618

A.3 Common datacentre failure modes 619

A.4 Software failures . 619

A.5 Predicting new failure modes at scale 620

A.6 Can we stabilize systems without breaking them further? 620

B Summary of do and don’t in system design 622
B.1 Fault related principles . 622

B.1.1 Devices (machine proxy agents) 623
B.1.2 Human agents . 624
B.1.3 Human-machine interaction 624

B.2 The value of promises . 625

PREFACE

This second volume of Treatise on Systems attempts to go beyond the introductory and
background material in the first volume, to assemble a set of definitions, concepts, and
actionable techniques for a scale dependent analysis of cooperative functional systems.
This treatment is based on the language and methods of Promise Theory. It incorporates
and surpasses the classical statistical analyses of component reliability to deal with issues
of context dependence and non-trivial functional semantics in human-machine hybrid
systems. The active agents in a system (humans, machines, etc) are generic; they are
assessed only by their accuracy or fidelity in keeping to their promised roles. Adaptation
and evolution of systems fall outside the scope of this introduction, except in the most
primitive contextual forms.

It’s exceedingly rare for a book to attempt such an ambitious scope, yet I felt
compelled to take on the challenge, albeit on a necessarily superficial level. It feels,
bluntly, as though the field of systems has been stunted between mysticism and denial
for decades. This work could perhaps be considered a generalization of the early works
on cybernetics, taking them beyond the continuum methods available in the post-war
years, but I believe it also goes further to address modern issues of complexity and
uncertainty. I’m afraid the book is not for the faint hearted, as it asks a level of rigour
that doesn’t usually find a willing audience in Information Technology, and a level of
heuristics and approximation that is eschewed by mathematicians. My goal here is to put
an umbrella over many disciplines that labour in isolation, and show that their travails
are—in fact—not as unique as they often assume. We find a few simple principles at
work, illuminating qualitative and quantitative issues. My hope is that eventually, some
years in the future, the field of Information Technology science and engineering will
reach a level of maturity where these notes will help to convene a more willing audience,
ready to take them further. The unfamiliarity of the language of Promise Theory will
mean that the book will not be immediately accessible to readers without some effort
today. Nevertheless, those who persevere will be rewarded with an astonishingly simple
set of ideas, leading to helpful insights in terms of a very simple language. There

xvii

are universal principles of causality and scale that unify all functional systems across
domains, no matter whether their agents are human, machine, or plant, and these are
exposed in a simple way through Promise Theory language. If I succeed in making this
case alone—inspiring readers to strive for an analytical approach to the subject—then
the effort will surely not have been in vain.

With such a huge amount of material to cover, the nagging issue of how to organize it
for browsing and for dipping into as a reference work shadows the whole endeavour. This
volume is significantly more technical than the first volume, and makes extensive use
of the Promise Theory, which was developed after the completion of the original work
(now volume 1). I’ve kept the text as concise as possible, without too much reference
or discussion. I hope that this will aid contemplation rather than killing it in its tracks.
Given the magnitude of covering every topic, I had to content myself with sketching out
ways that others might use to follow up on these notes, with more detailed and rigorous
analyses, rather than asymptotically being complete. Let it be a lexicon of methodology
rather than an oracle on every issue.

Finally, I’m painfully aware of the difficulty in bridging the cultural and knowledge
gap involved in understanding and applying the principles espoused in these volumes.
By now, I’ve tried to describe the origins of the principles in my popular books In Search
of Certainty and Smart Spacetime—and I refer readers to those books to get a general
sense of what’s going on. Trying to weave that narrative throughout the text here would
make it too cumbersome, so (again) I’ll leave it to others to use this terse account as the
basis for shorter pieces with a special focus1.

From time to time, sage commentators are hailed for recognizing that one cannot
design a system without considering its dynamics and semantics together, e.g. it has been
common to design software architectures without sufficient attention to their runtime
environments. In my case, I made the opposite error of omission. The first volume in
this series focused on system dynamics; this second volume repairs the holistic view to
further incorporate the constraints implied by semantics. The complementary error of
trying to deal only with semantics failed in Logic and is now being repeated in the guise
of Category Theory2, whose arcane machinations are compounded by their paradoxical
popularity. I believe that Promise Theory’s simple-minded pragmatism already surpasses
their raw legacies, taking the best from them, as it focuses on expressive outcomes
without the endless mind-bending abstractions and demands of exclusivity. As a basis for
qualitatively and quantitatively assessing suitably idealized approximations and calibrated
measurements, I’m not altogether unhappy with the result.

M.B. Oslo, 19th February 2020

CHAPTER 1

PRINCIPLES AND ASSUMPTIONS

“As robotic system developers strive to achieve a level of autonomy, they
underestimate the need for coordination with human stakeholders.” [DH06]

“The most powerful dehumanizing machine is not technology but the so-
cial machine, i.e. The formation of command structures to make humans
emulate technology in order to build pyramids and skyscrapers...”

–Lewis Mumford (1967)

The level of detail and intrinsic complexity needed to describe human-machine
system processes can be truly breathtaking, so we seek suitably idealized approximations
as models. It’s important to have a framework in which to formulate a model, with clear
definitions and principles to reduce unnecessary arguments about terminology. In this
chapter, I sketch out what I’ve come to believe are those relevant principles.

Promise Theory has proven to be a convenient abstraction for describing many of
the relationships concerning the arrangements of parts, as well as for capturing the
information flows that drive behaviour. The raw promise formalism is described in
[BB14b]. We refer readers to that reference for basics and for details.

1.1 PROMISE THEORY

Let’s make a brief summary of Promise Theory, without repeating the full text of [BB14b].
Promise Theory is about what can happen in a collection of components, called agents,
that work together[Bur05b, MK05]. It can be applied to any kind of agent, whether

machine or human. Engineers should resist the temptation to think of it as a network

1

2 CHAPTER 1. PRINCIPLES AND ASSUMPTIONS

protocol or sequence of commands to program into a computer; rather it’s a descriptive
algebra from which one might design a variety of protocols for humans and machine
parts to keep the promises described. In a sense, it’s a level higher than an algorithm
or a protocol. Computer programmers should not look for ‘code’ in this book—our
discussion here about patterns of interaction, architecture, and dimensioning. Rather than
‘just show me the code’, we counter with ‘just explain the ideas’ to keep the analysis
timeless and independent of readers’ favourite technologies.

In Promise Theory, one begins with the idea of completely autonomous agents that
interact through the promises they make to one another. This view is well-suited to
modelling networks, as in [MB04]. Although we cannot force autonomous agents to
work together, we can observe when there are sufficient promises made to conclude that
they are indeed cooperating voluntarily. Our challenge in this volume, is to translate this
bottom-up view into top-down, human managed requirements.

Agent is the term used for the fundamental actors or entities that can make and keep
promises in Promise Theory. Agents are not necessarily human or machine, nor like the
more limited concept of ‘software agents’: they can be any active entities like an interface
that keeps promises—a human or a machine. More important than the specific make-up
of an agent is the processes it enacts. Actions taken by agents are not in the scope of
Promise Theory, so we’ll describe them as an additional layer involved in the realization
of promise-keeping. In other words, we assume that appropriate actions are taken to
keep the promises. In that way, we focus on declarative intent, rather than imperative
procedures.

1.2 INTENTIONAL SYSTEMS

Promise theory deals with the concept of intent, and its semantics, along side a description
of the purely mechanical or dynamical aspects of behaviour. It is useful to define intent
itself, and indeed its relation to promises. A unit of intent is called an intention. The body
of each intention describes what is intended, i.e. what constraint is desired or expected
of outcomes for an agent.

Definition 1 (Intent). A subject or type of possible behaviour. i.e. something that can be
interpreted to have significance. Any agent can harbour intentions. It could be something
like ‘be red’ for a light, or ‘win the race’ for a sports person.

In philosophy, there is a long history of identifying intent with human ideas about
consciousness and freewill. Thinkers have found it hard to dissociate their ideas about
intent and thought from the Victorian religious doctrine of Mankind being at the top of a

1.3. IMPARTIALITY 3

ladder of species, with unique capabilities that place humans next to God, and place us
above all other animals and things. Searle was prominent in criticizing this view[Sea83].

From the definition of intent above, it should be clear that an assessment of intentional
behaviour lies principally in the eyes of the beholder. I accept and adopt here a broader
view of intentionality than most authors—one that can be applied to humans, animals,
and any kind of machinery, i.e. a definition that scales from small to large.

Definition 2 (Intentional system). A system that appears to satisfy a stable functional
role within a larger composition of agents.

This ties intent the semantics of behaviours. An intentional agent may be thought of as
having an interpretation, and even a purpose, which means that it expresses behaviour
whose semantics are more or less constant over an extended observational timescale. The
agent expresses stability in the eyes of an observer.

The point about intent is not at all that there has to be freewill behind it, because
many inert tools carry out and represent the intentions of their users, e.g. a computer
program is a proxy for the intentions of its designer and its user. The origin of intent is
not as relevant as the observation of a sense of purpose intent, and that is ultimately a
speculative assessment made by an observer, as we observe in our natural propensity for
anthropomorphism in everyday speech. Indeed, the fact that inert machinery can exhibit
intentional behaviours naturally leads to the question: are we, as humans, so sure that
what we imagine to be intentional, conscious, and free thinking behaviour really is what
we think it is? That question is the essence of the Turing test. I’m not going to offer any
further arguments on this point. Henceforth, I assume intent to be a universal property
about constant behavioural promises.

1.3 IMPARTIALITY

By tradition, the manifesto of science is to seek ‘impartiality’3. This is one reason why
semantics have traditionally been eschewed from modern science—we believe that all
unnecessary interpretation will lead to bias. The problem with this argument is that it
is simplistic. It’s analogous to saying that we can avoid bias in judging the colour of a
flower by closing our eyes. If we remove all labels for discrimination, what we end up
with will be necessarily trivial.

Ultimately that manifesto fails to capture the fullness of functional and contextual
systems. In more modern times, the rise of statistical knowledge has seen an overstated
belief in the truth of ‘data’. Statements like ‘data don’t lie’ are common. This, however,
is quite misleading—and Promise Theory exposes the reason quickly and impartially

4 CHAPTER 1. PRINCIPLES AND ASSUMPTIONS

(through its simple axioms)! Briefly, data are unobservable without a process of sam-
pling, measurement, contextualization, and interpretation. The receiver, observer, or
measurement agent is an intermediary in a chain of evidence. So—whether data lie or
don’t (and clearly data sources can deliberately deceive in certain circumstances)—it is
always the integrity of the observer which is the weak link in the chain.

As humans, we base knowledge on trust relationships. Accepting data from unverified
sources (e.g. lumps of big data, large data sets, etc) without seeing the values arise one
by one, over a period of time, bypasses Axelrod’s game of trust, in which the payoff for
deception is a lowering of trust and the payoff for confirmation is an increase. When
data arrive ‘all at once’, we trust them no more than a single data point. So statistical
answers to questions can never be trusted, regardless of how we assess their data sources—
because they eliminate the very contextual and semantic basis on which trust grows.
Data gathered with the aim of impartiality, and with the best of intentions, can be both
misunderstood, out of context, muddled inappropriately and averaged into a formless
nothingness. In other words, whether data lie or not is not the right question to ask; we
must ask: have we captured the contextual semantics of the phenomena we study? This
has the deepest of implications for both data science and the construction of models on
all levels. Therefore, to study systems, in a meaningful way, we must reexamine the role
of the observer in each case.

1.4 PROMISES AS EXPRESSIONS OF INTENT

Our starting point for systems is to clarify their intentions and their behaviours. This
would be impossible without clear statements to define them, and their properties. In
other words: what do they promise? What can we rely on to be true about them? What
can we trust?

A promise is an intention that has been ‘voluntarily’ adopted by an agent (usually
channeling a human owner, or perhaps an agreed standardization). An agent that only
promises to do as it’s told is dependent or voluntarily subordinated. It has some of
the characteristics of a service: an agent makes its intended behavior known to other
agents (e.g. I will serve files on demand, or forward packets when I receive them). An
imposition is an attempt to induce the cooperation of another agent by imposing upon it
(e.g. give me the file, take this packet).

Definition 3 (Promise). When an intention is publicly declared to some audience (called
its scope) it becomes a promise. Thus a promise is a stated intention. A promise from
Promiser to Promisee, with body b is written:

Promiser
b−→ Promisee.

1.4. PROMISES AS EXPRESSIONS OF INTENT 5

Promises could be considered a collection of ad hoc choices or policies that stand as the
outcomes of decisions about an agent’s willing limits. Promises are entirely voluntary
decisions, they cannot be imposed in general.

Definition 4 (Imposition). This is an attempt to induce cooperation in another agent,
i.e. to implant an intention. It is complementary to the idea of a promise. Degrees of
imposition include: hints, advice, suggestions, requests, commands, etc. Impositions are
written:

Imposer
b−−−−−→ Imposee.

It is far more common to find the use of obligations as the model of system control (in
the sense of deontic logic); for example, a system shall do this or that, a system must
do the other—a system is obliged to behave properly. This stems from a long history of
belief in determinism and perhaps slavery—the desire to impose one’s will on the world.
It ties into the command style interfaces to computers and machines, which are designed
to fit our manual approach to interacting with the world by touch. The problem with this
kind of thinking is that it does not scale well, because it connects a single remote source
with a world of unspecified size. Wrestling manually with systems might be satisfying
on the scale of what a single human can manage, but it quickly becomes a David and
Goliath scenario (in either direction) when the scales are mismatched.

Promises cleanly express the limits of determinism behind a simple abstraction. They
should not be assumed to originate from a human being—though many inanimate agents
are proxy for the keeping promises originating from humans

Definition 5 (Obligation). An imposition that implies a cost or penalty for non-
compliance. It is more ‘aggressive’ than a mere imposition.

Once a promise has been made, and an attempt to keep it, any agent can attempt to assess
whether it believes the promise to be kept or not. This is a fundamentally subjective
matter, even in physics where one would like to believe in an objective reality. Reality
may be objective, but our assessments of it are not.

Definition 6 (Assessment). A decision by a single agent A about whether a promise π
has been kept or not, usually written αA(π).

Every agent makes its own assessment about promises it is aware of. Often assessment
involves the observation of other agents’ behaviours. Note that it is meaningless to
compare assessments by different agents. This would be like comparing measurements
in inches with measurement in centimetres. If agents can be calibrated in advance by

6 CHAPTER 1. PRINCIPLES AND ASSUMPTIONS

promising to accept the criteria of a single source—an arbiter of truth—then assessments
could be compared conditionally, since calibration is a conditional promise.

Promises and impositions fall into two polarities, denoted by±. A promise to give or
provide a behaviour b is denoted by a body +b; a promise to accept something is denoted
−b (or sometimes U(b), meaning use-b). Similarly, an imposition on an agent to give
something would have body +b, while an imposition to accept something has a body −b.

Although promises are not a network protocol, agents can exchange data. To com-
plete any kind of exchange, we need a match an imposition (+) with a promise to use (-).
To form a binding (as part of a contract), we need to match a promise to give (+) with a
promise to use (-). This rule forces one to document necessary and sufficient conditions
for cooperative behaviour.

A promise model thus consists of a graph of nodes (representing agents), and links or
edges (representing either promises or impositions), which are used to describe intentions.
Whatever protocol might be used to communicate promises is not defined, and is separate
from whatever protocol is designed to keep the promises. Agents publish their intentions
and other agents may or may not choose to pay attention. In that sense, these interactions
form a binding chemistry of intent [Bur13b], with no particular manifesto, other than to
decompose systems into the set of necessary and sufficient promises to model intended
behavior.

The basics of Promise Theory are summarized follow essentially from the principle
of a priori autonomy of parts.

Principle 1 (Autonomy). No agent can make or keep a promise on behalf of another
agent.

1. All states, actions and behaviours in a system are properties of agents.

2. Without intent, an agent’s behaviour is said to be ad hoc or unconstrained.

3. Without coordination intent, a collection of agents cannot act in an intentional
way, and its collective behaviour must be considered autonomous.

4. Agents are a priori atomic, i.e. independent or autonomous4. They may promise
to give up some or all of their independence by receiving input from others.

5. Agents make promises, and assess the promises made by other agents.

6. Intentions depend on context, i.e. the states reported by other agents within a
collaborative system. Thus agents may be able to assess context and promise to
share that assessment transparently as a service to other collaborating agents.

7. A documented intention is called a promise.

1.5. FUNCTIONAL SYSTEMS ARE INTENTIONAL 7

• It is made by the agent that has the intention and can keep the promise.

• It is made to any stakeholders with an active interest in the information, and
may be seen by others too with only passive interest.

• No agent can make a promise on behalf of another agent to keep (the latter
would be called an imposition). Indeed, this property is elevated to the
status of a basic axiom or principle.

• In a system, it is not sufficient that each agent knows its own intent: inten-
tions may have to be shared with others, so that agents can form expectations
about one another’s behaviours. This is how systems work together in a
collective or collaborative manner.

8. A promise does not guarantee an outcome. The promised outcome may be kept
with ‘best effort’ by the agent concerned. An outcome that is not promised may
be considered ad hoc or taken for granted. No agent in the system can form any
expectation of a non-promised outcome.

9. An agent policy is a collection of promises that attach to assessable contexts.

10. A promise that does not promise a final state (e.g. only promises a relative
transition), and which is independent of its starting state, is unstable and cannot
be used to predict outcomes over time.

11. A system in which each agent does not promise a coordinated intent cannot
collectively promise a desired outcome, and a user cannot expect anything about
its behaviour.

12. All promises take a non-zero amount of time, as measured by a recipient, to keep,
i.e. TO(π) > 0,∀π.

The importance of understanding promises can’t be overstated. If an agent, behaving
within a system or not, makes no promises, then it cannot be considered in error, nor can
it exhibit a fault, even if it fails to meet others expectations. Thus, all components need
to document their intended functions and limits.

1.5 FUNCTIONAL SYSTEMS ARE INTENTIONAL

A system begins with assembly of component parts that interact and develop. Unless triv-
ial, systems exhibit bulk behaviours that cannot be fully understood from the behaviours
of its components in isolation. Any assembly of parts, collected within any arbitrary
boundary, may be viewed as a system. Such phenomena exist in nature, or they may be
artificial.

8 CHAPTER 1. PRINCIPLES AND ASSUMPTIONS

Definition 7 (System). A collection of agents S that make interdependent promises
within S, forming a stochastically connected graph.

in other words, a system is a set of component resources, their interactions, and patterns
of change, that can be assembled into a descriptive model with associated semantics.

If influence can be passed from an agent to another, even if it does not belong to the
body, then it belongs to the total system.

Definition 8 (Stochastically connected). Two agents may be called stochastically con-
nected, according to an observer agent O, if and only if it assesses a non-zero probability
of them being adjacent, by promise, for some definition of probability.

αO
(
A1

+b−−→ A2, A2
−b−−→ A1

)
> 0 (1.1)

The ability to describe a system is important: without this, we cannot speak of a
system at all. Systems are always identified by human observers, which means that they
are often based on arbitrary choices, and this affects the nature of what we see in them
and mean by them. Subjectivity is a key aspect of systems, independently of how we
might strive for impartiality in describing them.

Definition 9 (Intentional or functional body). Any system body B, which makes a +

promise to agents not in B may be described as expressing an intent.

No matter whether the originator of an intention is a part of the system or not, effective
intent is at work in systems that we assess to be functional. To this end, there is no need
to become embroiled in discussions of the need for human agency or freewill, because
such agency can be represented through proxies, be imitated by random processes (e.g.
in evolution), and therefore we can’t necessarily distinguish between apparent intent
and the supposed genuine human article. That’s because, like all phenomena, intent is
ultimately judged in the eye of the beholder, not the originator. The key differentiator
lies in the scale and semantics of the promises.

1.6 SYSTEM BOUNDARIES, OPEN AND CLOSED

SYSTEMS

If a system were completely decoupled from its surroundings, and its users, we would
not even be able to observe it or interact with it. So where does ‘the system’ start and
end? Does it include users, its environment? Surely both of these interact with it, and
therefore influence it. This is where system design often becomes rather wooly. One

1.6. SYSTEM BOUNDARIES, OPEN AND CLOSED SYSTEMS 9

tends to neglect the users and the environment in the interests of modularity, but, although
convenient, this is paradoxical if not slightly dishonest (see figure 1.1). There has to be a
way to focusing on the most relevant pieces of a problem, and approximating away the
rest. This points us to the notion of a ‘suitably idealized approximation’ in science, in
which we define subsystems as ‘the system’, from the viewpoint of an observer. There
are well established techniques in science for making such approximations consistently.

assessor

observer

THE SYSTEM

approx subsystem

Figure 1.1: Where is the edge of a system? We should really talk about embedded
subsystems, as no system has a meaningful edge if it interacts with a party defined to be
outside of itself.

If a system comprises all that is connected by interaction, then we have am obvious
problem trying to define a system as something that serves exterior clients. As soon as the
clients interact, they become part of the system, as defined above. This makes obvious
sense, but it’s also not how we usually speak about systems. We are more familiar with
the concept of a system of ownership, like a company or a service, which is basically
a membership concept. A top level view of what defines an entity is used to define the
limits of the system, without recourse to empirical truth. To capture this more familiar
idea, we can refer to ‘entity systems’ or ‘system bodies’ rather than systems. This also
captures the idea of a material body in physics, in the Newtonian sense.

Definition 10 (Entity system or system body). A collection of agents belonging S that
promise membership of a collective body or entity B:

S : Ai
−(Ai∈B)−−−−−−→ A?, (1.2)

Aj ∈ B
+(Ai∈B)−−−−−−→ Ai (1.3)

By this definition, our common idea of the system is really B, but when it interacts with

10 CHAPTER 1. PRINCIPLES AND ASSUMPTIONS

exterior agents, we have to acknowledge the extension of the boundary to include client
agents.

The boundary of a system is also a non-intuitive concept for a graph, as our normal
idea of a boundary relates to the existence of a space in which agents are embedded.
We perhaps think of a graph as herd of animals, whose outer members represent the
boundary or edge of the group. But in the world of agents, there is no particular reason
why this geometry would be related to which agents make promises to one another or
interact as a result.

If we choose a random boundary to define a subsystem of interest the results might
be surprising, because interactions across the boundary can play a major role in the
outcomes within the boundary. So we must try to define boundaries sensibly as regions
where the coupling between what is inside and outside the boundary is weak, or even
absent. Interaction is key to understanding system behaviour. The body concept is useful
here too.

Definition 11 (System boundary). The subset of agents belonging to a body B that
promise to interact with agents not in B.

Lemma 1 (The boundary of a system is indeterminate). The presumed boundary of a
non-isolated system interacts with exterior agents, but the act of interaction extends the
system and thus shifts boundary.

The limits of a system are not an absolutely determined line in the sand. Every system
has different typed boundaries, i.e. limits at which different types of promises no longer
couple interior with exterior. A rational approach to systems therefore must take into
account the types of interactions that take place. Systems are overlapping patchworks,
not isolatable, modular components.

Following the traditions of physics, we may begin by defining open and closed
systems:

Definition 12 (Open system). An arbitrary collection of interacting parts (called agents),
each of which may interact with parts not defined to be within the system. Open systems
are really subsystems with locally and globally incomplete information.

Definition 13 (Closed system). A closed collection of parts (called agents) each of which
may interact with other parts inside the collection. Closed systems are total systems with
globally complete information.

1.7. EMERGENT OR EFFECTIVE PROMISES 11

Closed systems are idealizations and approximations to reality. They are an artifice,
defined to elucidate specific issues in a model, such as the formulation of simple rules.
All practical systems are open systems.

Comment 1 (Top-down versus bottom-up). Many engineers (especially in computer
science and engineering) are taught to design systems from the top down: that means
starting with the whole and breaking it into successively smaller component parts. The
problem with this methodology is: we can’t build a system from the top down (except
perhaps a sculptor who whittles away parts), so designing it this way leads to a mismatch
between intent and capability.

Top-down is a narrative construction: it is the way we explain through stories. It
assumes to know what the top of the system is; however, we have already said that the
boundary of the system is arbitrary. So what, then, are we designing? If we design from
established components, that can make known promises (materials, off the shelf parts,
etc), and build up, then we have an open ended process with a stable foundation. If we
build from an uncertain ‘top’ towards an uncertain foundation, the whole edifice of the
system is uncertain: nothing may be stable.

1.7 EMERGENT OR EFFECTIVE PROMISES

Emergent behaviour is a much popularized notion, and one that often defies a clear
definition. Promise Theory is helpful here[BF07b]. We can define emergent behaviour
as an effective promise, from the viewpoint of an observer agent O.

Definition 14 (Emergent or effective promise). Let {A} by any collection of agents, and
let π(+) be a promise of some property of behaviour that is expected by the observer
O. Now suppose O promises the complementary promise π(−) to bind to π(+). If O
assesses that this promise is kept, i.e. αO(π(+)) is positive, when in fact no such promise
has been made by A, then we claim that A exhibits an emergent promise or behaviour
π(+).

1.8 TRUST

Promises are closely related to the question of trust between agents[BB06].

12 CHAPTER 1. PRINCIPLES AND ASSUMPTIONS

Definition 15 (Trust in a promise πX). An observer O’s trust in a promise πX is an
assessment, αO(πX) of the probability that O can abstain from falsifying

πX : A
+X−−→ A? (1.4)

and thus avoid the cost of computing αO(π). The combination of all such assessments
about a single agent A may be called the trustworthiness of the agent A.

Trust, in turn, is related to predictability, in the eyes of an observer. One assumes that,
by learning about the past or by building a relationship with system behaviours in band,
we are able to predict something about the future behaviour. This, in turn, assumes a
stability under the repetition of patterns.

Definition 16 (Predictability). A system that has stable and repeated observable behav-
iour, on a timescale much greater than the sampling rate, may be called predictable.

1.9 PRINCIPLE OF CONSERVATION

In mechanical systems, in physics and engineering, the conservation of key quantities
forms a number of principles that explain certain behaviours for closed systems. The
best known include energy, current, momentum, etc, which constrain the avenues of
possible change locally and globally. In economics there is a similar implicit principle of
conservation of money. The generalization of these principles can be thought of in terms
of information transactions. A transactional element of an information transmission is a
symbol, i.e. an element of an alphabet used for the encoding of information, in the sense
of Shannon’s communication theory[SW49]. Information form a current, just as particles
of water or electricity do. Each distinguishable ‘particle’ is thus a symbol and vice versa.

Example 1 (Conservation of current). In a closed region, like a pipe or network, what
goes in must come out. So at a network node, one has Kirchoff’s law for current J∑

in

J =
∑
out

J (1.5)

This assumes that the density of the current doesn’t change. In a pipe, the current flow J

and the density of a local region with density ρ: are related by a conservation equation:

∂J

∂x
= −∂ρ

∂t
(1.6)

If the density increases in a region, it might appear to reduce the amount of flow, because
it’s more bunched up in size—but the accounting works as long as we count the scales
consistently.

1.9. PRINCIPLE OF CONSERVATION 13

In any system, it’s helpful to assume the conservation of some countable quantity
whether we are certain of its immutability or not, because it allows us to measure things.
By Noether’s theorem this amounts to assuming the continuity of processes that carry or
transport that quantity. In computing we can also treat data transactions as conserved.

Principle 2 (Conservation of transmitted information). Information, counted in bits or
transactions, is never created or destroyed, but may be diverted or transformed into other
forms within agents.

Example 2 (Data circuitry). Agents may play different roles within data circuitry. Agents
and promises that manipulate data tend to assume data conservation—a kind of data
accounting. The table below shows a few example agents and their processes involved in
this kind of accounting.

Promised Role Agent
Sources of data Inputs, sensors, distinguishability

Sinks of data Outputs, garbage collection
Reservoirs of data Databases, storage services
Transport of data Network transport, data pipelines

Amplification of data Services, replication
Attenuation of data Idempotent semantics, indistinguishability

fixed point behaviours

Data density increases as interior storage is filled, within an agent. Data flow increases
as data are transported to exterior agents. This example is a bit simplistic. What’s
missing from this story is the role of scale in how we count information.

All principles need some explanation. In some cases, they may be shown empirically
true, subject to certain constraints and assumptions. For example, the flow of water
through closed pipes can be measured, given that it doesn’t leak. Other principles, like
the conservation of energy or money are not so clear cut, because money and energy are
virtual counters and they can be converted into other things. If water were turned into
steam in pipes, conservation of water current would not be exactly true, unless one could
account for those transformations. So it is with all conservation laws.

The conservation of data is not like the conservation of matter or energy. Creating,
deleting, and moving data around costs energy at every stage, because our computing
technologies are highly inefficient. The same is true of money in economics. Nevertheless,
as an accounting principle, it is a useful artifact. Conservation laws are basically an
assumption that’s consistent with how we count phenomena.

14 CHAPTER 1. PRINCIPLES AND ASSUMPTIONS

1.10 SCALE AND CONSERVATION IN TRANSPORT

PROCESSES

Data transport is one of the pernicious problems of human-computer systems. Networks
are relatively scare resources compared to computers, and the demand for data intensive
services is only growing. This places a tension on processes designed for the ‘edge
of the cloud’, i.e. at the user end of the system, when they are driven by ‘back end’
infrastructure running in datacentres. Data centres are, almost by definition, far away
from most users in a globalized world.

Layer N

Layer 2

Layer 1
intent

keep

d
e

p
e

n
d

e
n

c
y

upstream downstream

replication / transport

Figure 1.2: How information scales: greater data size requires greater time, so multi-part
messages should be decoupled by timescale. For example, the intent to synchronize data can
be separated from the actual transport of bulk. Interactions of intent are small quick messages.
The keeping of bulk data promises require transactions on a much long timescale, which can be
decoupled into a separate process. Many databases fold these into a single process by trying to
freeze transaction time with a lock to ensure consistency of replication.

• There is therefore an imperative to avoid moving data around unnecessarily.

• The capacity for handling data depends on the relative impedances between
upstream and downstream agents. If a link in the processing chain is slow it will
lead to queueing and congestion.

• Local caching is the strategy of keeping data close to agents involved in frequent
transactions.

In some cases, the insistence on centralizing information to avoid a human headache
may lead to unnecessary communication at the wrong time. In a lot of cases, one can
actually avoid embedded ‘realtime’ communication altogether, by ensuring that the local
context is already pre-seeded with all necessary information. This was the approach

1.11. CONFIGURATION SPACE 15

used in CFEngine: discovery of environment and pre-cached policy (advance decision-
making) replaced the need to first collect names and locations and then push down a
specific set of changes.

Example 3. Measurements on a distributed platform are matrix measurements.

How can we define a speed or a velocity? We need to define the markers from
beginning to end, and thus the interval over which the measurement is made.

Distributed systems connect many processes together, and sometimes this leads to
rate limiting as dependencies are queued up by strong coupling. To practise the principle
of separation of scales, we try not to let slow processes delay fast processes. Unfortunately
the slow processes are the ones, like storage operations, that lead to persistence of data
and thus are the outcomes of greatest value. Computation is ephemeral and localized and
therefore fast.

Trade off of frequency versus distance, or time to access (latency).

1.11 CONFIGURATION SPACE

The set of possible locations of states that characterize the information and condition of
a system are collectively referred to as its configuration space. Location plays a role only
to the extent that locations are connected by paths over which information travels.

Example 4 (Euclidean configuration space). In mathematics, Euclidean space is nor-
mally imagined as the configuration space for our physical world. The states that can be
used to define distances come from the ability to identify points. Markers include matter
and energy exhibiting different properties, in different coordinate locations. Coordinates
themselves are an abstraction, and cannot be measured without something to mark them.

In a computer system, the configuration space consists of the agents, computers,
and their interior states and memories. How we refer to these by coordinates is a
separate problem. The key principle in observing systems is observability. To observe
a phenomenon we need to be granted access to the phenomenon, and promise to be
observant, both of which can be expressed in promises.

The location of agents capable of keeping promises introduces another set of scales:
distance, which is related to latency by the assumption that the greater the path length of
information, the more likely it is to be distorted, delayed or interrupted. In IT systems,
delays come mainly from switching and computation, as the speed of light in cables or
air is sufficiently fast to make distance a minor concern at current levels. Obviously this
may also change in the future.

16 CHAPTER 1. PRINCIPLES AND ASSUMPTIONS

1.12 DIRECTION IN CONFIGURATION SPACE

In the three dimensions of Euclidean space we are used to modelling with, dimensions are
normally labelled by x, y, z. At each point, these are the possible directions in which one
can travel. Not all systems have the same degree of freedom however. At some points,
there may be dead ends, or only a limited number of exits to take. In a network, the
outgoing routes from a location can have any number, but this number may be irregular
and different at each location.

In the Promise Theory of this volume, we consider all configurations to be graphs,
and makes no distinction between matter and spacetime, or things and empty space.
Something is formally just a different state of nothing, like 1 and 0, but with more
flavours. All spacetimes can be modelled as graphs, because everything that happens
within them is a process, which involves a trajectory. Whether one considers spacetime to
be continuous or discrete is not important—both can be represented as graphs5, because
graphs express the basic ordering relationship implicit in causality.

The notion of direction is more complicated in the case of a network, where we
can’t assume that every place in the network is exactly the same. Several paths from
one location to another may exist through a network, either physically or virtually. So
what seems to be a different direction initially just ends up leading to the same place.
Dimensionality is scale dependent.

Example 5 (Computer networks). In a computer system, there might be a wireless
network connecting computers along side a cable network. These offer parallel routes
from one computer to another. Starting out going wireless seems to be a different choice
from the perspective of the computer (a different interface), but on a larger scale the
choices converge at the same place, so they are not independent at the larger scale.

These are not parallel universes, because they connect the same points—they are
shadow networks, like road and rail, or flights and shipping. There can be multiple
channels with different labelled properties between the same points.

Definition 17 (Parallel). Paths or processes that do not interfere or contend for any
common resource may be called parallel.

In figure 3.3, for instance, the horizontal promises can be made in parallel if the network
connections for storage and database logs are independent channels—either physically
separate cables or virtually partitioned slots.

1.13. CHANNELS OF COMMUNICATION AND PROMISE-KEEPING 17

1.13 CHANNELS OF COMMUNICATION AND

PROMISE-KEEPING

When referring to any kind of channel between agents, we shall assume that agents trans-
mit singular and serial streams to propagate their influence, in the form of ‘information’
in the most general interpretation—one symbol at a time. Sometimes there are multiple
parallel channels, which may either interfere or reinforce one another. This brings up a
number of issues about processing steps, and the clocks that measure the progress of the
system. We’ll return to discuss these several times.

Serialization remains important at single nodes, even when parallel channels are in
operation. For an agent to receive simultaneous parallel transfers, we would require the
confluence of parallel channels to be sampled at within a single tick of a process clock6.

1.14 HOW WE COUNT INTERACTIONS AND THEIR

OUTCOMES

Developing formal models to describe resilient or reliable systems is a singular challenge.
Systems are inherently subjective interpretations of dynamical processes, and treating
subjectivity, in as impartial a manner as possible, presents several obstacles. Nevertheless,
this is the challenge of any systems theory, and it is what promise theory was created for.

All systems have costs as well as benefits. It’s common for engineers and designers
to construct interfaces and narratives that apparently conceal costs. If we measure a
system by one criterion and push the cost to a different criterion that isn’t explicitly
tracked, we may create the illusion of an objective optimization. It’s important to count
costs fully and fairly. However, such a fair viewpoint may not be available to everyone
in a system, so subjective fairness can appear skewed. The exterior (or ‘god’s eye’)
view energy cost of a system may well be the only fair evaluation of a system, which is
one reason why conservation laws play a key role in describing process quantitatively.
However, because agents within the system have only a limited access to information,
close to them, this global view might also not be available to any observer.

The greatest accomplishment of Newton and his peers was to formulate a description
of the world in which we model behaviour by counting. By introducing counters (energy,
money, etc), we can literally account for changes as long as we assume the counters are
immutable: once created they don’t just disappear without telling us. The tokens counted
are deterministic in their transactions. The Newtonian approach effectively associates
promises with outcomes in a transactional manner. There is no such theory in Computer
Science, with the debatable exception of some aspects of database transaction theory,

18 CHAPTER 1. PRINCIPLES AND ASSUMPTIONS

but having one would be quite desirable. This is amongst the on-going goals of Promise
Theory. We can then add to that the complications that come from indeterminism. We
work only with partial and incomplete information. Whether underlying mechanisms are
deterministic and transactional or not, we may not be able to observe deterministically.

Classical reliability theory, following a mathematical tradition, has a history of
approaching the concept of manufacturing reliability statistically[Nat98, HR94]. Systems
were assumed to be networks of black box components, and faults are treated as
statistical occurrences within the components rather than their interactions. Moreover,
the functional semantics of components were suppressed deliberately to give an impartial
account of faults that was generic but limited. To modernize and complete a model
of functional systems, in which semantics play a major roles (e.g. interactive systems,
software, and services[WG06]), one is forced to involve systemic issues at multiple scales,
as well as ‘human issues’ (all semantics have human origin)[HWL06, DH06, Bur04a].

The aim of this approach is to capture some of both these views, by exposing the
semantics and modelling the functionality along side the fidelity of active and passive
elements. Trying to describe systems without breaking them into interacting parts leads
only to vague descriptions that emphasize subjectivity. By using promise theory to
describe systems through agent interactions, we can find a useful middle ground that
respects the traditions of physics, and places subjectivities on a clear footing.

Faults and errors involve deviations in semantics and interpretation as well as de-
viations in dynamical behaviour. The aim of formalization is not to present the perfect
fait accomplit, but to bring some straightforward enhancements to the state of system
formalization.

1.15 THE INTENDED ‘PURPOSE’ OF A SYSTEM

(SEMANTICS)

Whether a system is natural or artificial in origin, we may describe it as having a purpose
if ‘observers’, ‘assessors’, or ‘users’, who interact with it, infer that purpose, by projecting
their own semantics onto its collective behaviours. If a system plays a role within a larger
process, then it can be said to serve that process—that purpose. Each observer assesses
the defined system in relation to their understanding and sense of values. This is an
inherently subjective matter, which makes assessing all system outcomes controversial.
The quotes at the start of the chapter illustrate a few of the pitfalls and preconceptions
that await the unwary, in attempting to discuss the idea of failures and errors in systems.

It’s important that we be able to explain purpose, like intent—that we don’t merely
reject it as a subjective or anthropomorphic irrelevance, because purpose is a dominant
issue in what we mean by systemic affairs. In a system that was evolved rather than

1.16. SYSTEM CHARACTERISTICS AND OUTCOMES 19

designed, there may not seem to be an explicitly promised purpose. Evolution is merely a
competition between mutation and constrained selection, and can only describe a purpose
indirectly by ascribing a meaning to the selection criterion—but, then, a human decision
is just a competition between alternative narratives, eventually selected by some criterion.
Neither process requires advanced intelligence. In nature, the criterion is stability within
a particular niche context, i.e. niche survival. In human terms, the criterion is stability
of narrative. Artificial evolution may be based on design goals, or choices, e.g. genetic
algorithms. In this case, the promises are implicit, and lie in the value judgement of
observed behaviour.

1.16 SYSTEM CHARACTERISTICS AND OUTCOMES

The observable outcomes of a system are measurable states, defined at different scales of
observation[Bur15a]. It is assumed that a system may be described by the propagation or
evolution of such states over time and space[Bur14]. In fact, a timeline is defined to be a
sequence of changes in the states of the system! This kind of model for ‘propagation’
from one state to another is well understood in physics.

Definition 18 (State of an agent (microstate) q). A description of the value taken by a
variable q that characterizes the condition the agent, at a given scale of observation.

Definition 19 (State of the system (macrostate)). A bulk average description of observ-
able microstates of the system, at the scale of observation.

Note how the scale of observation plays a central role in describing the system, and a
rescaling (coarse graining) may redefine a macrostate to be a microstate at a larger scale.
This reflects the fact that we always have limited, and generally incomplete, information
about a system. In other words, our knowledge of a system is always some kind of
measured approximation to what is going on. States are most useful in relating promises
to outcomes, thus they become a language for defining desired state outcomes.

Definition 20 (Promised outcome). A specification of the values of any variables q
whose values have been promised by a promiser.

A description of behaviour in terms of outcomes (rather than the litany of steps to
achieve the outcome) is both compact and irreducible. It has numerous advantages that
I’ll try to outline throughout these notes. An outcome may go through a number of stages,
in which case we may speak effectively of a function of ‘time’ q(t), where the time is
defined by the sequence of changes to q.

20 CHAPTER 1. PRINCIPLES AND ASSUMPTIONS

Definition 21 (Assessed outcome). A specification of the values of any variables q
whose values have been chosen and assigned by any agent assessing a promise.

Unless stated explicitly, we’ll assume that promised and assessed outcomes are the same
to avoid unnecessary verbiage.

When the outcome of one or more promises results in changes over time and possibly
space (several agents) in a causal order, we can talk about processes and trajectories7.
Although these words mean similar things in common parlance, it’s helpful to make a
distinction in promise theory. The sequence of states a single agent passes through is
called its trajectory:

Definition 22 (Trajectory). A sequence of values for a state q belonging to an agent.
The path in q space, at each sample time t defines a quasi function q(t).

whereas a collaborative, collective chain of promises that forms a partially ordered set of
pre-requisite dependencies is what we mean by a process.

Definition 23 (Process). A directed graph of promise bindings that results in a causal
chain of outcomes from a number of source agents to a number of receiver agents.

A process represents our common understanding of workflows, manufacturing production
lines, and data pipelines. A trajectory is more like the personal journey of discovery by
an individual agent that may or may not be part of a process.

• Outcomes are states that are the results of interactions between agencies of the
system. Interactions consist of two kinds of promise, labelled + (offered or
intended) and - (accepted or received).

• Behaviours may be characterized by observers viewing at different scales.

• The strength of agent-agent interactions determines how well behaviours at differ-
ent scales (de)couple.

• Strong interactions may be considered hard dependencies that form a network
along the interaction paths.

Lemma 2 (Open systems have unpredictable states and trajectories). We cannot predict
all behaviours within an open system, as new information can enter that is, by definition,
not predictable.

1.17. SUPER-AGENCY AND SCALING 21

A proof of this was given in [BC11]. In a closed system we have, in principle, complete
information. Of course, that assumes that the system is also closed from within, i.e.
that no unexpected behaviours come from within agents in a system (such as breakages,
capricious intent, or even quantum mechanical uncertainty). The notion of a closed
system is essentially an idealization to help isolate certain causal trajectories in system
dynamics, and enable formalization. They should not be considered realistic in the world
around us.

1.17 SUPER-AGENCY AND SCALING

We may aggregate a collection of cooperating agents into an aggregate ‘superagent’, that
behaves as a single entity at a larger scale. Promises that only affect what is inside the
superagent may be called interior, and promises that affect what is outside may be called
exterior (see figure 2.8). In this way, we can imagine partitioning the entire world into
open subsystems that we define in any convenient manner.

1.18 PREDICTABILITY AND PROMISE

If a system is stable enough to be predictable, then we can describe its patterns of time
development according to some formulae8. We may only be able to describe the envelope
of possible outcomes by a formula, or we might be able to predict the exact state of the
approximate model! Promise Theory allows both dynamic and semantic outcomes to be
placed on a similar footing[Bur13a] by defining comparative scales for outcomes, which
we call promises. This is a useful approach, with great flexibility.

1.19 DRIFTING INTO FAILURE

In his book Drift into Failure[Dek11], S. Dekker describes how ‘failure’ often creeps
up on the unwitting users or participants. As systems are used, and maintained, they
are improved and adapted. Gradual adaptations, changing the envelope of apparently
innocent parts have unexpected consequences as the changes are amplified.

Flawed expectations, lack of knowledge or awareness of the actual behaviour of the
‘unruly system’ all contribute to a gradual drift of a system out of its fitness envelope
and into the realm of unreliability. Problems with change (errors), lead to problems of
state (faults), and expose problems of inadequate design (flaws). In other words, failures
occur because systems are not simply not static. They undergo planned and unplanned
change, driven by environmental forces we often don’t even realize we need to know
about[HWL06, Bur13a].

22 CHAPTER 1. PRINCIPLES AND ASSUMPTIONS

Could we begin to address the build up of drift? This seems plausible, in a limited
sense. Managing drift is what maintenance routines are for, and tools can help. Expec-
tation creep can be stopped by mechanical oversight, with independent auditing9. The
key is to have a declaration of intended outcomes (promises) that can be monitored in a
targeted fashion, without pressure from other concerns to relax standards. The trouble
is that we can’t even define drift unless we know what the system is meant to promise.
Even then, the promises might be naive. This is the challenge. I will return to this in the
chapter on scaling.

1.20 HOW TO USE THIS VOLUME

The material in this volume forms a unique approach to the study of systems. The
discussion is extensive and yet covers only a limited set of issues, hopefully serving as
an example roadmap to be extended and improved by others. Through its principles,
and examples, Promise Theory offers tools to help design, express, measure, and reason
about systems. It forms an impartial methodology for discussing all manner of issues. It
is not a recipe for unwavering ‘success’. Indeed, while the method may be impartial, its
application need not be. If nothing else, it embraces uncertainty.

Designing a system, which explicitly promises and documents intent, means one can
gradually test hypotheses as a system evolves, and with iterative yet focused measurement.
Engineers tend to assume that designs should be either abandoned or patched in operation
when they fail to behave as expected, and that generic monitoring of systems suffices to
address issues that may arise. However, that assumes that you know what you’re looking
for. Thinking in terms of actual promised specifications, rather than ad hoc expectations
and imposed requirements turns out to be a consistent position. If you don’t know what
to measure because you didn’t make a clear promise about a system, then you need a
leap of imagination, or a lesson in bad experience rather than just a little algebra, to help
you. This is the nature of mathematics and of systems. Promise Theory offers that simple
algebra of cooperation to align intent with actuality.

There is a lot here—certainly too much to learn and remember, so, while I’ve
presented the discussions as a series of theoretical lectures, I’ve also tried to make the
notes serve as a reference work to dip into on occasion. As engineers, we can use the
tools developed here to sharpen our understandings of goals and mechanisms, to refine a
critical approach to the descriptions of systems. May these volumes sit on the shelves
of the best engineers, architects, and designers as inspiration and as a reminder that
human-machine systems are not beyond the reach of rational analysis.

CHAPTER 2

HUMAN SYSTEMS

1. A robot may not injure a human being or, through inaction, allow a human
being to come to harm.

2. A robot must obey the orders given it by human beings except where such
orders would conflict with the First Law.

3. A robot must protect its own existence as long as such protection does not
conflict with the First or Second Laws.

–Isaac Asimov (1942)[Asi50]

In Isaac Asimov’s famous robot stories, he presented robots and automation in
human form. Instead of imagining self-driving car, a human form robot would sit in
the driver’s seat of a car and operate a human-machine interface instead of a human.
This was a perfect way to illustrate both how we treat humans as machinery in industrial
methodology, and how we also empathize with inanimate systems and have trouble in
distinguishing the roles for humans and machinery in practice. Promise Theory treats all
actors in a system as ‘agents’ of undetermined kind (or kindness). This can be a helpful
impartial means of understanding systems in which human concerns are important. In
particular, it can allow us to apply engineering methodology to areas where traditionally
only psychologists were allowed to tread.

2.1 ‘SOFT TOPICS’ AND PROMISE THEORY

Before getting more abstract and technical, in later chapters, it may be helpful to examine
some human scenarios, where leadership and conflicting intent come under scrutiny. If
we feel comfortable thinking about human issues in terms of formal agents, promises,

23

24 CHAPTER 2. HUMAN SYSTEMS

and assessments, it should be easier to suspend disbelief later, when matters get more
complicated. Promise theory can be applied straightforwardly to deal with a number
of these soft topics, or human issues. Many of these topics have resisted formalization
in other frameworks, because they provoke emotional issues that are difficult to render
impartially.

It would be too much to expect Promise Theory to claim unique answers to every
issue, but it’s simple assumptions can nevertheless be a powerful tool for clarifying issues.
The purpose of the principles and their application is to draw clear lines that may simplify
assessments and decisions based on them. The challenge of any theory is not to lose
expressibility in so doing, but rather to curtail or even deprive the ability of individual
analysts who may wish to bend words to impose their own agenda.

2.2 INFLUENCE IN A HUMAN SYSTEM

The channels of influence, in a human system, are formed from written and verbal com-
munications, as well as less obvious things like body language. Some communications
are one to one; sometimes we broadcast information in order to influence a larger number
of people. Mass suggestion, propaganda, marketing, etc, are attempts to create a large
scale ‘field of influence’ that we hope will influence. This is an uncertain business,
however. Although we tend to assume that communication is either deterministic (in
command and control) or sometimes probabilistic (a fraction of the population will
respond as we hope), we cannot escape the basic facts of the communication channel
from sender S to receiver R:

S
+XS−−−→ R (2.1)

R
−XR−−−→ S, (2.2)

namely that what we broadcast +XS may be interpreted differently by each agent
receiving the message, by filtering is through XR. So the transfer is only XS ∩XR. Any
influence this confers onto dependent promises to third parties T are a function of this
overlap:

R
+f(XS ∩XR)|XS ∩XR−−−−−−−−−−−−−−−→ T, (2.3)

i.e. not of the full XS intended by the influencer. So, a field of ‘force’ or influence for
human agents is just like any other field of influence, perhaps with more complicated
semantics.

2.3. LEADERSHIP IN A HUMAN SYSTEM 25

2.3 LEADERSHIP IN A HUMAN SYSTEM

The subject of leadership is an interesting one that serves as a useful lens through which
to look at human roles. It overlaps with several of the foregoing topics: management,
the mandate of authority responsibility, and assurance of outcome. A leader might be
characterized as an agent who has assumed responsibility for an outcome, or who has
received a mandate to act as an authority is making policy, or one who grants permission
for subordinates to act. The basic disagreements about what leadership is supposed to
be often revolve around these different interpretations—and, in practice, we speculate
that problems of leadership arise because appropriate promises have not been made in an
appropriate way.

When planning an outcome, as a leader or manager of a predominantly human
system, it’s tempting to formulate what we imagine to be a straight path to the outcome—
from where we are to the outcome we desire. That path might not be the path of least
resistance. Indeed, it might not even be possible to construct10. A project or outcome
planner needs to explore what paths can be promised. Many management frameworks lay
down processes to try to apply brute-force persuasion and resources to solve problems.
From a Promise Theory perspective, this doesn’t make sense. The alternative is to start
by surveying what promises are currently given, then what promises might be given if
invited in the right way. The human scenario is very different from a machine scenario.

Leadership may be a promise to lead, based on promises of a mandate of authority—
but what tools should an authoritative agent use to maintain the fragile symbiotic cooper-
ation of a group? An approach that works on a small scale might not work on a large
scale, as we know of phase transitions, yet leaders nearly always try to maintain the same
approach as companies and nations grow. Not thinking through the actual promises made
may leave us with no idea about why an outcome failed. Many an outcome failed because
of improper assumptions—not doing one’s homework to find the actual state of affairs.
Promises express semantics but also context, in the form of a network of relationships
and dependencies. There is key information in those networks that tells the channels of
cause and effect—how influence propagates through a system, like a human community.

Example 6 (Undifferentiated leadership as a job rather than a role). Leaders often believe
that those agents structurally ‘under’ them, in an organizational hierarchy, have granted
a mandate for them to subordinate themselves voluntarily in all matters, when in fact
no such mandate has been given. Organizational structure is a blunt instrument, which
doesn’t normally distinguish authority based on specialization—rank in a hierarchy
supercedes genuine authority. As a result, many agents may feel attacked by impositions
on matters where they believe the leader agent exceeds its authority. Job title is not
always a sufficient discriminator to mandate authority on a wide range of issues.

26 CHAPTER 2. HUMAN SYSTEMS

Leadership may be viewed by some as the idealized planting of a seed that freely
snowballs and accretes enthusiastic support, as it rolls down an unimpeded slope, landing
in goal of common approval. Conversely, it might be viewed, by others, as a wielding
of brute-force, imposing tasks onto agents, willing or unwilling, in accordance with
a pre-planned schedule, designed by a central coordinator, and executed with a whip.
Both forms of governance are common, and both work under the right circumstances.
Circumstances will likely determine the best choices in a given context. Either way, we
need to be pragmatic. Cooperation depends on the marshalling of promises in either case.

Not thinking through the actual promises made may leave us with no idea about
why an outcome failed. Many an outcome failed because of improper assumptions—not
doing one’s homework to find the actual state of affairs. Promises express semantics but
also context, in the form of a network of relationships and dependencies. There is key
information in those networks that tells the channels of cause and effect—how influence
propagates through a system, like a human community.

2.3.1 SEEKING COOPERATION AND SUPPORT OF OTHER AGENTS

How do agents come together and interact to form collaborations and effective processes?
This is obviously a complicated issue, and yet the simplistic notions of Promise Theory
can still help to frame our thinking without getting bogged down with heuristics. Let’s
see what happens when we apply some of the principles.

We have two tools to use: promises and impositions, in both ± varieties. If we think
about cooperative processes in companies, firms, institutions, clubs, or even countries,
there is a mixture of command and control, and voluntary cooperation. Command and
control suggests a kind of force or coercion involved in inducing collaboration. Even
in democracies, there might be free voting but before that there is an imposition of
candidates who want to force their ideas onto a population. They may claim to make
promises which may or may not be kept. These may even be deceptions or lies. Our
notions of freedom and imposition are clouded by context and emotional considerations.

In any system with competing objectives, the challenge of winning coherent support
lies in condensing the available agents around a small number of alternatives. The larger
the number of alternatives, the less stable a majority ‘win’ can be.

Example 7. When voters promise to support democratic choices in an election, the
counting of supporting votes may lead to problems of indecision and paralysis in different
ways at different scales. The insistence on a majority becomes tricky:

∃i : votersi � votersj , ∀j 6= i, (2.4)

Here, the meaning of� is to be decided by some arbitrary margin. This may work well
with few alternative choices and large numbers of voters who promise support for each

2.3. LEADERSHIP IN A HUMAN SYSTEM 27

choice, because the likelihood of a ‘tie’ (where no single agent satisfies the condition)
is small, but the promise of a clear outcome becomes less probable as each alternative
choice gets less support. If the number voters becomes too small, or the number of
choices too great, one dilutes the relative strength of votes, so that it may not be possible
to promise (2.4) for any choice i. Coalitions between groups, where two or more i join
to form a single choice (to be determined by cooperation), may then be necessary in
order for a superagent group to be able to promise a majority that can be accepted.
Coalition involves a secondary level of cooperation, in which agents form superagents
that now have the same problems on a smaller scale. In smaller elections one rarely
sees democracy practiced, both because many voters would assess the opinions of only
small numbers as arbitrary, and it could simply lead to paralysis and instability. The
same issue occurs when a larger population votes for a representative, who in turn votes
for them in a parliament or board of directors. Such intermediate agents vote with

‘special powers’ that promise to represent opinions of collections of voters—though the
intermediate agent law (see [BB14a]) shows that they may not be trustworthy. When
voting in small numbers, the rules may accept a majority of one (� becomes simply
>), and the representative elections prefer odd numbers of voters to avoid tie-breaking
during votes. The process of scaling is quite unstable to numbers, and there is a sense
of misrepresentation—that the forms of democracy are followed without the promise
of a majority having any significance. By careful engineering of categories, one could
arrange for any result to win.

The balance of power between factions is therefore fragile when agents give their
support voluntarily. This leads many to assume that the use of force is a necessary part
of governance.

Force can take on several forms, from the use of an army to subdue opposition, to the
insistence of compliance by obligation—an implicit threat. We know that, statistically,
impositions of these kinds may be ineffective—not because of freewill or individual
unwillingness, but simply because agents may be unable to comply with an intent that
didn’t originate with themselves. This suggests that there needs to be a balance between
imposition and promise in any kind of governance process. That seems to be true at the
lowest levels of physics (even if we don’t understand why) but the nature of voluntary
and involuntary force has rarely been discussed impartially at the level of social systems.
Instead, many authors have used Game Theory to imagine a conflict scenario.

2.3.2 INVITATION, ATTACK, AND COMMAND

Let’s take a simple promise theoretic view and consider an agent S of some size who
wants to influence the cooperation of another agent R. There are some distinct types of

28 CHAPTER 2. HUMAN SYSTEMS

communication from invitation to intrusion:

1. Open Invitation: A completely unconditional promise to either i) offer +X to R,
in the hope R might promise to accept:

S
+X−−→ R (2.5)

or, conversely, ii) to accept −X in the hope that R might promise to supply:

S
−X−−→ R. (2.6)

In other words, an ‘open invitation’ is an opening in the form of a directed promise
without coercive intent, e.g. promising to leave a door open in case someone wants
to come in. The invitation does not suggest the correct or acceptable outcome, it
only makes one available. We shall want to go further than this and express the
meaning of a ‘directed invitation’ in section 2.3.3.

2. Publish: The generalization of an invitation is to publish to a wider audience, in
the hope that agents may accept or even subscribe. This is a wider promise of
availability.

S
±X−−→ ∗ (2.7)

For instance, the publishing of a magazine which interested parties may voluntarily
choose to read.

3. Command or targeted intrusion: A directed imposition to accept or request:

S
±X−−−−→ R (2.8)

Such an imposition might be an uninvited guest or an expectation of compliance
with a directive. Steering a ship is an imposition in the sense that the ship promises
to accept steering, but not a specific course. If a single course is accepted in
advance, then the situation is reversed: the pilot is accepting a menu option
promised freely.

4. Broadcasting/Flooding: The publishing of an imposition leads to a scaled intru-
sion, such as in broadcasting.

S
±X−−−−→ ∗ (2.9)

For instance, even an appeal to voluntarily give money to charity is an imposition,
because the message itself is forced into the recipients by media or by street
collectors. It is a targeted imposition of a request or invitation. Marketing,
advertising, and propaganda are examples.

2.3. LEADERSHIP IN A HUMAN SYSTEM 29

(±) (∓) INTERACTION

INVITATION STEPPING UP S
±X−−→ R

PUBLISH SUBSCRIBE S
±X−−→ ∗

COMMAND ASK A FAVOUR S
±X−−−−→ R

BROADCAST COMPLIANCE S
±X−−−−→ ∗

Table 2.1: Comparison of interaction types in coordinating autonomous agents, in a human
context.

From the complementarity between + and − promises, we know that there must also be
an interpretation of every + promise as a − promise. For example:

1. Stepping up: A promise of −X to accept an invitation:

S
−X−−→ R (2.10)

or a promise to provide +X if an agent needs it

S
+X−−→ R. (2.11)

In other words, the complement of an invitation is a kind of generosity.

2. Subscribing: A broader promise to accept or provide to or from a variety of
sources.

S
−X−−→ ∗. (2.12)

3. Asking for a favour: Targeting an agent to offer a promise that was not au-
tonomously given.

S
∓X−−−−→ R. (2.13)

4. Obliging compliance: Widespread inducement to promise certain behaviour, e.g.
everyone must wear a helmet or fasten their seatbelts.

S
±X−−−−→ ∗ . (2.14)

30 CHAPTER 2. HUMAN SYSTEMS

2.3.3 A MORE REFINED VIEW OF INVITATION VS ATTACK

In the foregoing section it emerged that invitations cannot be quite as simple as the
distinction between promises and impositions, as invitations can themselves be imposed
onto unsuspecting agents (e.g. a subpoena to appear in court), or promised (e.g. a special
offer displayed in a magazine). There is thus a distinction between the delivery and the
intention—an extra level of diplomacy that establishes a general basis for proposing a
more specific outcome (see figure 2.1). It’s helpful to separate these into two kinds of
invitation:

• Open invitation—a non-exclusive invitation, which leaves an option open for
matching agents to avail themselves of.

• Directed invitation—a formal announcement of the promise to accept interaction,
made on an exclusive basis, i.e. targeted to a specific identifiable agent.

Promise!

Specific invitation

General invitation

Figure 2.1: Invitation is a mechanism for homing in on a promise without a formal agreement,
paving a way to agree by suggesting that a promise will be accepted.

Example 8 (Open invitation to shop). A regular shop does not usually invite customers
by mailing them a ticket to enter, or by promising to sell every good in the store separately
(some catalogue services do this). Nor do shoppers accept or reject every offer. This
would not be a scalable matter. Rather, some superagent scaling is involved. A shop
offers to be open for selling goods, and shoppers promise to accept these opening hours.
This is the basic invitation framework for a promise dialogue. Customers then browse
the goods, all of which follow the generic pattern: ‘shop promises to sell if you pay a
given price’, and the shopper equally promises ‘I promise to pay a given price if you sell
me the goods’. This deadlock is broken by the customer imposing a choice and paying
up front.

2.3. LEADERSHIP IN A HUMAN SYSTEM 31

Example 9 (My charge is +e). In physics, particles of different kinds advertise different
kinds of charge (electric charge, colour charge, and so on). These play the roles of open
invitations for other agents with charges of the same type to interact with them. The
idea of an electron sending an RSVP to its neighbour is somewhat ridiculous, though
messenger particles do exist for the charge interactions. The semantics of interactions are
not directed by identity—electrons and quarks are indistinguishable, so their promises
are non-exclusive.

Example 10 (Invitation and deadlock in commerce). If a shop leaves its door open for
all to enter and buy goods, this is an invitation. The shop also promises each good for
a price. Shoppers may promise to pay the price for a good if available. The deadlock
between: ‘you can have the good if you give me the money’ and ‘you can have the
money if you give me the good’ is broken by the imposition of voluntary payment by
customers. In service interactions, service providers usually have to be the ones to break
the deadlock by performing the service first. The service is less tangible than the good so
its reality may need to be established before trust is built.

Example 11 (Service negotiation). Expanding on the simple view in the previous ex-
ample, there can be several layers to a service contractor interaction, with layers of
promises playing the role of invitations converging on a desired outcome.

A contractor may advertise the availability of its service, which acts as an open
invitation to hire its service. Acceptance of that leads to a problem discussion with a
potential client, perhaps a Purchase Order (PO) for the solution, followed by an invoice
for the purchase order (whether the solution is achieved or not) and payment of the
invoice. There are layers of invitation here. Let’s label the service provider or contractor
by S, and the client as C:

S
+skill,availability−−−−−−−−−→ C (open invitation to hire) (2.15)

C
−availability−−−−−−→ S (accept) (2.16)

C
+problem−−−−−→ S (explain need) (2.17)

S
−problem−−−−−→ C (listen) (2.18)

S
+solution|PO−−−−−−−→ C (listen) (2.19)

The contractor takes some risk by discussing the problem up front, but withholds the
solution, instead inviting the client to make a purchase order, and promising the solution
conditionally on the PO. This shifts risk over to the client since the purchase order will

32 CHAPTER 2. HUMAN SYSTEMS

be invoiced unconditionally on a solution.

S
−PO|problem−−−−−−−→ C (invitation to commit) (2.20)

C
+PO−−−→ C (accept and commit) (2.21)

C
−solution−−−−−→ S (accept and trust promise of solution) (2.22)

An invoice is promised by implication of the PO:

S
+invoice|PO−−−−−−−→ C (invite client to pay for the PO) (2.23)

C
−invoice−−−−→ S (accept) (2.24)

C
+pay|invoice−−−−−−→ S (accept and trust promise of solution) (2.25)

S
−pay−−−→ C (accept payment) (2.26)

Note that payment is not conditional on the solution outcome in this model—only on the
promise of a solution.

The example above illustrates the rich dynamics that can be involved in interactions
on the complex level of semantic systems. This is not a unique feature of human systems.
Clearly, the role of an invitation, in the human sense, feels like much more than simply
leaving the door open. It may consist of many layers, and a gradual convergence of
wooing the parties to cooperate. This is also seen by animal species in the wild during
mating! It’s an auxiliary communication—an announcement of intent to grab attention,
which may itself be imposed or promised passively. By announcing an intent to invite
one may even increase the perceived value of potential acceptance.

Example 12 (Don’t drop litter!). Advertising and propaganda that aim to teach people
not to drop litter may be framed as invitations. These may be imposed upon them, for the
public good, or targeted at individuals, depending on the scale of the targeting. It could
be presented as ‘you’d better do as your told or else’ or as ‘we invite you to be a better
person’. Both approaches have been used in different countries11.

Invitations are sometimes handed out as promises and sometimes as impositions. The
essence of an invitation is that one first tries to establish a promise acceptance at a general
level to pave the way for the specific outcome. There is a progression of constraints that
home in on the final targeted interaction, edging forwards ‘is it okay if we do this? Good!
Now what about this?’ Invitation is a convergent surrogate for a process of agreement, in
which no formal agreement is ever made. So how shall we decide whether the imposition
of a decision for change by a manager, leader, or exterior entity of any kind is made by
diplomatic invitation or by attack? What is the difference between these two? How are
they defined and how can negative behaviours be avoided?

2.3. LEADERSHIP IN A HUMAN SYSTEM 33

To reveal this in more detail, we may first nail down some underlying definitions
pragmatically, without getting too deep into nuances. The following definition helps to
show how a directed invitation works as a proxy:

Definition 24 (Directed Invitation to do X). A prior promise or imposition of I(−X),
conditional on X is an invitation to accept a promise of +X:

Inviter −X−−→ Invitee (2.27)

Inviter
+I(def(−X))|−X−−−−−−−−−−−−−−→ Invitee. (2.28)

may be considered an invitation for the invitee to promise:

Invitee
+X|I−−−→ A?, (2.29)

assuming that the invitee accepts:

Invitee
−I(X)−−−−→ A? (2.30)

Invitee −−X−−−→ A?. (2.31)

The latter may be considered incorporated by the promise of +X .

We can read these as follows: (2.27) says: there exists an X that the inviter will
accept unconditionally, and (2.28) says: given that acceptance of X , The inviter issues
an invitation +I for invitee to accept by promising −I(X), and ultimately +X . Notice
that it is the acceptance (−X) of the promise, by the Inviter, which is unconditional,
and the invitation merely encapsulates knowledge def(X) about its proposal, without
assuming the Invitee would know about it in advance. The promise of−X alone may not
be sufficient information to imply a proposal to match it with +X . The role of an explicit
invitation I(X) is to signal a clear promise, rather than merely laying out a path to
completion. Note that, by the rules of conditional promises, the two promises (2.27) and
(2.28) are identical to an unconditional promise of +I(def(−X)), so the promising of
an unconditional invitation may also be conversely reinterpreted as an explicit acceptance
of a raw promise of +X .

For example, suppose X is ‘your attendance of an event’. The inviter promises
to accept the attendance unconditionally of the invitee. This offer of open acceptance
may be ambiguous, so the intent to invite is emphasized with an explicit promise of
I(def(−X)) which advertises the content of the promise −X , so the invitee knows
what it’s getting itself into. This is what we call a directed invitation. It’s a positive offer
of the complementary promise! Note that each agent is the originator of its own promise.

34 CHAPTER 2. HUMAN SYSTEMS

The response (hopefully a full +X) might only be a partial overlap with the −X offered.
Nothing is imposed by the other party.

The opposite of an invitation is an attack. This is the imposition of an offer +X

before establishing grounds for general acceptance of whatever X might be.

Definition 25 (Attack on agent R). Any imposition on a recipient agent R by a source
agent S:

S
+X−−−−→ R, (2.32)

for which there is no prior invitation or acceptance by R:

R 6 −X−−→ S. (2.33)

The definition of ‘attack’ in Promise Theory is thus an attempt to induce cooperation
without acceptance or invitation. We can’t claim that invitations are promises and
attacks are impositions unequivocally, because often there are mixtures of the two in
communication. Communication might be voluntary, but its content imposes, or vice
versa.

Example 13 (Covert advertising—hidden impositions). A magazine is published and
distributed for people to take freely. The reader promises to accept unknown article
content, but does not promise to accept advertising. So there is a hidden imposition in
the promise.

Example 14 (Overt advertising—imposed promises). Flyers are posted through your
letter-box, or messages are pushed into a social media channel. The messages promise a
free sample, but the users did not promise to accept messages of this kind.

Example 15 (Public education). We might ask: at what point does a public service
become an imposition? The promise theoretic answer seems to be: when the service was
not initially sought by its intended users. The distinction between ‘spam’ or propaganda,
news, advertising, etc, is much less universal than we tend to think. The perceptions
change by scale, by circumstance, and by perspective. The role of invitation thus seems
to be to home in on a specific

Interactions between agents, which iterate back-and-forth in a particular sequence,
are the chief mechanism by which agents accumulate a foundation of promises on which
trust is built. As with any house of cards, a stack of dependent promises is fragile to the
order of proposals. We see this just from the two definitions above. The attempt to exploit
the fragility of such dependency is how one disrupts, perhaps with an intent to attack.
We should therefore expect to have to spend some time uncovering the consequences of
strong ordering constraints in dependency relationships.

2.3. LEADERSHIP IN A HUMAN SYSTEM 35

Example 16 (Attack or lead by example?). If an imposition is made ad hoc before an
invitation has been given, it may be assessed as an attack, with destructive consequences.
On the other hand, if the imposition was expected, it may be considered an initiative.

ATTACK INVITATION

S
+initiative−−−−−−−→ R S

−listen/talk−−−−−−→ R

R
+listen/talk−−−−−−→ S

R
?−→ S S

+initiative|listen/talk−−−−−−−−−−→ R

R
−initiative|listen/talk−−−−−−−−−−→ S

In the table above we see the contrasting approaches between a blunt attack on the
autonomy of the receiver R, and the route of diplomacy on the right. Through invitation,
the sender begins by promising (up front) it’s willingness to listen and talk by promising
its acceptance (-) of any promise about talking and listening the receiver might offer.
The receiver has now been invited to cooperate, without imposition. If it quenches that
invitation by promising to supply dialogue (+), the sender can then promise initiatives,
building conditionally on the prior acceptance of the invitation, because by the rules
of Promise Theory, an initial offer of a (-) promise (an invitation) is accepted with
another (-), making a (–) which is equivalent to (+)12. This is now a promise rather
than an imposition, since the prior invitation was sought and the proposal was expected.
The receiver may then accept the promise of the initiative, or it might decline it at its
option. It has only promised to listen, not to accept, so there is no attack. We see how
diplomacy is the use of promises rather than impositions to open dialogue between agents.
The perception of a violation of autonomy is an important assessment in cooperative
mechanics, and clearly plays a role in human assessments of trustworthiness.

Example 17 (Layers of invitation). Diplomacy is a process of homing in on a sensitive
area by seeking invitations back and forth.

‘Would it be a terrible imposition of me to make a suggestion?’
‘I invite your suggestion, based on your thinly veiled but humble meta-invitation.’
‘Then I propose that’
‘I accept your proposition, but reject part of its content....which needs revision.’
‘I accept your proposal for revision of my proposal....’
And so on...

2.3.4 THE INTENT TO DISRUPT OR SABOTAGE

We can’t properly discuss systems or bodies of systems without acknowledging that they
exist within a larger environment of agents, some of which may interfere (intentionally

36 CHAPTER 2. HUMAN SYSTEMS

or otherwise) with the interior promises and its intended behaviours. Since the term
interference has a special meaning in physics, I’ll choose the term disruption for this
kind of conflicting interaction.

Definition 26 (Disruption of intent). A promise, imposition, or the withdrawal of either,
made by an agent D (called the disrupter), which renders a promise from S to R to be

‘not kept’, according to the assessment of some observer O:

αO
(
S

+b−−→ R
)
→ not kept. (2.34)

Looking at the assessment in the box above, the Principle of Autonomy in Promise Theory
(that an agent cannot make a promise on behalf of another) implies that disruption can
only be classified into three forms:

1. Disruption of the First Kind: the agent S intentionally fails to keep its promise to
R. Then D = S. This is a kind of self-sabotage, i.e. a deception to R.

2. Disruption of the Second Kind: the agent S withdraws or fails to promise observ-
ability to the agent O assessing the outcome. D = S. This is a kind of subterfuge,
i.e. a deception to O.

3. Disruption of the Third Kind: suppose that the promise body is conditional on a
promise of ∆ a third party T , i.e.

S
b≡X|∆−−−−→ R (2.35)

T
+∆−−→ S (2.36)

S
−∆−−→ T (2.37)

where ∆ becomes a condition for S to keep its promise of X , which fails to keep
its promise, or attempts to impose a counter-intent. Then D = T . This is an
external ‘man in the middle attack’ by D. In this case, we have:

D
+∆−−→ S,R,O, . . . (2.38)

S
+X|∆−−−−→ R (2.39)

S
−∆−−→ D (2.40)

The promise ∆ may be withdrawn by D if positive, or negated. Any change
to ∆ applies influence or disruption to the intended outcome. Equally, S may
fail to accept this promise (2.37) (through no fault of T), but this is covered by
disruptions of the First Kind. Extreme cases of disruptions of the Third Kind are:

∆→ χ, D
∅...¬χ−−−−−−→ S, X|∆→ ∅ (2.41)

∆→ ¬χ, D
χ−−−→ S, X|∆→ ∅. (2.42)

2.3. LEADERSHIP IN A HUMAN SYSTEM 37

The promise model is quite helpful in clarifying the roles of the agents in these inter-
actions, without need for speculation. Disruptions can be caused at the source, by the
receiver, or by intermediate agents. The duality rule, citing the equivalence of juxtaposing
± promises in a binding, implies that the same argument applies when the roles of sender
(+) and receiver (-) are exchanged. Most of us tend to ignore the essential promise to
accept:

R
−b−−→ S, (2.43)

yet the receiver can disrupt a promise-binding by refusal to cooperate, as well as refuse
to allow an assessor or auditor of the promise to access to its behaviour. The straight-
forward outcome of framing disruption in that we should be on the lookout for hidden
dependencies:

Lemma 3 (Third party disruption implies dependency). Only a conditional promise can
be disrupted by a third party, implying a dependency in the original promise body.

2.3.5 ACCUSATIONS, THE IMPOSITION OF JUDGEMENT, AND

TAKING OFFENSE

An issue related to the foregoing examples is the matter of the taking offense at remarks
made by agents to others13. This follows immediately from the dual status of promises
to give (+) and to accept (-). It is every agent’s autonomous nature to form its own
judgements, as well as to express them. However, as already established above, the
imposition of one’s judgement may be perceived as an attack, is made uninvited. This is
clear when the framing of the imposition is itself unambiguous:

S
+You are a jerk−−−−−−−−−−→ R. (2.44)

This is an attack, unless permission was granted by R

R
−You are a jerk−−−−−−−−→ S. (2.45)

S’s promises or impositions are also subject to intentional misrepresentation by R in
the overlap between what is promises and what is understood. Suppose, S issues a
declaration:

S
+G is a nice type−−−−−−−−→ A?. (2.46)

This is not an attack, since it is promised freely to an unspecified recipient, without any
attempt to oblige a specific recipient R. Nonetheless, R may still use this to attack S
however, by interpreting ‘type’ as a deliberately condescending term for a ‘person’. This

38 CHAPTER 2. HUMAN SYSTEMS

is a consequence of self-duals in Promise Theory that interpretation can be an attack
on an agent’s utterance simply by imposing its own (different) interpretation. If the
sender intended the phase as a playful and complimentary expression for a ninety year
old G, then the conflict becomes an imposition. Similarly, the receiver might object to
the meaning of ‘nice’. ‘How dare you call me nice?’ Too much, too little? The art of
taking offence or offense is a specialized form of attack by reverse proxy.

OVERT ATTACK REVERSE HIJACK

S
+X−−−−→ R S

+X−−→ R

R 6 −X−−→ S R
−X−−−−→ S

Intent imposed Interpretation imposed
without invitation without intent

2.3.6 DOES THE FINAL OUTCOME JUSTIFY THE MEANS?

In the previous example, we see how sequences of dependent promises (adjustments of
intent) allow agents to navigate course changes of intent throughout an ongoing dialogue.
This is adaptive behaviour14. In such a sequence, a frequent issue is whether the standard
of behaviour of an agent keeps, in its promise-keeping activities, is itself important in
achieving the outcome it promises or not. This theme will continue into the next example
too. Promise Theory clears up some of the ambiguity here—and I’ll return to these
issues repeatedly in later examples throughout the book, especially in connection with
the concept of agent responsibility.

Assuming that agents get through an opening negotiation, there remains the issue of
whether a promised initiative b, that has been accepted, can be judged by only implicit
criteria on which is is kept:

S
+b−−→ R (2.47)

R
−b−−→ S. (2.48)

Does the accepting agent R have the ‘right’ to insist on ethical or moral standards in the
way S keeps its promise? Since rights are a social convention, the initial absence of rights
for agents, in their default state, is to acknowledge that they are a priori autonomous.
Indeed, the imposition of a standard of behaviour by R on S would be considered an
attack on S, if imposed without prior invitation. Thus, unless S has made a promise
about how it will keep its promise, as part of the bundle of promises it is making, then
R has no invitation to judge its autonomous choices. Naturally, R is free to make its
own assessments of S’s behaviour and decline future initiatives, which is different from

2.3. LEADERSHIP IN A HUMAN SYSTEM 39

imposing standards without invitation. When we criticize parties for unethical behaviour,
we are therefore admitting that the initial negotiation of promises was inadequate: no
promises were violated, rather too few promises were made.

This point extends to abiding by law too. Abiding by the law of the land is a
voluntary choice, which governments try to impose by force, not always successfully.
Laws are more effective when then represent majority choices that citizens basically
already promise to accept. So a smart agent will not assume that agents will even obey
laws unless this is stated in their promises. This is one reason why contracts are based in
law, as a foundation for the stack of promises that lay the groundwork of diplomacy we
can avoid having to renegotiate for every new interaction15.

Example 18 (Pet projects). When is a project a ‘pet project’, e.g. a vanity project by
an individual. Can a process allow unbridled freedom to explore any idea or approach?
Should projects be democratic or unilateral? These are choices rooted in the promises
made by all the individuals in a collaboration. Sometimes projects get hijacked by
individuals for ideological rather than for rational reasons. That might lead to important
innovation, and it might lead to an evolutionary dead end. Ultimately, Promise Theory
makes a prediction: the downstream principle says that it’s up to users to take the
responsibility for inappropriate projects, by ignoring them in favour of something else.

Example 19 (Hands on or laissez faire?). Are you a ‘hands on’ leader or a live and let
die type? Do you impose methods and goals? Does being hands on mean imposition
though? Or does it mean simply getting your hands dirty to be sufficiently involved that
you have active knowledge and awareness of the situation at all times? You could be
hands on, by invitation, and by inviting cooperation. There is nothing exlusive about
hands on meaning being bossy or imposing on others. Similarly, ‘micromanagement’ is
about how you deal with scale, i.e. level of detail, not about whether you impose or invite
cooperation. The possibilities are not mutually exclusive—in a system, you find a way to
make it work.

Example 20 (Accountability). The issues of whether decision makers are accountable
or not is a complicated one. Accountability is supposed to be a feature of ‘democracy’,
but there are many versions of power structures we call democracy. The House of Lords
in the UK, for example, plays a role of checking and potentially blocking outcomes from
the House of Commons, in a sense, holding them to account. However, the House of
Lords is not elected by the public, so its legitimacy is often questioned. Should we choose
elite expertise, or common voting by all as the mandate for wielding decision-making
power? To whom should we be directly accoutable? If A is accountable to B and B is
accountable to C, does this mean that A is accountable to C or not? The intermediate

40 CHAPTER 2. HUMAN SYSTEMS

agent law, in Promise Theory, suggests that it is not. On the other hand, the more agents
involved in holding a leader to account, the less effective any of their beliefs, assessments,
or positions matter or can be reconciled. Accountability therefore suffers from scaling
issues, like everything else. Often, when we rile against a lack of accountability, we don’t
take those scaling issues into account!

2.3.7 CAN WE EXPECT AGENTS TO KNOW BETTER?
THE PROBLEM OF COMMON KNOWLEDGE

The final addendum to this sequence of basic examples is the argument—sometimes
made—that agents (people) S should know better than to behave in a certain way, which
does not follow the same standard as that understood by the receiver R.

Can we say whether S’s ignorance of R’s required standard is willful or unintended?
It would clearly be an imposition (attack) on S for R to claim that it should know the
same standards it holds itself to. In legal settings, the burden of proof is whether there
is reasonable doubt of intent. However, R may claim that this standard is common
knowledge. This presupposes that there has been a promise by some agent to educate S,
and that S has accepted that promise. R probably cannot know if S has been made the
promise of education, or whether it was not kept by its source. If, on the other hand, that
promise was made and kept, but S failed to accept it, then it bears the responsibility for
its ignorance.

These are complicated matters, with an element of catch-22 involved. The simplest
guide to agents to avoid negative assessments is to avoid imposing on other agents at
all costs—or at very least without due process. One could go further and attempt to
discuss majority and minority agents, their knowledge, and their promises. I’ll leave that
discussion for elsewhere. What’s important is that we have straightforward principles
that explain what an agent offers (+) and what it accepts (-) and how these interact in
positive and negative ways.

2.3.8 DAMNED IF YOU DO, DAMNED IF YOU DON’T

The simple tenet of Promise Theory, explored in these foregoing points, is that we need
both (+) and (-) promises to realize cooperation. This is not something that relates only
to humans or only to machines—it’s a property of processes on any scale, and it helps to
illustrate how a common approach to both can be of deep and lasting value. The audience
for promises and behaviours therefore play a major role in determining outcomes and
assessing whether intent is well-meant or malignant.

2.3. LEADERSHIP IN A HUMAN SYSTEM 41

Suppose an agent S makes a promise to a split audience:

S
+b−−→


R1

R2

R3

...

(2.49)

Next, suppose that these agents R1, . . . not only can assess the keeping of the promise
differently, but also may offer different levels of acceptance of it:

R1
−b−−→

R2
−{<b}−−−−→

R3
−b|C−−−→
...


S (2.50)

In other words, R1 may accept b as given, R2 may accept a partial subset of b (including
none of it, or even the complement NOT b), R3 may accept b conditionally, and so on.
Even through negotiation, S may be unable to compromise to overlap with all recipients.
Those agents will then judge S differently. This is the case in politics, for instance.

In such a case, there is no ‘right answer’. The more sophisticated the interior decision
processes of agents, the more likely such scenarios are to occur. It would be naive to
imagine that this is a problem that can be ‘fixed’. Any system designer would love to
work with agents that do exactly what he or she imagines is required, but that isn’t how
systems work. Whatever choices one makes, there will be a mixture of positive and
negative outcomes. The system designer can only address this by promising to design for
perturbations of all kinds.

2.3.9 CONTEXT AND OPPORTUNITY FOR AGENTS

The ability for an agent A to play a role in a larger system depends on there being a place
for that role—a potential recipient for the promise it can keep. In turn, the ability to keep
that promise might depend on the promises kept by other agents. The general case is that
of an intermediate agent whose opportunity is to join two parts of a workflow together
with its own intrinsic additions.

Suppose an agent A promises a capability c, as a result of an available promise of b
by some benefactor source S. This allows A to promise:

A
+c|b−−−→ R (2.51)

which it would not be able to do without:

S
+b−−→ A, (2.52)

42 CHAPTER 2. HUMAN SYSTEMS

and which would have no potential benefit without the open invitation:

R
−c−−→ A. (2.53)

Such contextual promises from neighbouring agents, upstream and downstream in a
workflow, lead to opportunities for agents to contribute to a system and perhaps reap
rewards. The concept of an opportunity is this naturally associated with a network context
of promise providers and receptors.

Definition 27 (Opportunity). The bundle of beneficial promises surrounding an agent A

ΠA(b, . . . ; c, . . .) =

{
S

+b−−→ A, (upstream)

R
−c−−→ A. (downstream)

(2.54)

may be called an opportunity for A, such that it can now make a new promise:

A
+c|b−−−→ R, (2.55)

that was not possible before. Opportunity is therefore to be understood as an agent’s
embedding in a context of (+) and (-) promises, where there is a demand for its intrinsic
capability c.

Definition 28 (Benefit to an agent). The benefit to A, in this example, is whatever value
it received from the ability to promise c|b, where:

vA(ΠA(b; c)) + vA

(
A

+c|b−−−→ R

)
. (2.56)

With these definitions, an opportunity is not merely an abstract assessment of value to
the recipient of a promise, but becomes a practical actionable increase in its ability to
keep promises.

Example 21. The ability to pay for supper X|B, if B is a promise of money.

2.4 RESPONSIBILITY

Responsibility is an emotionally charged term. It is associated with liability, blame, and
reprimand. There is a tendency to want to assign ‘blame’ to a person when faults lead
to loss. That’s a punitive interpretation of responsibility, and one that does not often
make sense, unless willful malice or negligence were demonstrably at work. We need
a more rational understanding of responsibility, based on the science of causation, to

2.4. RESPONSIBILITY 43

actually stand a chance of making a difference. If we can step back from the idea of
attributing blame, there is something to be learned from asking the question: which
agency or agencies are in a position to be able to keep a promise, and hence could be
considered responsible?

2.4.1 SUBJECTIVITY IN ASSESSMENTS

The assessment that a promise has not been kept is a subjective one: different agents
observing the system might assess it differently. Their assessments can depend on context
or circumstances; so how can we easily attribute a unique source to the perceived failure?
This is the challenge of a distributed system with multiple stakeholders.

Example 22. In a restaurant, a meal is ordered from the menu. One person enjoys the
meal, the other doesn’t. The latter (dependent agent) assesses the meal to not be what
was promised. The former (fault tolerant agent) assesses the meal as acceptable.

• The agent that rejects the meal might be considered discerning of quality, but goes
hungry and cannot work.

• The agent that accepts the meal eats and continues its work.

Can a cause be attributed to the waiter, the head chef, the sous chef, the butcher?

Whether or not a promise has been kept depends on the kind of promise binding. As
we know about promise bindings, the receiver or promisee has to make its own promise
to accept what is offered; thus it shares responsibility in outcomes. Indeed, refusing to
accept what is offered is the ultimate control decision of autonomous agents.

Example 23. A doctor promises a patient: if you take these pills you will be cured. If
the patient does not keep a promise to take them, then it will not be cured, and thus the
responsibility for being cured lies ultimately with the patient, not the doctor.

2.4.2 THE ROLE OF CONDITIONAL PROMISES IN POINTING TO

RESPONSIBILITY

In promise theory, we track provenance or causation with conditional promises. Each
promise is the responsibility of the agent who makes the promise (the promiser). From
the conditional promise law, an agent making a conditional promise has not made a
promise at all unless it also promises to acquire the thing its promise is conditioned on.

44 CHAPTER 2. HUMAN SYSTEMS

D S R

+d
+S(d)

−d −S

Figure 2.2: A dependency chain from upstream dependency provider D to a server S
relying on the dependency, to a downstream recipient R.

Consider the scenario in figure 2.2

D
+d−−→ S (2.57)

S
−d−−→ D (2.58)

S
+S(d)−−−−→ R (2.59)

R
−d−−→ S (2.60)

where

S
+S(d)−−−−→ R ≡

{
S

+S|d−−−→ R

S
−d−−→ R

(2.61)

This system is fragile because the recipient has only a single choice. It has a single point
of failure. The recipient could seek out redundant alternatives to provide the service S
(as in figure 2.3). What happens beyond the horizon of the next agent in the chain of
promise relationships is beyond the control of the recipient, and is thus beyond the limit
any possible responsibility. Now consider the same scenario with redundant alternatives

S RD

SD

+S(d)

−d

+d

1

2

1

2

+S
−S

+d
−d

−S

Figure 2.3: A redundant conditional promise chain, showing service delivery based on a
dependency.

2.4. RESPONSIBILITY 45

along the chain (see figure 2.3)

{D1, D2}
+d−−→ S1 (2.62)

S1
−d−−→ {D1, D2} (2.63)

S1
+S|d−−−→ R (2.64)

S1
−d−−→ R (2.65)

R
−S(d)−−−−→ S1 (2.66)

R
−S−−→ S2 (2.67)

S2
+S−−→ R (2.68)

R
−d−−→ {S1, S2} (2.69)

In this second scenario, both the server S1 the recipient can choose from two providers
of the promises they are trying to use. For the final recipient R, the fact that the promise
from S1 has a dependency is irrelevant, as there is nothing it can do about that except to
acquire a second provider who may or may not have a dependency too. The only security
the recipient R has is to have a choice of providers. No matter how hard the providers
S1 and S2 try to keep their promises of service, unforeseen circumstances may prevent
them from doing so. Indeed R may itself be negligent receiving their services.

This suggests that, while responsibility for keeping a promise lies with each source
agent, only the final recipient (the location of the desired outcome) can be considered
responsible for securing a successful promise outcome.

2.4.3 DOWNSTREAM PRINCIPLE

Locality offers a surprisingly simple and consistent interpretation of responsibility. The
recipient of a promise carries the ultimate burden of assuring the outcome. In a chain
of promises, dependencies are upstream (the source of the flow of influence) and the
benefactors are downstream. Based on the consistency of responsibility described above,
we can make the following straightforward observation. The assurance of the final
promise outcome follows a ‘Downstream Principle’ that the most downstream agent has
both access and opportunity to correct or absorb faults, and hence the greatest causal
responsibility for an assessment of a promise not being kept. In other words, the greater
the distance from the point of promise-making, the less causal responsibility an agent
has in contributing to the outcome.

It’s important to understand that the downstream principle is not a moral assessment,
it is a purely pragmatic observation about cause and effect. However, it is interesting that
it is in opposition to what is conventionally assumed about faults in hierarchies, as well
as in Root Cause Analysis. The explanation for this apparent contradiction can be found

46 CHAPTER 2. HUMAN SYSTEMS

+s1 +s2 +s3

downstreamupstream

ownership

Figure 2.4: Responsibility for success in a chain flows downstream. The final responsibility
is to use what is offered. An owner may formally accept responsibility for the whole chain, as
a superagent, but at the microscopic level there is no other agent that can keep that promise.
According to promise theory, the owner of the workflow should be the last interior agent to accept
or ‘sign off’ on the work.

in the bi-directionality of promise bindings required for propagation of influence. The
traditional assumption has been that influence is always imposed and that impositions
always succeed, the latter being false.

Can we assert, then, that an agent who fails to use a promised service in order to
keep its own promise is more responsible than the failure of the agent to provide the
service? The user of the service could, in principle, seek a redundant alternative for such
cases. But what if no alternative is available? If a promise is made conditionally, the
agent (promiser) advertises a delegation of its responsibility to keep the outcome, by
adding conditions. The promiser of each link in a chain of cooperation is responsible
only for its own promises, i.e. the point at which it can effect change of behaviour or
intent. This tells us that delocalization means divesting responsibility to others. This is
the power of agent autonomy. Thus, in promise theory, responsibility is connected to
locality. How does this compare to conventional component reliability theory?

• In the black box tradition of reliability theory, there is insufficient information
to be able to attribute provenance for observed failures, so one can only attribute
failure to a component itself. The failure of a component must be considered a
random event, and the lack of information means that it makes no sense to assign
moral blame.

• In Promise Theory, the assumption is that an agent that makes a promise is the
only agency responsible for keeping the promise. It might be possible to argue
moral or causal blame to the specifically documented promise. This is in keeping
with the tradition of legal responsibility.

• By the conditional promise law, a promise that is conditional on another promise

2.4. RESPONSIBILITY 47

being kept (either by the same agent or by a third party) is not a promise, unless the
other promise is made by the same agent. This clarifies and documents diminished
responsibility.

We can now attempt a limited but tenable definition of responsibility:

Definition 29 (Responsibility for keeping a promise). Responsibility has two main
interpretations:

• Causal responsibility: When an agent relies on a dependency promise in order
to keep its own conditional promise, causal responsibility refers to the agent’s
freedom to obtain a promised outcome by its own autonomous choice of interaction,
especially in the presence of redundant alternatives.

• Moral responsibility (culpability) is a human assessment, about whether agent
outcomes stem from good or for bad intent, hence it cannot be formalized except
as a norm or in law. This is not a systemic issue, only a subjective assessment.

An agent cannot be solely responsible for keeping a conditional promise. Could an
agent that relies on a promise from another be culpable for a failure to find an alternative
if the dependency fails to keep a promise upon which it relies? This might be considered
a case of negligence, unless the agent’s hands are tied by other considerations. The
network of promises in which a agent finds itself ultimately determine these freedoms.

Example 24 (Supply chain). In a supply chain, agents acting as integrators, make new
conditional promises based on the receipt of promised components. Each provider may
promise (+) a specification. It’s the responsibilty of the recipient (-) to oversee the
quality and availability of what is delivered, and perhaps to seek alternative sources
if the promise (+) is not kept satisfactorily. Attempting to sue (impose by attack) on is
uncertain of its success in keeping the dependent promise chain.

2.4.4 ASSUMING RESPONSIBILITY

Sometimes we hear leaders ‘assuming responsibility’ for their organizations. Here we
are at risk of confusing responsibility with liability. An agent can ‘assume responsibility’
by making a symbolic promise. However this might not be a promise it can actually
keep.

Causation implies that there are limits to what such a agent can really do. Promising
to assume responsibility might be an unrealistic and symbolic promise, one that cannot
be kept, since a single agent is potentially promising to be the single point of delivery for
an entire organizational superagent. At best such a promise could only be conditional on

48 CHAPTER 2. HUMAN SYSTEMS

promises made by the other agents in the organization, and thus its reliability would only
be weak. By the same token, judging or holding an agent responsible is an imposition
that may not be reasonably accepted.

We can make a rough prediction, based on the foregoing discussion: the only case
in which it is not redundant to impose blame on another agent S for an outcome, is
when the agent R (in the role of a downstream user (-) or consumer of a service) has not
promised sufficient redundant contingencies for its own role in the responsibility for the
outcome. Blame is therefore used as a way of deflecting attention from missing for the
lack of keeping one’s own promises.

2.5 RIGHTS, PERMISSION, AND PRIVILEGES

Rights, permission, and privilege are all concepts related to the giving of promises. The
concept of ‘rights’ is an important issue in human systems: e.g. human rights, right of
way, right of settlement, right of refusal, access rights, etc). In society, rights are granted
to access medical care, to enter a country with a passport, and so on. When these rights
are granted discriminately, they may also be considered privileges. In human-computer
systems, for instance, access rights are granted to only certain users to see certain files or
use certain programs. These form a part of what we usually call ‘security’ or ‘privilege’.
There are subtle distinctions between the semantics of security and privilege: the former
is about safety and protection, the latter is about rank and hierarchy—yet the two reduce,
for all intents and purposes, to the same basic issues of promises. The offer of certain
promises (or not) amounts to the management of boundaries and realms of access.

The terminology of rights is common in politics, often used with a deliberate intent to
fire up emotions, to impose and to attack the agents—such as governments—who make
promises to provide services, and who are interpreted as having greater privilege because
they possess capabilities that may not be promised to all agents that seek to use them.
Demanding rights is an imposition, thus we expect the seeking of rights and impositions
to be related too. The widespread abuse of the terminology of ‘rights’ stems largely
from the historical origin of moral righteousness, and the confusion between permissions
and capabilities, which in turn stems from a tradition of deontic or obligatory thinking.
Promise Theory makes simple and impartial sense of these matters.

2.5.1 RIGHTS DEFINED

It follows from the assumption of agent autonomy that agents can only promise capa-
bilities they possess autonomously, and that they may not promise capabilities of other
agents on their behalf16 (see figure 2.5).

2.5. RIGHTS, PERMISSION, AND PRIVILEGES 49

promise to grant

accept rightrightcapability

provider user

promise to obstruct’

no promise

Figure 2.5: Rights are simply the status of promises about the capabilities offered by some agent.
The absence of a promise X is not the same as a promise of its absence (¬X).

This has the immediate implication that ‘rights’ are not innate and universal as
sometimes suggested in political discussion17. They are offered as promises by an agent
about matters it can keep itself. Rights, in other words, are not something that are innate
or fundamental properties of a system, but rather they are promises that may be offered
by capable providers, perhaps as part of a larger social contract.

Definition 30 (The right or permission to X). A promise, by a provider agent S to offer
access to a resource or behaviour X:

S
+X−−→ A?. (2.70)

This promised ‘right’ is not an obligation to accept, so the pre-requisite to a binding is
captured precisely by the concept of a (+) promise. We may also speak of permission
to behave in a certain manner. Permission is a promise of access. The semantics of
permission are only subtly different from those of a ‘right’. When seeking permission,
one assumes that the promise −X to use X exists prior to the matching offer of +X

which grants access to it. In all other respects permission and right are equivalent. Such
rights or permissions may be granted specifically to a named individual, or may be
granted to any unspecified agents. If the provider discriminates between its promisees,
then an observer might assess different levels of privilege for those agents.

50 CHAPTER 2. HUMAN SYSTEMS

Definition 31 (The privilege of X). An assessment or promise of status attributed to
one or more agents, based on its access to private resources. If an agent R is promised
+X , i.e. is granted the right to avail itself of X:

S
+X−−→ R, (2.71)

In this case, we may say that R is granted X privileges. The promise of access acts as a
label of privilege, which is used as a token of status. This could be made explicit as a
promise of rank:

R
+rank(X) | X−−−−−−−→ ∗. (2.72)

i.e. given a promise of X , R may claim to be of rank X .

Again, the recipient granted or promised privileges is under no obligation to match the
(+) promise with an acceptance (-). So the expression ‘rank hath its privileges’ is in fact
the wrong way around: the promise of privileges are the foundation that define rank.
Rights are therefore related to the notion of assisted promises, i.e. a promise enabled by
the granting of access to another promise it depends on.

Discerning which agent starts with the capability to grant rights is not as easy as it
might seem. When an agent contains a resource, it has a clear and practical capability to
use it and to grant its use to others. The concept of ownership is a virtual human version
of that idea. A resource doesn’t have to be inside us to be under our virtual control.

Example 25 (Employee rights). According to the model of society, an agent may be
said to contain and control a resource when it owns the resource. At the level of society
ownership is a legal convention, different from merely holding a resource. The practical
question of being able to grant access is different from the legal question of the right
to control the resource a priori. The owner of a company is that legal owner. When
the owner hires other into the company, they become a part of the agent, based on a
relationship in which certain rights are mutually granted. This employment agreement
forms the basis of what rights are granted to employees. This normally includes the
promise of delegation of control over the company resources, else the workers are
powerless to function. In a sense, there may be a conflict of interest between the legal
right of ownership and the social right of participation implicit in employment, unless
promises are carefully engineered.

Workers’ rights, in the sense of holidays and break times are not a right that can
be granted by an employer. The employer can only grant its own resources: wages,
free lunch, a room to have coffee etc. Only the workers can grant access to their time,
whatever duress they might experience. The same applies, in principle, to machinery. If a

2.5. RIGHTS, PERMISSION, AND PRIVILEGES 51

machine will not function, i.e. keep its promise to work, then an employer or owner can’t
do much about it. All such relationships involve back and forth promises. The mistakes
managers and employers often make is to assume they have rights which, in fact, they
don’t.

2.5.2 SEEKING RIGHTS AND PERMISSIONS

Agents may not be granted the rights and privileges they need to make their own promises
a priori. If they are unconstrained by other promises to search for providers of what
they seek, they apply their downstream responsibility (see section 2.4.3) to secure their
desired outcome. Agents without the freedom to search freely may want to demand
additional rights from the agents they are clients of. This assumes that they have an
expectation about what services can and should be promised to them by another agent
(e.g. a government, an employer, etc). The basis for this belief could originate in any
number of ways, and it could simply be a fortuitous search for a match, as in evolutionary
processes.

Example 26 (I know my rights!). Agents may imagine or be programmed to respond to
possibilities for which they have no matching promise.

• I have an electric charge and I am looking for a field to drive it.

• I have a hammer, and I am looking for a nail to complete it.

• I want the right to settle in Canada, and I think you should let me.

• I am lonely, and I demand a soul-mate.

The rule of autonomy implies that they cannot demand compliance with these missing
complements. They can only stand ready to accept promises offered to them from different
sources.

Example 27 (Demanding one’s rights). The attempt to demand rights is an imposition
to use a resource

User −X−−−−→ Provider. (2.73)

The strategy of demanding is likely to be ineffective since the provider may be unable or
unwilling to comply. A strategy of invitation or search for alternatives is more likely to
succeed.

A provider S only has the capability to deny another agent R access to X if it has
interior private access to X , and R relies on other promises by S for its survival. We also
say that the agent has the authority to grant permission (see section 2.6), meaning that it
is the custodian of that privilege.

52 CHAPTER 2. HUMAN SYSTEMS

Example 28 (The right to free speech). Any agent R has an a priori ability to promise
speech of any kind, unconditionally and autonomously. The question of a right to speech
only arises when some agent(s) S, with which R interacts, imposes (threatens) sanctions
to try to prevent an agent from exercising that ability. The implication is that R has
already accepted a promise made conditionally on not exercising its capability for free
speech from this other agent S, and this is being used as leverage—e.g. a promise that
might be withdrawn, or a new promise which might harm R.

S
+food|¬speech−−−−−−−−→ R (2.74)

The ability to speak freely thus precedes any ‘right’ granted concerning speech. The
point is rather than the subject S has promised not to speak freely in order to receive
promised benefits from S. In principle, R has the downstream responsibility to seek a
replacement source for its needs if they are threatened. In common speech we commonly
muddle this ability with language such as ‘the fundamental right to free speech’. This is
just imprecise language. The need for permission to exercise a capability one already has
is an idea that can only arise in a cooperative framework in which voluntary abstention
is practiced.

Rights—especially human rights—are something we often argue for, assuming that
we deserve them. In Promise Theory, such a moral demand for rights is contrary to
the autonomy of agents. There is also the issue of scaling, when freedoms become too
invasive for a society (see example 73).

2.6 AUTHORITY, POWER, AND DELEGATION

The Oxford English Dictionary defines authority to be ‘the power or right to influence
others or act in a specified way’. Promise Theory tells us that there are two disjoint
issues in that statement: respectively the ‘power’ and the ‘right’ to propagate influence—
influence by command or by invitation. These two branches correspond loosely to the
ad hoc imposition of influence, versus the promise of permission to wield influence,
respectively.

Conventionally, we are more conditioned to think of the concept of authority through
power. Most nations’ legal stability is based on the threat of being able to overwhelm
deviations from lawful behaviour by some kind of force—only later do such behaviours
become norms and habits that require only simple maintenance. As a result, we perceive
governments, bosses, and leaders in a historically authoritarian light (even the word has
even come to take on a pejorative meaning, versus ‘authoritative’ which is more positive).
In other usage, an authority is a source of singular expertise on a particular subject.

2.6. AUTHORITY, POWER, AND DELEGATION 53

The unifying concept of authority is ultimately the appointment of ‘trusted’ agents18.
An authoritative agent is one that promises to calibrate the definition of a kind of another
promise on a particular subject. We define authority as follows:

Definition 32 (Authority forX). An agent which is the source of a promise with bodyX ,
and whose information is accepted by other agents, which all assess it to be authoritative
on the matter of X . In other words, such an agent is a trusted party, according to the
subordinate agents.

The circularity of the definition reveals that authority is not an absolute property; it is
only a self-consistent appointment and assessment, made on trust. The source is said
to be authoritative, because it promises to be the final word on what is correct, and the
subordinates accept that promise. That does not make it unique, as other authorities may
have a different version of what appears to be the same promise. The recipient always
assesses whether two promises are equivalent and whether the outcomes are compatible
or not. An authority is thus a calibrating agent, in the language of section [BB14a].

Example 29 (Judges and supreme courts). Judges at authorities on the law, yet a panel
of judges may still disagree about its interpretation. The law attempts to offer (+) clarity
on certain situations, but that expression still needs to be accepted and received (-) by
agents who view it from different contexts. Each judge is an authority, and the panel of
judges can form its own authority as a ‘supreme’ superagent.

The interpretations of authority, as power or right, may be sketched as follows:

• Imposition: an authority imposes influence on a subordinate:

Authority +influence−−−−−−−→ Subordinate. (2.75)

The imposee of the imposition still formally needs to accept the uninvited im-
position. If it fails to do so, one can still imagine that the imposer could assert
its authority by force. For instance, if the imposer can conquer and subsume the
subordinate, so that the agent becomes a part of it, then it can simply promise
whatever it likes on its behalf, without violating any notions of autonomy. By
absorbing the agent within a larger superagent boundary, its autonomy is lost as
far as exterior agents are concerned.

• Promise: an authority can be accepted purely as a matter of voluntary cooperation,
if granted a mandate M by a number of subjects to issue commands and make

54 CHAPTER 2. HUMAN SYSTEMS

decisions C:

Subordinate +M−−→ Authority (2.76)

Authority −M−−→ Subordinate (2.77)

Authority
+C | M−−−−−→ Subordinate (2.78)

Subordinate −C−−→ Authority. (2.79)

In this way, authority is a symbiotic relationship. Followers promise their support,
the authority accepts that and uses it as a basis for making singular decisions
conditionally on the mandate, which are then accepted by the followers. This is
the basis structure used in democracy. The mandate M may be interpreted as the
‘right’ or permission to lead (see section 2.5).

In general, a coherent balanced symbiosis might have to be seeded by the imposition
of force in order to stabilize a behaviour into a habit initially, which has interesting
implications for statecraft and popular moral positions on leadership.

The concept of authority is also widely used, in its derivative meaning, to refer
to management roles in systems, where it means the authoritative source of policy
decisions—a manager or ‘boss’. Authority over other agents is a derivative concept: the
promise for which a manager or boss is authoritative is in calibrating policy for other
agents to accept and follow—including the promise of wages, which it can withdraw
as leverage. Following this agent’s policy is, in turn, often assumed to be an obligation:
however, based on the foregoing sections, the ‘right’ to impose commands as a single
source of intent must be granted by the sources of its acceptance.

Definition 33 (Authority over other agents). An agent A to which a number of agents
{C} have promised to subordinate themselves, by accepting a promise of policy P , given
a mandate M :

A
+P |M−−−−→ {C} (2.80)

{C} −P−−→ A. (2.81)

The common promise of −P forms the appointment to the position of manager or boss.
This appointment to take on the capability of deciding P is what makes the manager an
‘authority’. The ‘right to manage’ is the promise to accept P .

Promise Theory tells us that such authority over other agents is not an inherent ‘right’
to impose upon them; the authority concept refers only to the integrity of its trusted
information. However, the voluntary acceptance of imposition could be interpreted
as a mandate (it plays the same formal role). The ‘right’ to issue commands and

2.7. TRUSTED THIRD PARTIES AND WEBS OF TRUST 55

directives must ultimately granted by the agent subjects, by accepting the policy—or be
overwhelmed by conquering taking over the subject. This has the effect of subordinating
the manager to its subjects in return for the privilege of being able to decide policy.

The implications of this are profound: unless a boss or manager’s commands can
be upheld by overwhelming brute force, or by threat (e.g. suspending wages), then it
has to seek this cooperative mandate to play its role as manager19. If the manager does
not control the policy about wages, then it does not have that leverage, and needs to
maintain support by mutual cooperation. A manager or authority is therefore a role by
appointment. The manager and subjects are actually coupled in a symbiotic state of
mutual subordination, rather than a unidirectional hierarchy of subordination.

Partial authority may also be delegated by a manager to middle managers M , by
conditionally promising to follow their decisions on a subset pM ∈ P .

A
−(pM⊆P)−−−−−−−→M. (2.82)

This is a basic application of the matroid pattern from [BB14a]. The managers now have
a mandate to decide matters p ⊆ pM

M
+p|pM−−−−→ C, (2.83)

M
+p|pM−−−−−−−→ A. (2.84)

which now becomes an effective imposition on A It’s interesting that, by delegating
authority a single source of authority, at the top of a hierarchy, effectively places itself
back into a subordinate role, having promised to accept the delegated (though limited)
decisions of M , made by the delegates. It thus takes on risk—promising to honour
whatever has been delegated. This assumes a further level of trust between the agents:
namely that the delegate will not promise more than the authoritative would have done.
Thus, with delegated authority by appointment, an organization is in a kind of equilibrium
of intent, upheld by trust.

2.7 TRUSTED THIRD PARTIES AND WEBS OF TRUST

Trust is closely associated with promises and information. There are essentially only two
distinct models for information distribution: centralization and ad hoc epidemic flooding.
Alternatively one might call them, central-server versus peer-to-peer.

Example 30. Two so-called trust models are used in contemporary technologies today,
reflecting these approaches: the Trusted Third Party model (e.g. X.509 certificates, TLS,
or Kerberos) and the Web of Trust (as made famous by the Pretty Good Privacy (PGP)
system due to Phil Zimmerman and its subsequent clones). Let us consider how these
models are represented in terms of our promise model.

56 CHAPTER 2. HUMAN SYSTEMS

The centralized solution to “trust management” is the certificate authority model,
introduced as part of the X.509 standard used in web authentication and modified for a
variety of other systems (See fig. 2.6)[IT93, Rec97, HPFS02]. In this model, a central
authority has the final word on identity confirmation and often acts as a broker between
parties, verifying identities for both sides.

A central authority promises (often implicitly) to all agents the legitimacy of each
agent’s identity (hopefully implying that it verifies this somehow). Moreover, for each
consultation the authority promises that it will truthfully verify an identity credential
(public key) that is presented to it. The clients and users of this service promise that they
will use this confirmation. Thus, in the basic interaction, the promises being made here
are:

Authority
Legitimate−−−−−−−→ User (2.85)

Authority
Verification−−−−−−−→ User (2.86)

User
U(Verification)−−−−−−−−−→ Authority (2.87)

To make sense of trust, we look for expectations of the promises being kept.

1. The users expect that the authority is legitimate, hence they trust its promise of
legitimacy.

2. The users expect that the authority verifies identity correctly, hence they trust its
promise of verification and therefore use it.

Users do not necessarily have to be registered themselves with the authority in order to
use its services, so it is not strictly necessary for the authority to trust the user. However,
in registering as a client a user also promises its correct identity, and the authority
promises to use this.

User
Identity−−−−−→ Authority (2.88)

Authority
U(Identity)−−−−−−−→ User (2.89)

One can always discuss the evidence by which users would trust the authority (or third
party). Since information is simply brokered by the authority, the only right it has to
legitimacy is by virtue of a reputation. Thus expectation 1. above is based, in general, on
the rumours that an agent has heard.

Most of the trust is from users to the authority, thus there is a clear subordination of
agents in this model. This is the nature or centralization.

Scepticism in centralized solutions (distrust perhaps) led to the invention of the
epidemic trust model, known as the Web of Trust (see fig. 2.7)[AR97]. In this model,

2.7. TRUSTED THIRD PARTIES AND WEBS OF TRUST 57

CERT AUTH

Users/clients

Figure 2.6: The Trusted Third Party, e.g. TLS or Kerberos. A special agent is appointed in the
network as the custodian of identity. All other agents are expected to trust this. The special agent
promises to verify the authenticity of an object that is shared by the agents. In return for this
service, the agents pay the special agent.

each individual agent is responsible for its own decisions about trust. Agents confirm
their belief in credentials by signing one another’s credentials. Hence if I trust A and A
has signed B’s key then I am more likely to trust B. As a management approximation,
users are asked to make a judgement about a key from one of four categories: i) definitely
trustworthy, ii) somewhat trustworthy, iii) un-trustworthy, iv) don’t know. An agent
then compares these received valuations to a threshold value to decide whether or not a
credential is trustworthy to it. The promises are between the owner of the credential and
a random agent:

Owner
Identity−−−−−→ Agent (2.90)

Agent
U(Identity)−−−−−−−→ Owner (2.91)

Agent
Signature−−−−−−→ Owner (2.92)

Owner
U(Signature)−−−−−−−−→ Agent (2.93)

The owner must first promise its identity to an agent it meets. The agent must promise to
believe and use this identity credential. The agent then promises to support the credential
by signing it, which implies a promise (petition) to all subsequent agents. Finally, the
owner can promise to use the signature or reject it. Trust enters here in the following
ways:

1. The agent expects that the identity of the owner is correct and trusts it. This leads
to a Use promise.

2. The Owner expects that the promise of support is legitimate and trusts it. This
leads to a Use promise.

58 CHAPTER 2. HUMAN SYSTEMS

What is interesting about this model is that it is much more symmetrical than the
centralized scheme.

sign
sign

Figure 2.7: In a web of trust an agent signals a promise to all other agents that it has trusted the
authenticity of the originator’s identity. As a key is passed around (second figure) agents can
agree by promising its authenticity, e.g. by signing it or not.

2.7.1 WHEN IS INVITATION PREFERRED OVER COMMAND?

In a predominant part of Western culture the idea of invitation and voluntary cooperation
is considered preferable to imposition and command, but this is not universally true. The
preference for invitation assumes a level of mutual trust and mutual ranking. How agents
perceive one another’s value adds a conditional aspect to invitation.

Example 31. In some cultures, an invitation might be perceived by a receiving agent as
an act of weakness on the part of the sender. If the receiver has a low assessment of its
own value, it might attach prestige to being commanded—the opposite of being attacked:
I was chosen!

Example 32. If the receiver is an introvert, it may perceive an invitation as an attack,
where an extrovert would consider it a compliment.

Observing a cultural dependence of how agents make valuations on one another’s
promises suggests that we should be cautious of thinking about promises as unconditional
in human systems. There may be many unspoken promises and intentions that an inviter
or invitee are unaware of. It makes human interactions complex and fickle.

2.8. HUMAN FIDELITY WITHIN A SYSTEM 59

Example 33 (The impatient boss). Trying to exploit a commonly known promise (like the
door being left open), which is not specifically directed to a particular agent, is unlikely to
build trust or lead to that promise being kept with any urgency. The purpose of invitation
is to build trust or perceived value without prior evidence. If we never needed to engage
with an agent on a personal level, then any publicly known promise could be exploited
by any agent at any time. For dumb agents (like machines or unsophisticated animals)
this might be true, and might not matter much. But when agents are more internally
sophisticated, as humans are, they may have other goals, and make prioritizations
which are in conflict with keeping their promise to any particular. Human priorities and
willingness to cooperate are based on extended relationships, as known from Axelrod’s
work[Axe97, Axe84]. An invitation is, in a sense, a way of ‘hacking’ a set of priorities,
perhaps inducing a sense of obligation. In human settings, we might even consider
an invitation harassment: it would be an imposition to assume someone could drop
everything to keep a particular promise a leader desired. This is what we mean by being

‘bossy’. The semantics of invitation are therefore subtle, and Promise Theory suggests
that the key would seem to be to avoid impositions.

2.8 HUMAN FIDELITY WITHIN A SYSTEM

The ability for humans to keep promises, depends on many factors. As agents in the
system, humans may fail to work reliably relative to a situation or process, for a variety
of reasons, some related to individual condition, and others to context:

• Management errors.

• Forgetfulness/carelessness.

• Misunderstanding/miscommunication.

• Confusion/stress/intoxication.

• Ignorance.

• Personal conflict.

• Slowness of response.

• Random or systematics procedural errors.

• Inability to deal with complexity.

• Inability to cooperate with others.

60 CHAPTER 2. HUMAN SYSTEMS

In system administration the problems are partly social and partly due to the cooperative
nature of the many interaction software components. The unpredictability of systems is
dominated by these issues.

Humans filter all communication through their own view of the world. We respond
to things that make sense to us, and we tend to reject things that do not. This can lead to
misunderstanding, or only partial understanding of a communicated message. It can be
modelled as the projection of a signal into a digital alphabet that describes our limited
domain of understanding. We match input to the closest concept we already know.

Unlike machines, humans do not generally use reliable protocols for making them-
selves understood (except perhaps in military operations). A system administrator or
user can easily misunderstand an instruction, or misdiagnose a problem.

2.8.1 AGENT ANOMALIES: MACHINES AND HUMANS

Regardless of their role in a system, we can study what issues cause agents to act
erratically, or with low process fidelity. Some characteristics are particular to the type of
agent. Here are two ad hoc categories, commonly discussed:

• Machines tend to have relatively few parts. They are relatively simple, rigid and
are therefore easy to stabilize/control with static or locking equilibria.

Machines do not act with moral safeguards that humans take for granted, thus a
machine would dispassionately kill a human being or bring down an entire system
in order to keep a promise. Thus we can take less for granted when agents are
working like machines.

• Humans have many moving parts that achieve balance through dynamic equilibria.
Holding an arm up requires constant firing of muscle contractions, there is no
locking mechanism.

Humans generally need to perceive meaning in what they do, else they will
not care about the outcome. Meaningless repetition is worse than meaningful
repetition, with bespoke adaptation. There does not have to be a high degree of
creativity involved, as long as there is a sense of fulfilling a purpose that matters
to a person.

Of course, humans are also highly complex biological machines, so these are not unrelated
categories: stereotypes are commonly misunderstood. In industrialization, we often ask
humans to act as machines, suppressing thought and judgement for speed and efficiency.
This leads to a mismatch of expectations.

2.8. HUMAN FIDELITY WITHIN A SYSTEM 61

Comment 2 (Discipline and constraint). Process rigidity is classical management/-
control thinking, e.g. disciplining humans through forms, procedures and protocols.
Machines or tools that apply strong constraints or safeguards are another example of
discipline.

In engineering we know that certain tools are fit for purpose, and others not so
much. Asking humans to behave like machines may ultimately not help, in the long run,
because imposed constraints are not self-motivated. Humans find ways around such
mechanisms20.

Repetitive work does not suit workers with low accuracy or fidelity, even with
formulaic work, as repetition amplifies the probability estimator of error. Templates may
be rendered incorrectly, with random errors, for example a simple probability of error
can be amplified by application in batch N(t), or by repetition over time T , giving a
cumulative error of the form:

Nerr =
1

T

∫ T

0

dt perr(t)N(t) (2.94)

Thus, when dealing with agents whose fidelity is low, we can mitigate the errors and
faults in a number of ways:

• Since the sum/integrand are purely positive, keep the working duration T short to
minimize the number of errors.

• Reduce the probability of error perr(t), and ensure that this is not an increasing
function of time, due to fatigue, etc.

• Reduce the number of actions per unit time N(t), to limit the exposure.

A simple way to solve all of these issues it to take the low fidelity agent out of the
loop. The worst possible approach would be to connect a low fidelity agent to powerful
amplifying automation.

2.8.2 FEEDBACK AND TESTING

• Remove positive feedback, and introduce negative feedback.

• Remove instabilities and non-linearities.

• Try testing at large N to detect flaws before production use (acceptance testing).

62 CHAPTER 2. HUMAN SYSTEMS

2.8.3 BLAME AND RESPONSIBILITY

The emotional reaction to loss, when a fault occurs or an error is made, often fuels a need
to lash out and even seek retribution. When accidents and disasters occur, it has been
common for survivors to initiate lawsuits and seek to blame scapegoats. People kick
their machinery when it fails to meet expectations. Human error is often the attributed
cause. Humans are an easy target. If we take any thread of cause and effect within a
system, there will always be a human at the end of it, because humans are the source of
all intent. Thus looking for a scapegoat often becomes a case of ‘pick a card, any card’
to make a pain go away like a magic trick.

This is a curious impulse, to try to alter the past instead of dealing with the future—
indeed, one wonders what evolutionary purpose such behaviour might imply, if any. If we
take a Promise Theory perspective on blame, there is an interesting correlation with the
‘Downstream Principle’ for responsibility in systems (see chapter 9). Blame is something
that agents ‘downstream’ (or on the receiving end of a promise) tend to impose on agents
‘upstream’ (those keeping the promises), as the only remaining action after exhausting its
own responsibilities. Thus, agents who do not seek redundancy, or place all their eggs in
one basket, will lash out when the eggs break instead of going to the next basket, because
they did not properly keep their own promises to accept the implicit responsibility for a
reliable outcome.

One thing in humans’ favour is their capacity to learn—though now we have made
machinery which also has the capacity to learn. If such an agent makes a mistake,
valuable experience is gained. The agent will be less likely to make the same mistake
again, as long as it has proper value judgement. A simple replacement (an agent that
did not learn the same lesson) could not have learned the lesson in that context—firing
and re-hiring is a gamble, whereas learning from the unexpected is a ‘work hardening’
strategy. Thus replacing or avoiding a learning agent that commits an error is not a
rational response. Replacing a faulty part that is incapable of learning might be rational if
one knows that the same promise is likely to be broken again. In the search for emotional
catharsis, we can make matters worse by increasing the likelihood of new faults.

2.9 THE HUMAN ACTION PERSPECTIVE

A common error that designers make about system design lies in assuming that all
systems must work in the way that humans prefer to work: by exerting our will, like a
level, as if a system were merely an extension of our bodies—with us at the centre of the
universe, and everything else in orbit. There are sometimes advantages to this ‘central
command and control’ idea and there are flaws. In biology, both approaches may be found

2.9. THE HUMAN ACTION PERSPECTIVE 63

in species: from largely self-contained animals with brains to decentralized organisms
like slime moulds and insect hives. This prejudice affects the way we design systems,
and the way we judge and interact with them, and thus its reach into our expectations
for system behaviour is long and subtle. It boils down to a choice between two extreme
forms of organization and control that I like to call brain models (centralized thinking)
versus society models (decentralized thinking).

?!

SocietyBrain

Figure 2.8: Brains versus societies. A brain model imagines a definite edge to a system.
In a society model, the scaling is more arbitrary, but we can speak of super-agents with
arbitrary boundaries, e.g. the dotted ring.

A brain model has a central controller that receives data from sensors and imposes
onto or commands actuators from its central command (see fig. 2.8) out to the skin,
sensors, and actuators of a finite organism. A society model, on the other hand, has no
particular centre, and no particular edge. It works by cooperation based on promises
made by agent-to-agent interactions. This is how insect colonies work. Brain models
are centralized concentrations of reasoning and capability, used to drive a larger system
from a localized component. Although I use the analogy of a brain, hearts and livers,
and other organs also behave in this way, though they do not use the full potential of the
brain model. Brains coordinate information quickly and analyze it in ways that societies
can’t, because of the close proximity of agencies with different specializations, and
an assumption that they work faster than the systems they are controlling, with a fast
communications bus to deliver messages back and forth. However, this means that brains
scale by brute force to handle inputs and outputs. Both total load of information, and

64 CHAPTER 2. HUMAN SYSTEMS

the distance information has to travel play a role in limiting the scalability of control
processes.

Example 34. We sometimes say that people are too busy doing stuff to think. Or we
could say that doing stuff and adapting by trial and error is a form of thinking, on a
much slower timescale. We certainly learn by doing, but we can also learn more quickly
and more superficially by reading cached summaries of experience in books and classes.

The largest organism with a brain is a blue whale. It is quite slow, because of
brain signalling and energy distribution of its cardiovascular network. Indeed, the larger
centralized organisms get, the slower they behave, because the costs of communication
and processing become an eventual burden[Wes99]. Insects colonies, on the other hand,
react without centralization, based only on what policies they have cached in their DNA
(effectively zero distance to travel, since there are decentralized copies throughout). Their
colonies scale to a large size, before food (energy) becomes a limiting factor, but they
can’t easily perform the same kinds of analyses and decision making when they are
sparse. These are the kinds of scales and processes we need to formalize and understand
quantitatively to develop a proper understanding of systems.

We often expect that, by willing systems to behave as we would like them to, they
ought to comply, because we are used to that mode of cause and effect in which we have
an advantage of being able to observe and think faster than the system we are controlling.
Ants or societies, on the other hand, do not work like that. Causation is subtle, and
travels as if by Chinese whispers. The network has to converge towards some equilibrium
at a single rate, without an external force to modulate it. What they can do with their
tiny brains and simple manipulators is quite trivial, and yet the emergent behaviour of
thousands or millions of ants leads to many stable and interesting outcomes.

Both kinds of system are limited by stability. Brain models are preferred because
that’s what we know. Societal models are hard to understand and they don’t work from
a position of obvious authority. In practice we need both to understand any non-trivial
system.

2.10 HUMAN VALUES AND OPTIMIZATION

Human wellbeing and happiness are important aspects of systems that include people.
If not happiness, then what? Duty? Obligation? Promise Theory tells us that duty and
obligation might work for a while, but in general these methods are ineffective, both for
machines and for humans.

Researchers claim that societies that are slower, less work intense, and less ob-
sessed by money and progress, are happier than those that are entirely focused on

2.11. THE REMAINDER OF THE BOOK 65

productivity[Lay06]. This bears consideration when designing societies in macro or mi-
crocosm, e.g. in forming families, tribes, companies, and in all workplaces. Mumford’s
quote, at the beginning of chapter 1, underlines how we can dehumanize societies—
whose goal is after all to sustain human existence—and sometimes forget that the goal of
what we are doing is to make the world better for everyone. Precisely what that means
depends on one’s point of view—it can lead to misalignments of tactical goals, which is
a big problem for management.

Participation, making a difference, feeling useful and valued—these are themes that
consistently pop up in human groups. Team organization is another[Bel09]. If we don’t
attend to agent wellbeing, human agents are unlikely to keep their promises. This is
especially problematic where human qualities are paramount.

Example 35 (Working with external consultants 1). Many companies try to hire expertise
in some form from external parties. This often results in failure. It might seem to be an
invitation to pay a consultant, but if we invite them on false pretences, by suggesting that
their work will be valued, when in fact they are sidelined, then the promises are broken,
or were merely deceptions. Inviting a party and then abusing their (authority) mandate
is a form of sabotage which is quite common. Managers who perceive themselves as
above all others may find it hard to subordinate themselves to the advice of outsiders. An
initivation to a consultant must involve a promise to listen and accept their input. All too
often, consultants are simply installed into badly functioning social machinery, where
they have no chance to keep their promises.

Example 36 (Working with external consultants 2). I was once hired to work for a
company with the understanding that I would work with a certain group. After starting
the project, I was imposed on different group by an upper level project manager, without
their consultation, who knew nothing about the project and had only passing interest in
it. We had no relationship, and it was unclear who was leading the effort. Apart from
showing up to meetings, none of the team ever contributed to the project and it was a
complete waste of time and money. On realizing this, various attempts to pass on blame
were toyed with half heartedly, but basically no one cared much because no one was
really invested in the project.

2.11 THE REMAINDER OF THE BOOK

This is not the only chapter about human systems, but it’s the only chapter explicitly
about human concerns. The rest of the book applies equally to systems made of the usual
blend of human and mechanism, but you might have to read between the lines, or seek
out the human-specific examples if you are only interested in human concerns. I think

66 CHAPTER 2. HUMAN SYSTEMS

that would be a mistake though—there are no uniquely human concerns. We are not as
special as we like to believe. Particularly in industrialized processes, we work to suppress
human qualities for reliability, through discipline. Discipline should not be thought of
as a form of punishment, as sometimes implied, but rather as a constraint for seeking
predictability. With those thoughts in mind, we are ready to confront the generality of
promising processes.

CHAPTER 3

OBSERVATION, SEMANTICS AND

ASSESSMENT

In order for any system to work, agents have to be able to interact. They effectively have
to be able to sample one another’s condition (as data observing interior states). This
is what we mean by the ability to observe an agent. Observation is a fundamentally
cooperative issue. Agents may try to be invisible—they have to promise to be visible if
we want to be sure of detecting them. In IT, the granting of access rights, or establishment
of controls and services may be necessary for this to occur.

3.1 OBSERVATION AND MEASUREMENT OF PROMISED

BEHAVIOUR

Without the ability to observe systems, a model is purely speculative. That doesn’t mean
it is necessarily useless. Many models of the physical world have had useful lives in
spite of being quite wrong21. Every interaction with another agent involves a form of
observation: the receipt of some kind of information involves its observation by the
recipient. Reception of influence and observation are inseparable.

We need to define the meaning of ‘observer’ somewhat carefully to make proper
sense of phenomena in a discrete world. The characteristic scales of interacting agents
play a strong role in deciding how much interior memory agents can be expected to have,
and therefore how much information agents can absorb and recall about one another.
Responses may be based on only a single sample (Markov processes) or they can be
based on sequences or non-local phenomena (memory processes). In a computational

67

68 CHAPTER 3. OBSERVATION, SEMANTICS AND ASSESSMENT

sense, observers need memory in order to experience phenomena in full and form a
model of relative order, by knowing several identities for comparison (simply receiving
one photon at a time, and immediately forgetting is not enough to observer physical
phenomena). Memory also determines the extent to which observers can make use of
implicit model-dependent concepts, like coordinates and relative positions, and which are
not empirical phenomena, e.g. to measure velocity22. An agent with no memory cannot
experience momentum, which requires at least two points to observe. This idea might
surprise some readers. It’s a hangover from calculus that we attach a non-local vector
property to a point in space, by a limiting procedure. But that limit has no meaning in a
discrete spacetime, so one is left with an outstanding issue: how do agents ‘know’ about
directions?

A simple observer might be an agent that absorbs a message and changes state as a
result (like an atom absorbing a photon). This represents one bit of memory. The nature
of memory need not be defined for present purposes, but can be modelled as interior
structure or sub-agents within bounded superagents, in a hierarchy of scaled structure.
A crucial part of the scaling of agents from very small to very large is the distinction
between processes interior and exterior to the agent. Every agent has a ‘boundary’ which
defines the meaning of local for the agent23.

Processes and promises are either inside or outside the boundary, something like
Gauss’ law[Bur15a]. One consequence of an information theoretic perspective on space-
time is that even elementary ‘particles’ must have interior processes in order to sample
information from their exterior and absorb it. There is a minimum amount of structure an
agent must have in order to support the kinds of promises it makes to the exterior world
of other agents (figure 4.2).

Example 37 (Vector promises). In physics, an emission event or a collision where a
vector like momentum is transferred has to be a process that occurs on such a scale
that it is possible to represent a straight line vector. On the granular level of a discrete
spacetime, paths are more likely to look like crack propagation, percolation, or even a
lightning strike, than a Euclidean vector. Only on a large scale can we expect to be able
to define a consistent and sustainable notion of direction.

3.2 THE ROLE OF THE OBSERVER

How a system looks, and what it does, depends on how and where you look at it. It is a
subjective sampling of the world. In any distributed system, we are forced to confront
such subjectivities. Our aim is to do this in impartial way, using formal language that can
be clear. This is one of the aims of Promise Theory[BB14a].

3.2. THE ROLE OF THE OBSERVER 69

A system with a set of clear promises can use these as a calibrating ‘measuring stick’.
One can measure both qualitative and quantitative aspects of its behaviour against this
set of promises. However, the point is not that promises are always kept. systems of
people and machinery do not always work as planned. Outcomes can be thwarted in
three broadly defined ways:

• Mistakes in the intended execution of a plan (errors).

• Unforeseen interruptions to behaviours that we did not plan for (faults).

• Flaws in the plan itself (ill conceived plan or changing our minds).

These three axes are not completely independent (some will even argue that it is im-
possible to define these at all), but I shall assume that they form a useful basis for
approximating the issues and building models.

Figure 3.1: A mind map of descriptive causation, or the prediction lifecycle, comparing dynamics
and semantics by analogy. There is a vast amount of related terminology in use. Predictability
follows the arrow. Drift takes us into the realm of unwanted outcomes.

Context sharing leads to greater information and a more nuanced selection of
promises appropriate to adapting to situations that arise. The desired-state stability
of promises is what can prevent this adaptation from becoming chaotic.

Example 38 (Documented systems: situation awareness). There is a case for systems
that can explain themselves to themselves as well as to others. Such systems expose their

70 CHAPTER 3. OBSERVATION, SEMANTICS AND ASSESSMENT

promises, enabling other agents to form expectations and adapt. A system that makes
clear promises allows observers to be aware of the state of the system.

Very few systems are designed and documented in this way. Even worse, systems do
not promise how they behave under all conditions and fail to behave predictably, because
agents are unaware of either their intent or their behaviour or both. If technology is
designed with clear promises, and an explanation of how those promises are kept (at all
times), then it becomes self-documenting.

Systems are commonly measured ad hoc, without a guiding scale of promises or
expectations. In this case, we simply don’t know what we are measuring or why. The
concept of a Key Performance Indicator is like a promise assessment. Compare this to a
random act of monitoring, such are systems.

Example 39 (Taking for granted). We ‘take things for granted’ when no promise of a
behaviour has been made, but an agent makes use of the behaviour anyway, without
considering if it will persist. Promises are expensive to make and to keep, so it is
statistically likely that the amount of information in our expectations exceeds the amount
of information covered by our promises, hence there is a statistical likelihood for faults
to arise through incomplete documentation of intent (specification).

Such systems work by ‘take it or leave it’ behaviours, and the responsibility is usually
left to human operators to sort of the resulting mess. This in turn leads to the generic
conclusion of ‘human error’, as the result of a cultural heritage of treating humans as
machines.

It is useful to add a definition of a system design:

Definition 34 (Design). The design of a system consists of an inventory of agencies and
all the promises made, for each identifiable context, both from within and without, i.e.
including at the system boundary with ‘environment’ and ‘user’.

A design that encompasses all agents and all promises may be called complete, else
it is incomplete.

A design’s success in keeping its promises may be evaluated to talk about its fitness for
purpose. Proving completeness is a key issue, but it is generally impossible, as systems
are open.

3.3 MEAN TIME TO KEEP A PROMISE

In an interaction, we need to characterize an agent’s assessment of how long it took for a
promise to be kept. This can vary from agent to agent, due to delays in propagation of
action and observation. The notation:

3.4. CHARACTERISTIC SCALES: SPACE AND TIME 71

Definition 35 (Time to Keep a Promise). The estimated timescale or sometime ‘Mean
Time To Keep A Promise’ is an assessment which may be based on

Ti(π) = αTi (π) (3.1)

Sometimes the notation ∆Ti(π) is used to emphasize a relative time interval rather than
a timescale.

Example 40 (MTBF and MTTR). In fault diagnosis, one often speaks of the two-state
model in which components promise either to be in working order or broken, i.e. in a
state of failure or repair, where

MTTR+MTBF = ∆Ttotal, (3.2)

where MTBF is the ‘Mean Time Before Failure’, when the system keeps its promise, and
MTTR is the ‘Mean Time to Repair’ during which the system fails to keep its promise.

MTBF = ∆(π) (3.3)

MTTR = ∆(¬π) = ∆Ttotal −MTBF. (3.4)

These are learned averages, as one can never promise precisely how long a repair or a
failure will take to emerge.

3.4 CHARACTERISTIC SCALES: SPACE AND TIME

The study of behaviour relies on measurement, and measurements rely on our ability to
observe and standardize scales. Scales nearly always depend on the ability to define a
measure of time, because both durations and distances vary, but transmission rates are
usually logically constant24.

Scales are more complicated than in physics, because there is no standard one can
assume for a measurement. Relative scales affect design choices like: is a process too
fast or too slow for an agent involved with it? Should data transactions be as small as
possible or as long as possible?

Example 41 (Designed to fail). Systems are often designed to fail by assuming they can
cope with the effort to keep promises when they can’t. They are effectively imposed upon
to behave in way they could not promise to deliver, e.g. by pushing data at them without
knowledge of their condition or capability.

Promise negotiation between agents (contracts, if you like) has to adapt on the
timescales of the processes as they occur to know what a single agent, or a collaboration

72 CHAPTER 3. OBSERVATION, SEMANTICS AND ASSESSMENT

short

short short

short

long

cloud DC1

cloud DC4

cloud DC3

cloud DC2

long

short

users

"CLOUD"

Edge

Figure 3.2: In a network, agents may be close together or far apart, in terms of the cost of
communicating. This may or may not be related to geographical distance. On the interior of
datacentres, effective distances may be short, while between datacentre and edge (where clients
live) may be long. This plays a role in architecture, especially when large volumes of data have
to be accessed and transported. In order to keep promises downstream capacity generally needs
to exceed upstream capacity, else there will be non-deterministic transport—packets dropped or
queues growing.

of agents can actually promise. This is a matter of scaling: identifying critical scales for
a single agent, and identifying how collaborative clusters alter the capabilities of single
agents or not.

Measurable dimensions in human-computer interactions fall into these categories:

Dimension Measure Description
Physical distance metres The effective catchment area of a service

Virtual distance Hops Routing legs.
Time durations Ticks Time intervals incremented by some counter.

Data size bits Payload during transmission or processing.

The speed of light in media is the only approximately universal constant in IT systems.
Although it varies slightly as measured by exterior clocks, for computer systems, its
value is effectively constant.

Wavelengths of light are the only physical distance measure of direct interest in the
sense that they may determine the reliability of network communications and the rate

3.5. CHANGE AND THE ROLE OF TIMESCALES 73

available. Also, wireless signals attenuate with physical distance. As geographical
distances between clients and services increase, the catchment area for clients often
grows as a function of distance, unless the service is private. Thus contention will grow
with distance (see figure 3.2).

Most measurements boil down to local time comparisons, or latencies. Seconds are
not the direct measure of time in computers. We can make an approximate conversion to
seconds by using an independent hardware clock that is calibrated to count seconds.

3.5 CHANGE AND THE ROLE OF TIMESCALES

All functional systems, whether static or dynamic in nature rely on the concept of change
to construct and maintain the system, on some timescale. No system is completely
invariant for all time. Even the ability to observe change requires change in the agent
sampling observations from a source. Change is fundamental to systems—the only
question is how one defines the relevant timescales. Nearly all systems must have
processes on several timescales in order to sustain their functional behaviours.

To define change , we need to think about where is the point of:

• Point of intent.

• Point of change.

To intend to change a remote point (one agent changes another) is a violation of autonomy,
and requires either a promise of subordination or an outright attack on the remote agent
by force. We also need to consider how change is defined:

• Relative to current state.

• As an absolute desired end-state,

Definition 36 (Self-change). A promise made by an autonomous agent A, to any other
agent, concerning a change to its own internal resources:

π → π′ (3.5)(
A

b−→?
)
→

(
A

b′−→?

)
(3.6)

If b′ = b+ δb, the change is relative, else it is absolute.

74 CHAPTER 3. OBSERVATION, SEMANTICS AND ASSESSMENT

Definition 37 (Remote change (subordinated)). A cluster of promises and impositions
made between a master autonomous agentM , and a slave autonomous agent S, in which
S relinquishes its autonomy and promises to alter its internal resources, as directed by
M :

M
b′−−−→ S (3.7)

S
−b′−−→ M (3.8)

S
b→b′|b′−−−−−→ M (3.9)

In order to propose a relative change, the external master agent M needs to know the
current state b of S, which must therefore be promised by S:

S
+b−−→M (3.10)

M
−b−−→ S (3.11)

(3.12)

To know whether the reported value of b is acceptable, there must be a notion of a policy
or desired state B, such that b ∈ B in required, then a ∆b = B − b must be computed
for determine the imposition:

M
∆b|b 6∈B−−−−−−−→ S (3.13)

S
−∆b−−−→ M (3.14)

S
b→b+∆b|∆b−−−−−−−−→ M. (3.15)

The existence of a B implies also the existence of a new timescale for change, which
should satisfy the stability criterion:

T (B)� T (∆b). (3.16)

3.6 THE PRINCIPLE OF SEPARATION FOR DYNAMICAL

SCALES

The principle of separation of scales (especially timescales) is a design principle for
interacting systems, based on the observation that dynamical influence causes timescales
for change to mix. In earlier work, I’ve referred to this as the most significant principle
for engineering—more important than the separation of concerns based on semantic
(functional) separation, such as data normalization or ‘class’, which is the norm in
Computer Science. Briefly, it says:

3.7. ON THE SEPARATION OF SEMANTIC SCALES 75

Principle 3 (Separation of timescales). Functional systems modularize robustly and
effectively when processes with different characteristic timescales are weakly coupled.

By ‘robust’, we refer to the dynamical ‘stability’ of the system. This principle makes a
connection to the related problem of data consensus, which is a strong coupling regime
that maintains data consistency over average timescales.

This principle is a dynamical principle, and therefore overrides any semantic ben-
efits to dividing a system by function, rank, or type. The implication is that coupling
processes, which operate on different scales, will lead to contention and inefficiency,
while decoupling them will leave them free to optimize independently (from the first
principle of autonomy). Coupling different scales tends to make responses non-linear,
and introduces waiting and ‘effective mass’. By separating a system based on scales, one
keeps all the parts approximately linear in their responses. To understand this further, we
need to define scales and coupling.

3.7 ON THE SEPARATION OF SEMANTIC SCALES

In computer programming it’s common to separate concerns by writing code in a modular
fashion. Different concerns represent regions of different semantics. Usually semantic
concerns are separated, i.e. different conceptual or functional ideas. When these modules
are combined and depend on one another, they become coupled. What criteria should we
use to define modules?

Example 42 (Waiting for a slow transaction). Suppose a fast transaction needs to look
up a name in a database name service. A transaction has its own characteristic scale,
defined by how fast requests arrive. A name service has another scale determined by
how fast the remote service can respond and be transported to the transaction. Requiring
strongly that this lookup happens before the transaction can complete coupled a slow
and a fast process together, making both slow.

Example 43 (Separation of scales in parking and caching). Think of parking at airports
or busy hotels. Parking is typically separated into short term and long term. Long
term parking is farther from the airport, as it doesn’t need to be accessed as frequently,
meaning the total cost of accessing is minimized.

In valet parking, customers simply drop their car at the gate and it is driven to a
short term cache. If the car is not claimed soon, it may be moved to a longer term storage
location. In this way, different caches are only weakly coupled, optimizing for timescale.
In a similar way, separation of spatial scales is a related matter. One expects to use the
cache that is closest to the point of access.

76 CHAPTER 3. OBSERVATION, SEMANTICS AND ASSESSMENT

Example 44 (Separation of scales in cloud storage). In cloud systems engineers try to
decouple computation from storage by handing off the weakly coupled intermediary
services for data transfer. This idea can be repeated, in principle, in a hierarchy,
analogous to the cache hierarchy in processors. For example, rigid metadata to drive
fluid payload. Once committed to storage, the data integrity of the semantic content is
the promise of the storage subsystem, as the database cannot promise the timeliness or
integrity of data once it passes it on (no agent may make a promise on behalf of another
agent).

log

storage

database

log

storage

database

log

storage

database

Figure 3.3: As an example of figure 1.2, a database system with a transaction engine, log store,
and underlying storage has several components that are vertically coupled by dependency, and
horizontally coupled by the need for data replication and disaster recovery.

Example 45 (Database dependencies). The role of the database front end is to handle
concurrent connections from different causal sources, which may themselves be remote
from the locale of the service point (see figure 3.3). For disaster and crash recovery,
databases will set up clusters of replicas, which keep ‘consistent’ copies of the data.
How long does it take for these replicas to reach equilibrium with the original source
database, as measured an arbitrary observer’s clock25? This is one of the key questions
in so-called data consistency. Schema changes to the database format are also a common,
if undesirable, occurrence. See the discussions in [VGS+17, TDW+12].

Example 46 (Database replication cluster). The database cluster makes promises on a
number of levels—can it keep these promises? A database’s key promise is to ensure that
data, once written, can be read back. A single instance of a database service can only
make this promise conditionally on the promises of underlying storage being kept. In
order to separate the slower timescale for writes from the possibly faster timescale for
receiving transactions, it uses a log of changes that can be committed quickly and emptied
as a queue. The success of this approach will depend on there being periods during
which no transactions arrive (a bursty stream), else adding this extra step will only slow

3.8. DYNAMICAL SCALE SEPARATION AND COUPLING STRENGTH 77

down the speed of committing data to storage. The cluster as a whole promises fault
tolerance. Clusters generally try to promise results by quorum. A quorum is a critical
scale above which data may be considered accepted by the superagent cluster. Before the
quorum is achieved, data are still in the process of being accepted and diffusing through
the network connecting the replicas.

Example 47 (Service with slow dependencies). Input/Output (I/O) is usually the bottle-
neck in data intensive services26.

Because the data are strongly dependent on the transaction log of changes, the
database can be copied by copying only the deltas, in a compressed form. This can be
therefore be decoupled from the vertical time for the storage writes to be handled, which
may vary from location to location and are irrelevant to the leader. We cannot define the
time for consistency.

We see, in this example, promises being made and attempts to keep them on all
levels of clustering: amongst dependent functions (known as semantic scaling) and
amongst replicas (known as dynamic scaling). An interesting example of this problem
may be found in the optimized databases used by the Amazon Web Services cloud, see
[VGS+17, TDW+12].

3.8 DYNAMICAL SCALE SEPARATION AND COUPLING

STRENGTH

The interaction or separation of processes (discussed in section 3.6) is a question of the
extent to which they are coupled. This cannot an all or nothing issue, because that would
depend on the scale we consider. Average level of coupling could be high or low, either
over time or by virtue of the mechanism by which coupling is handled. So for a scalable
approach, we can use a more useful terminology or weak or strong coupling.

Definition 38 (Weak coupling). A weak coupling transmits influence from one agent to
another without an immediate or precise response. It may be non-deterministic.

In effective field equations, in physics, couplings are represented by energy transfer
coefficients, and constants of proportionality between source and response.

Definition 39 (Strong coupling). A strong coupling is a rigid, close to deterministic
causal channel.

In a discrete graphical representation of a system, expressing a coupling as the strength
of a proportionality is not always possible or appropriate. Using Promise Theory, we can

78 CHAPTER 3. OBSERVATION, SEMANTICS AND ASSESSMENT

view it as a kind of probability that information passes from a source to a receiver, which
is proportional to the binding between a promise to send and a promise to receive:

Coupling strength ∝ (S
+b−−→ R , R

−b−−→ S). (3.17)

These assertions can be justified by looking at what coupling strength means for
interacting agents27. Phenomena that promise changes on very different timescales
interact only weakly and can therefore be treated as logically separate. By contrast,
agents that promise couplings on the same timescale may influence one another and
therefore belong to the same class of phenomena. In terms of the foregoing definitions,
we can state the meaning of separation more strongly, as a theorem:

Theorem 1 (Separation of causal influence). As the ratio of timescales becomes large
TR � TS , the effective coupling tends to zero

e→ 0. (3.18)

tends to zero (weak coupling).

To prove this, suppose a series of partially ordered events at an agent S yields a series
Eγ , γ = 1, 2, Suppose a source agent S transmits the events, which are aggregated
into superagents E(n)(Eγ) of dimension n, by the receiver agent R,

S
+E1,E2,...En−−−−−−−−−→ R (3.19)

R
−E1,E2,...En−−−−−−−−−→ S (3.20)

R
+αE |E1,E2,...En−−−−−−−−−−−→ A? (3.21)

so that the dimension of the information is reduced by a factor of n by R:

α(E1, E2, . . . En) → R (3.22)∣∣∣E1, E2, . . . En

∣∣∣ = n (3.23)∣∣∣αE (E1, E2, . . . En)
∣∣∣ = 1 (3.24)

The average time between events, as assessed by R’s clock, may be denoted

TS ' 1 (3.25)

TR ' n. (3.26)

So R assesses S’s timescale to be 1 and its own timescale to be n:

TR ≥ TS . (3.27)

3.9. QUALITATIVE AND QUANTITATIVE ASSESSMENTS 79

Thus the average interarrival times for the queue in (3.21) λR ∼ 1/αR, etc, satisfy:

λR ≤ λS (3.28)

and the effective influence, in fraction of messages received compared to messages sent
is expressed by a coupling constant:

e ∼ λR
λS
≤ 1. (3.29)

In a strongly coupled system e→ 1, timescales converge to the shortest timescale
of the interacting parts, making systems busier and more work intensive. The utility
of this observation is that, if one separates causally independent parts of a system into
superagents that make weaker promises to one another, any observed correlation between
phenomena, that exceeds expectation, can be considered coincidental or potentially faulty.
This can be detected by a change in the proper time event rate, measured by some agent
within a system. This principle therefore has significance to the use of observation for
detecting faults and design flaws in systems. It tends to maximize the signal to noise
ratio between promised and non-promised behaviour[Bur4 b].

3.9 QUALITATIVE AND QUANTITATIVE ASSESSMENTS

Observers can make assessments quantitatively, if they have a scale against which to
calibrate their observations. Quantitative measures are a special case of qualitative
measures, in which we can map qualities onto a number line, e.g. the natural numbers,
the real numbers, or even the complex numbers. A lack of agreement about calibrated
standards makes all assessments effective qualitative.

Consider the basis for observer semantics. An observing agent O ∈ {σ}, in the
scope of a promise π can an assessment of whether the promise has been kept or not28:

Definition 40 (Assessment). A ‘decision’ by a single agent O about whether a promise
π has been kept or not, usually written αO(π) for an assessment by O about π.

The ability to assess and participate in observation and process implies that agents have
interior capabilities. This is a ‘turtle’ paradox: in order to explain turtles, we need to
assume ‘turtles all the way down’. Mainly, this explains locality and local observation as
a Shannon sampling process.

In Promise Theory an agent can try to make assessments about, say:

• Whether promises (to or from any agent) have been kept or not.

• The equivalence of agents (nodes or vertices),

80 CHAPTER 3. OBSERVATION, SEMANTICS AND ASSESSMENT

• The equivalence of promises made between them (links),

provided it can observe them. In order to be observable, an observer has to have been
promised access to the information (in Promise Theory parlance). This requires both
an offer of information from the source and the ability and willingness to accept the
information—both of which are expressed as elementary promises. The latter allows us
to talk about states.

Definition 41 (The observable state of an agent). The observable state of an agent refers
to an assessment of an exterior promise made by the agent.

The interior states of an agent are unobservable. The exterior states are those that
are promised to other agents, and can be sampled with fidelity. Interior states are
unobservable.

Definition 42 (God’s eye view). The observer is formally outside the system of agents
and has complete information about the state and promises of every agent.

Definition 43 (Local observer view). The observer is trapped within the system and
can only observe what it has been promised, over channels that obey the constraints of
cumulative individual agent interactions.

The causal set relation is a global statement, so the definition of time in causal set
processes is from a god’s eye view—either within a locally inertial frame (coordinate
patch) or for an entire spacetime. In either case, the definition does not solve the problem
of scaling observer semantics—but, in quantum gravity especially, we would expect this
to be a key issue. How do the limits of observation for a subatomic ‘particle’ differ from
those for a macroscopic observer?

3.10 CHARACTERIZING PROCESS TIME

Agents and links between them have their own clocks. A single tick occurs whenever the
information or state of an agent changes.

Definition 44 (Tick). A single distinguishable change in any observable variable.

Example 48 (Ticks). Examples of time ticks are the arrival of events at a receiver, clock
pulses generated by chips or devices, interrupts, etc. Any event that generates a response,
with a certain probability, is a tick. If no response is generated, the change has been
ignored and may as well not have happened, as nothing was advanced.

3.10. CHARACTERIZING PROCESS TIME 81

As Einstein underlined, the only way to get a consistent picture of change is to
measure time with clocks. Clocks at different locations may count time differently for a
variety of reasons, and so we need to be cautious.

Definition 45 (Clock). Any observable process that accumulates and counts a series of
ticks.

Note that clocks may not count up to infinity. Counters usually wrap around after some
finite number (say 12 on a wall clock). Time may therefore not be a monotonically
increasing value.

Definition 46 (Time). The value of a clock, i.e. the outcome of counting distinguishable
ticks into a distinguishable sum.

If time does not increase monotonically, but a system has actually changed, then the
clock may be called incomplete.

Definition 47 (Proper clocks and bad clocks). A good clock monotonically increases its
count for time on observing every distinguishable configuration change promised by a
system. It thus represents a proper time for the entire system. A bad clock is a clock that
does not satisfy this.

Most clocks are bad clocks over extended regions (indeed, this is Einstein’s point in
Special Relativity), because the clock may not be in step with the states of the system.

Example 49 (Human clocks). In the human world, we make no attempt to count changes,
because changes are so regular that we assume one regular process can be used to
represent all regular processes on average.

In order to make a clock that’s faithful to processes within a functional system, we
have to limit its region of validity. This is what we mean by locality.

Lemma 4 (Proper clocks: single-valued time). If a closed system fully and completely
returns to precisely the same state in a sequence, then the system has returned to the
same time.

The proof is trivially that the state of the system is indistinguishable from a state consid-
ered earlier by a ‘godlike’ observer outside the closed system, then it must be a finite
state machine whose behaviour is cyclic.

We should always exercise an abundance of caution in thinking about distributed
systems. Agent time, network time, process time, interior time, and exterior time need
not be the same.

82 CHAPTER 3. OBSERVATION, SEMANTICS AND ASSESSMENT

3.10.1 INTERIOR AND EXTERIOR TIME

Time is a count based on the result of racing different processes (clocks) against one
another. This leads to

Definition 48 (Interior time). The count of ticks produced by the driver of activity within
an agent. This inversely determines the process rate which sets the schedule for sampling
of all data and computational steps.

Definition 49 (Exterior time). The count of ticks received from exterior process sources
as data, event by event. If this stream of ticks is used to drive the interior processes of the
agent directly, the agent can never measure anything but a constant and regular rate of

Definition 50 (Independent clock time). An exterior agent can maintain an interior
count, and be used as a standard service that defines time.

Variations in the rate of this clock cannot be measured without yet another clock, so its
usefulness as a measure of time is limited. Nevertheless, services like NTP are used as
we have many fast processes, like atomic oscillations, that can be used to count by. These
minimize the problem of jitter in the relative meaning of a time interval.

Because the ability to sample exterior events depends on interior processes. Exterior
time can only be measured using interior time, by Nyquist’s theorem. Thus the rate of
exterior time must be less than or equal to that of interior time:

Rexterior ≤ Rinterior. (3.30)

3.10.2 EVENTS, CLOCKS, AND PROPER TIME

Every dynamical change is a process. A clock is a process that counts at a regular rate.
This is, of course, a tautology. How do we know the clock counts at a regular rate?
We need to compare it to another clock. In the end, we have to make an assumption
about something regular. Since Einstein, our assumption has been the constancy of
electromagnetic waves and the speed of light, for theoretical reasons associated with
Maxwell’s equations. In practice, we use oscillations of other kinds as reference clocks—
but this leads to the interpretation of different frames of reference for different processes.

In an information theoretic sense, an event is an observation of change in data
sampled from a source[SW49, CT91]. In the Einsteinian sense, this signal is a tick of a
clock that an observer samples. When the tick originates from within a process (e.g. a
CPU kernel tick), this defines a notion of ‘proper time’ for the local process, indicating

3.10. CHARACTERIZING PROCESS TIME 83

an advance in the state of the process. When there are multiple agents involved, working
together, the language one often speaks of ‘vector clocks’ in IT[Lam78].

The concept of events plays a major role in the language used in nearly all observable
processes. Let’s define it here in a way that respects information theoretic transfer.
Information is only ‘arrives’ somewhere when it is sampled.

Definition 51 (Event). A discrete unit of process in which an atomic change is observed
or sampled.

We often imagine processes being driven by a flow of events, like a stream29. Again, in
terms of sampling, this amounts to the following:

Definition 52 (Event or message driven agent). An Event Driven Agent R makes a
promise conditionally on the sampling of message events M from a S, with an average
rate λ:

R
+E|M−−−−−−→ O (3.31)

i.e. R can promise an observer O that it acknowledges an event E on receipt of a
message M . By Promise Theory axioms, this assumes the prior promises:

S
+M|λ−−−−−−→ R or S

+M|λ−−−−→ R (3.32)

R
−M|µ−−−−→ S (3.33)

where µ is the queueing service rate.

Notice that by using the term sampling here, we do not take a position on whether
messages were imposed by pushing from S to R, or whether R reached out to S to pull
the data. These distinctions are irrelevant to the causal link that results from the message
policy. Data are not received until they are sampled by the receiver. Note that there is no
timescale implied by the conditional promise in (3.31)—the definition of ‘immediate’ or
‘delayed’ response is an assessment to be made by the observer O.

3.10.3 MISSED AND DROPPED SAMPLES

Observations inevitably get lost in any scientific enterprise. In empirical science this
contributes to ‘error bars’ or uncertainties in counting of measurements—but not usually
to semantics of interpretation. Interpretations are expected to be stable to such small
perturbations.

Reasoning in IT has its historical origins from mathematical logic and precision: the
avoidance of doubt. But doubt is a central part of tolerance in systems. If we observe

84 CHAPTER 3. OBSERVATION, SEMANTICS AND ASSESSMENT

and inspect systems, we need to do so in the framework of a stable intent that overrides
random fluctuations in measurement30. Monitoring and measurement serve no actionable
purpose unless there is already a policy for behaviour in place. Ashby’s model of

requisite complexity or ‘good regulator’ in cybernetics[Ash52, Ash56] summarizes how
matching information with information on the same level is required when there is no
intrinsic stability in a model by which to compress such fluctuations.

3.10.4 DEFINITION OF CLOCKS

In a causal set model, time is a global construct, modelled as linked trajectories. The
trajectory is the clock that measures time. This makes time non-local and ambiguous.
Just how many states does the clock have? How is the count remembered? The x’s are
fixed global entities, without an obvious and unequivocal interpretation[Sor03, Dow08].
Spacetime is an independent construct, as in the Newtonian vision. Markopoulou
criticized this construction and attempted to create a local interior view[Mar98], at the
expense of introducing memory functions of different causal pasts, in the language of
Category Theory. In so doing, she effectively anticipated the interior agent structure that
Promise Theory predicts.

Einstein effectively pointed out in his theory of relativity that every observer may
be associated with an interior clock the defines the rate of time for its processes. The
significance of this is deeper than is usually implied—as one finds when one considers
the implications for time in gravitational fields. Any effectively monotonic process,
which changes detectably, is a clock. The rate of time cannot be defined without being
measured absolutely, nor can

If follows that any agent must have its own standard interior time, which determines
the rate at which it can sample its surroundings and participate in information (i.e.
‘particle’) exchanges.

Definition 53 (Interior time). An assessment of a change in an agent’s interior state
or promised behaviours is a tick of interior time. This is only observable to an exterior
agent on some scale. Each detectable advancement of the agent’s interior processes,
including the sampling of exterior information, is a tick of an agent’s interior time.

Definition 54 (Exterior time). The assessment of a change in another agent’s state or
promised behaviours is a tick of exterior time.

In Promise Theory, a tick of local time is an assessment of change—we assume that
agents observe exterior ticks by the laws of universal information channels[SW49, CT91].
Proper time is counted by the collective states of distinguishable configurations on the

3.10. CHARACTERIZING PROCESS TIME 85

interior of an agent, so that exterior time is naturally filtered through an agent’s interior
processes31. The resolution of observable time is thus the overlap between exterior
change and half the ticks on the interior of the agent (to account to double sampling of
Nyquist’s law). To an impartial observer, the rate of interior time must be at least as great
as the rate of exterior time it can sample, by Nyquist’s theorem. During the scaling of
agents, by aggregation (figure 4.2), scaling converts exterior to interior properties, by
moving the boundary between interior and exterior.

In a cause-set approach, a global time is defined as a partial ordering of event
configurations. The nature of the configurations is not clearly defined. In particular,
it’s unclear if the configurations can be repeated (in which case this spells difficulties
for local clocks), or if the expansion of spacetime states is built into the assumption of
cause-sets. The difference between these approaches, which may yet be reconciled, is:

• Causal Sets: time is a partial ordering of configurations by a privileged observer.

• Promise Theory: time is what a local clock process counts.

3.10.5 DISTINGUISHABILITY (NON-LOCAL)

Agents may or may not be distinguishable to other agents, if they promise no properties
by which to identify themselves uniquely. Even if agents do promise unique qualities, an
observer may not be able to perceive the difference.

Definition 55 (Distinguishability). An observer O can distinguish two agents A and A′,
if and only if both agents promise names (scalar attributes),

A
+name=X−−−−−−→ O (3.34)

A′
+name=Y−−−−−−→ O (3.35)

O
−name=X−−−−−−→ A (3.36)

O
−name=Y−−−−−−→ A′ (3.37)

that are assessed to be unequal by the observer (i.e. may be promised conditionally to an
unspecified agent A?):

O
X 6=Y | X,Y−−−−−−−→ A?. (3.38)

Distinctions can be observed within the same sample (spacelike comparison) or across
subsequent sequential samples (timelike comparison) to detect change.

Lemma 5 (Observability of change depends on memory). In order to compute a timelike
distinction, i.e. to measure a change from a set of states, an observer must remember at
least the previous configuration. So observation of change is not a Markov process.

86 CHAPTER 3. OBSERVATION, SEMANTICS AND ASSESSMENT

The fact that promises are not always kept means that Observability cannot be treated
as deterministic either. Observability requires both promises to be present and kept in
order for information to be exchanged. Notice that, in physics we normally attribute
properties like distinguishability of particles as bulk properties for bosons or fermions,
etc. In Promise Theory, this is a property of the interaction between each pair of agents,
not a global property that can be assumed for all observers.

3.11 PROPAGATION, DISTORTION, AND LOSS OF

SYSTEM SEMANTICS

One of the results of promise theory is a better understanding of what we can expect from
intermediate agencies within systems. Because any person, device or agency, which
propagates intentions and outcomes between two parties as a relay or intermediary, is
completely free to distort those intentions and outcomes, agents have a fundamental
blindness when acting through proxies. They have to trust the intermediaries without
question.

3.11.1 TAMPERING BY ‘MEN IN THE MIDDLE’
(SERIAL DISTORTION)

We can return to the details of this (known as the intermediate agent problem, or the
end-to-end problem). Generally speaking, systems where outcomes are critical, should
avoid proxies, or ‘middle-men’, as these are obvious places for distortion of intent and
outcome. Each serial leg of dependency compounds the possible distortion.

Definition 56 (Tampering (serial distortion)). Tampering is the imposition of a change
on a system that is made contrary to a promised outcome.

3.11.2 CROSSTALK OR CHANNEL SEPARATION

Agents that cannot discriminate between different contexts, in their assessments, can
introduce errors by inaccuracy, or misinterpretation of context. Such low fidelity assess-
ments, i.e. errors of promise utilization, and miscomprehension, can lead to catastrophic
changes of intent, especially where systems amplify rather than tolerate errors.

Definition 57 (Crosstalk (parallel distortion)). The proximity of two agents, making
different promises to a receiver, may result in a low-fidelity recipient agent failing to
discriminate between the promises, hence resulting mixing the outcomes.

3.12. MEASURING AND ASSESSING OUTCOMES 87

Example 50 (Wires crossed). Hitting the wrong button on a command console. Placing
the intercom next to the ejector seat on an aircraft would be a poor design choice, since
a small perturbation would have disastrous consequences.

Alleviations are a general part of system fault-tolerance. They include greater clarity
in the separation between contexts, according to the promised limits of perception for
the agents who are the recipients. This might include visual and auditory channels for
humans. Such considerations are a part of user interface design theory.

3.12 MEASURING AND ASSESSING OUTCOMES

To make reliable assessments, whether qualitative or quantitative, we need a kind of
generalized coordinate basis, or a graduated scale of concepts, analogous to the coordinate
axis along which one measures distances in mathematics. This need not be numerical;
it could be a menu of semantics alternatives, i.e. what statisticians call ‘classes’. Any
agent can make an arbitrary assessment an outcome. It can also assess any other’s fidelity
for keeping promises. These assessments are a prior arbitrary, but we would like to do
better. Assessments can be flawed: errors of measurement and interpretation are well
known phenomena that draw attention to the fidelity of the assessing agents. With so
many places for unintended distortion to take place, we begin to see the importance of
tolerance and margins in system design.

3.12.1 PROMISES AS A SEMANTIC ‘COORDINATE BASIS’ FOR

MEASUREMENT

No agent can assess another without a scale of reference, i.e. a measuring stick. If what
was intended is not documented, then any outcome must be fair. How shall we measure
purpose? The measuring stick we use is not only quantitative, but is a choice, like a
vector marking alternative directions. Promises play this role: they form a spanning basis
for the intended outcomes of each agent’s behaviours.

Every agent that in in scope of the promises has the ability to assess whether they
were kept or not, relative to their context, either inside or outside the system limits.
Outcome is relative to its promised purpose. Promises thus form a simple formalized
basis against which to judge the state of the system.

88 CHAPTER 3. OBSERVATION, SEMANTICS AND ASSESSMENT

Comment 3 (Functional assessment of systems). Today it is common to add ad hoc
monitoring of systems, with humans left as observers trying to divine meaning from the
data. This can be useful as a process of scientific learning about the system, in order
to gather motivation for policy, but it would be dangerous to act on such information
without the prior motivation of a promise about what are considered acceptable limits
on the measured values. Targeted testing is sometimes called acceptance testing or unit
testing in software. This can be applied to any promise.

Comment 4 (Ad hoc monitoring is unstable). Without a semantic calibration, we
cannot know whether assessment is significant or not. Measuring or monitoring systems,
without any promise of what to expect, leads to speculation about the significance of
measurements. This can lead to divergence of opinion and unstable actions. Acting on
an ad hoc assessment, without a promise about its expected behaviour within a larger
model, could easily be disastrous, according to another agent’s assessment.

3.12.2 BASIS FOR ASSESSMENT: RELATIVITY AND SCALE

There are several parameters to consider in assessing outcomes. In any interaction, the
transfer of intent depends on all the interacting parties:

• Semantic overlap: does the sender make a promise that is of a compatible type to
that the receiver can accept?

• Dynamic overlap: does the receiver accept that the magnitude of the promise
given by the sender satisfies its expectations? For example, an agent promising
6 kgs of apples would not be enough to satisfy an agent promising to consume
8− 10 kgs.

Temporal overlap: is the promise kept within an acceptable time frame? How
often should we sample the promiser to know whether the promise is kept. A
promise that is too slow is the same as a promise not kept at all. e.g. promise to
deliver same day, but delivery takes 2 days.

Spatial overlap: does the right agent, in the right location, make the right promise?

In each case, we need an overlap in the basis sets of the promises to offer and accept
something, i.e. is the type of the promise bodies b+ and b− the same? For example: if an
agent accepts apples, providing oranges would not be acceptable.

3.13. OBSERVATIONS PASSED THROUGH TIERS AND STAGES 89

3.13 OBSERVATIONS PASSED THROUGH TIERS AND STAGES

Throughout this volume, we shall have recourse to revisit a fundamental issue in dis-
tributed systems (in spacetime processes). That refers to the integrity of information
propagated between agents, when agents promise to transport data with integrity through
a number of stages that scale the process in different ways.

The scenarios all use a basic pattern in which some kind of source agent makes data
available to a processing pipeline, or series of stages, and then some kind of recipient
samples the data offered by the source. This process may be repeated in any number of
stages to account for multi-tiered systems. From basic promise theory, we know that the
basic transfer implies that two promises be kept:

S
+XS−−−→ R (3.39)

R
−XR−−−→ S (3.40)

with the effect of R observing the sample XS ∩XR. Each stage of the process depends
on both ends of the link, i.e. on two causally independent (autonomous) agents, not on a
single one. This issue is so widely misrepresented in the literature that it’s useful to try
to make a repeating issue out of it throughout the book. The implications of this are of
great importance to a number of intimately related issues, e.g.

• Data consensus in databases (agreement about proposals),

• Data consistency in lookups (agreement about observations),

• Data transactions (reliable delivery),

• Data versioning (the state of change at a source),

• Centralization and decentralization of control,

• Aggregation of data across space and time,

• Measurement of time (the assessment of the current time),

and more. Figure 3.4 shows the basic configuration for the discussions. By referring to
the arrangement in the figure, it will be helpful to compare issues

The figure represents a three stage process of data sampling, represented by sets S
(source), R (replicas), and C (clients). Data are generated by agents S (e.g. sensors),
starting on the left (also called upstream), and are sampled by agents R which store them
temporarily. The R are redundant replica sets, i.e. data stores that contain copies of the
data sampled from agents in S. Finally, agents in C may sample (query) the intermediate
data stores in R to derive outcomes. The figure has a few features worthy of note:

90 CHAPTER 3. OBSERVATION, SEMANTICS AND ASSESSMENT

SOURCE
CLIENTREPLICA SERVER

upstream downstream

(+)

(+)

(+) (−)

(−)

(−)

(+)

(−)

(+)

S

R C

Figure 3.4: The basic configuration for sampling data through intermediaries. One the left,
several redundant sources of data may provide parallel confirmation. This must be accepted by
middle-men or intermediaries, which assimilate the information and pass it on to an observer.
The observer downstream must in turn assess various opinions, possibly based on the acceptance
of different incomplete sets of data and formulate a conclusion. This process is fraught with
uncertainty.

• The set S of all sources may not be covered equally by all of the replica reposi-
tories in R. Data from some of the S agents may be sampled by more than one
agent in R. Not all agents may be covered by a given agent in R. Some agents
may be covered more than once.

• For some scenarios, R may represent non-overlapping ‘shards’ that promise to
contain partitioned information that is separated by design. Partitions may be
physical or virtual, i.e. by absence of signal (+) or by rejection of signal (-).

• For other scenarios, R may represent completely overlapping redundant replicas
that promise to contain identical information.

• The client agents should be able to query data from R and get an answer. In
different cases we may want:

3.14. CONSISTENCY OF MULTIPLE SOURCES DURING OBSERVATION 91

– The latest result for a query.

– The fastest result for a query.

– Only results that are confirmed consistent by all replicas.

– etc.

In short, this figure represents a multitude of common cases that are applicable to
information systems, whether computer, mechanical, or human. Some key use cases
will include discussions of the topic of data models, sharding, command centralization,
eventual consistency, and distributed transactions.

Example 51 (Quorum in replica sets). The standard approach, in computer science, for
implementing decisions based on multiple redundant sources is to frame the problem as
a vote, and seek a majority or quorum. This is a simplistic approach, which says: in the
case of disagreements, correctness be damned, the loudest voice wins (democracy). If
there is an even number of sources, there’s a chance that there will be no winner, so one
chooses to accept ony an odd number of sources, in order to guarantee that there will be
no difficulty in selecting a majority. There is a numerical justification for this approach,
if the value is known to have an invariant source value. For most cases, this is an
entirely ad hoc approach for resolving a decision ambiguity, yet many system designers
believe it to be ‘correct’. The consequences of the decision are the responsibility of the
decision-maker.

Example 52 (Boeing MCAS tilt sensors). The fated Boeing 737 Max aircraft, which
suffered two tragic crashes, implicated two redundant sensors, both of which were
unreliable. A natural choice would have been to employ three sensors to simplify quorum.
In practice, only a single sensor was used[BB19a].

3.14 CONSISTENCY OF MULTIPLE SOURCES DURING

OBSERVATION

As an immediate application of the picture in figure 3.4, consider the following example.

Example 53 (Counting apples). Suppose a farmer C, in an apple orchard consisting
of many trees Si asks his workers R to count the number of ripe apples. The outcome
depends on a number of factors:

• The possible states of the system.

• The rate at which transitions occur from one state to another.

• The rate at which the samplers observe the trees.

92 CHAPTER 3. OBSERVATION, SEMANTICS AND ASSESSMENT

• The rate at which the farmer asks the workers for their assessments.

The workers may count different collections of trees (as in the catchment areas that
comprise patches of S in figure 3.4), and report the number of ripe apples, or perhaps
the fraction of ripe apples to scale the number accordingly. But how do they assess
whether the states of the apple? the trees promise the information on a continuous basis,
as the trees and apples grow, but if the workers sample sparsely, then they are likely to
see a change from no apple to ripe apple in a single step (from 0 to 1). On the other
hand, if they sample quite often, they may see several stages of apple, from nothing to
proto-apple, to unripe, to ripe, and then fallen and rotten. The model of state they have
for their observations depends on the overlap between the promise made by the apple to
express change and their promise to receive that information:

X = XS ∩XR
‘apple state’ = ‘apple growth timescale’∩ ‘worker schedule timescale’

If the workers have different schedules and sample at different rates, the promises they
make to the farmer C will not only be quantitatively different but possibly qualitatively
different. They may belong to different state models—all essentially a consequence of
the different timescales or ‘proper time’ development of the agents in the system. When
the farmer asks for a response from any of the workers, the answer he gets will be quite
different for a number of reasons, even though the state of the apples has only one answer
at the source.

• The image of the source is only a sampling of the actual state.

• The sampling may be incomplete, because a complete sample is impractical or
takes too long.

• Even if all the workers sample the same trees, they may report their answers at
different times relative to when they meet the farmer’s schedule (according the the
farmers proper time clock).

• The sampling takes a finite amount of time during which the state may actually
change.

The possible options available in the system for trying to get a single stable outcome
from the poll:

• We can manage the sample sets of the trees so that all agents assess the same
trees.

3.14. CONSISTENCY OF MULTIPLE SOURCES DURING OBSERVATION 93

• We can manage the sample rates of the agents and sample very frequently. Then
we shift an uncertainty in the change to an uncertainty in the kind of state, as we
now assess there to be many more kinds of state in which the apple is ripe, e.g. a
percentage.

• We can try to race the rate of change by making the reporting fast. The farmer
then meets with the workers often too.

• We can try to get the workers to agree on what is the right number of apples by
forming a consensus, or a quorum, before promising the result to the farmer. This
makes their promise a conditional promise; it introduces dependencies and delays,
during which they have to interact with one another as a cluster to arrive at an
answer, All that time, the apples are growing and changing, so they need to be
quick.

• If the farmer meets with a worker before they have reached a consensus, he may
still get an uncertain result. The workers may therefore try to limit the farmer’s
access (limit the observability of their process outcome). They block or lock the
process and prevent the farmer’s proper time schedule clock from ticking. They
effectively stop time for the farmer’s process, relative to them.

This list is not exhaustive, but it’s already long enough. In each of the cases, the
effort involved to get a better answer downstream to the farmer increases the expense of
the process to obtain the result, and does not necessarily improve the certainty—it just
shifts uncertainty from one issue to another. Ultimately it’s up to the farmer (the client
C) to deal with the uncertainty. This is called the downstream principle.

This problem characterizes a large number of data problems, where results are
passing through a number of stages and the answer depends on the prior stages.

Some readers are probably thinking that the problem lies in the sampling. If the
apples pushed their state to the workers immediately, and the workers pushed their state
to the farmer immediately then the problem would go away. But that (very common)
thinking is flawed. Assuming it were possible, it shifts the problem from a sample to
queue processing. The data arrive at the workers as impositions from the apples, and
may or may not be noticed by the workers, depending on their timescale. How many
workers should forward their answer to the farmer? All or just one? Which one? In fact,
we still can’t guarantee that they will have the same answer at the same time, so at what
point should they say their answer is complete and forward the result? If we increase
their speed or capacity to receive data, they may respond ‘synchronously’ and report
‘immediately’ to the farmer. The results then land in the farmer’s queue, but not in a
predictable order. So even if the farmer gets woken up to receive the report ‘immediately’,

94 CHAPTER 3. OBSERVATION, SEMANTICS AND ASSESSMENT

the state of the results is not known to him. Complete or incomplete? He may pick the
first result, the highest result, or the lowest result. There is therefore a policy decision
associated with the semantics of the data. He may even try to wait to see if the workers
eventually come up with a consistent answer, or at least narrow the range (called an
Eventual Consistency policy). All this time, the apples are growing and falling and the
outcome promised by the chain of observation is only an estimate.

To define a ‘correct’ answer to this problem, we have to select from alternatives
by recourse to a number of policy choices, for each of the issues presented above. The
purpose of the policy is precisely to eliminate unwanted uncertainty by discarding it
somehow. That doesn’t mean the uncertainty doesn’t exist because we are ‘precise’, it
just means that we have designed a system to conceal the issues. This brings stability as
a deliberate design choice, but not certainty.

We can now see how figure 3.4 applies to this picture. When we deliberately intro-
duce stages into a system, adding multiple storage bins for data, each along paths with
independent delays (latency), and independent sampling rates from source to database to
observer the possibility for variance in the change process becomes large and we need to
deal with that uncertainty. The culture in computer science and engineering is to assume
that uncertainty is a bug to be fixed, and the try to engineer a workaround. This only
shifts the uncertainty from one place to another, but it is common practice and it leads
to many technological issues, such as database consensus protocols and the problem of
distributed transactions.

Example 54 (CAP—Consistency, Availability, Partitioning). In computer science litera-
ture, there is often mention of what is colloquially referred to as the ‘CAP Theorem’32.
This is an observation that the issues of uncertainty are not independent of the ability
to measure (availability) and the sample poll area (partitioning of the sample set S).
The observation is trivial: when things are not independent, we can’t arbitrarily get to
improve everything at the same time. e.g. Distance is speed × time, so we can’t change
all three arbitrarily. Changing one has to change at least one of the others.

Example 55 (Centralization or brain model). When data are aggregated from a number
of sensors, it is impossible to know precisely when each of the sensory inputs occurred.
The central brain’s clock is what ultimately sees that signals, but these are delayed by
possibly unequal amounts. In very large organisms, the time it takes for sensory signals
to aggregate at a brain, and conversely for oxygen to be transported from a heart, and
for nutrients to be transported from a gut is different for different parts of the body. This
limits the rate at which the organism can react and move. In animals, brains compensate
for time lag between different locations to present a coherent picture of the world, though
this is hardly a precise. All signals essentially try to race a changing reality to the brain

3.14. CONSISTENCY OF MULTIPLE SOURCES DURING OBSERVATION 95

before it’s too late.

Example 56 (Boeing MCAS Trim Sensor). The crash of two Boeing 737 Max aircraft
was attributed to the failure of a software system that made use of a single sensor, i.e.
a single point of failure. The planes were equipped with two sensors, but only one was
read providing an automatic consensus even when the sensor was faulty and failed to
keep its promise[BB19b, BB20].

CHAPTER 4

PROCESSES

Although Promise Theory describes systems at the level of promises—an expression of
an agent’s state of intent—promises are useless without processes that can keep them.
Thus, Promise Theory really concerns a theory of processes. Let’s try to sketch out
the issues that surround the description of processes—from technical issues to practical
issues. In physics, one uses the idea of trajectories in a phase space; in computer science,
one uses the idea of algorithms. We need to find the unification of these ideas.

Any system of change involves processes, both on the interior of agents to keep
their promises, and on the exterior to enable inter-agent interaction. The basic channel
of communication necessary for cooperation between agents relies on promises too.
The most fundamental promises are therefore those that assure communication between
agents. We begin by developing a simple formal language about promises to make
contact with other mathematical disciplines.

4.1 PROCESS CAUSALITY AND ORDER OF EVENTS

The flow of activity is a system is directed by a sense of cause and effect. When the
dominant interactions in a region are polarized in a particular direction, they lead to a net
drift of change in the system, proceeding in a particular direction. When a change at one
location is the precursor for a conditional change at a neighbouring location, the order of
events is what we think of as a causal order. Classically, causal order is thought of as a
partial order, but we know that—on a detailed microscopic level—dynamical order may
contain loops and process details that differ in their directionality on different scales.

The key requirement for describing any process is the ability to distinguish key states
from one another, and to be able to observe or characterize them in a serial order. It’s

96

4.1. PROCESS CAUSALITY AND ORDER OF EVENTS 97

helpful to recall some basic definitions from mathematics in this regard. In mathematics,
one is not concerned about locality—we are used to being able to impose restrictions
as hoc, so such relationships have the status of impositions in Promise Theory. They
are statements about all agents, without due deference to individual distinctions or
locality. Nevertheless, let’s start with standard definitions and then consider their local
interpretation in Promise Theory.

4.1.1 THE TRANSMISSION OF INFLUENCE

The principle of causality can be stated simply by saying that earlier events are followed
by later events, at a given point of action, as a result of the transmission of some
information that we may call an influence.

Definition 58 (Causality). A complete graph of conditional promises representing a
process. We say that S causes influences X at R with cause c iff:

S
+XS | c−−−−−→ R (4.1)

R
−XR−−−→ S, (4.2)

and XS ⊂ XR.

If every transfer of influence in a system obeys this property, then we can define the
system to be reversible:

4.1.2 GLOBAL EQUIVALENCE, OR SYMMETRY

In mathematics, an equivalence relation is a binary relation for a set X:

∀x ∈ X, x ≈ x (Reflexivity). (4.3)

∀x, y ∈ X, x ≈ y and y ≈ x implies x ≈ y (Antisymmetry). (4.4)

∀x, y, z ∈ X, x ≈ y and y ≈ z implies x ≈ z (Transitivity). (4.5)

The set of equivalence classes is a partitioning of X: {x, {y, z}, . . .}.

4.1.3 ORDER AND PARTIAL ORDER OF STATES

A partial order straightens out the loops by factoring out equivalences using a quotient
construction. This can be considered a form of coarse graining of spacetime locations,
and is thus a process in renormalization and scale transformation. On a large (classical)
scale we might expect only partial ordering to be visible, while on a smaller scale pre-
orders with acausal feedback loops play a key role in processes. This is certainly true of

98 CHAPTER 4. PROCESSES

other causal networks like electronic circuitry. Total ordering is a binary relation between
agents, defined as a special case of partial ordering.

Definition 59 (Poset P with partial order relation �). Let P be a set, � be a partial
order relation on P (P is called a poset), and = be an equivalence relation on P . Then:

∀x ∈ P, x � x (Reflexivity). (4.6)

∀x, y, z ∈ P, x � y and y � z implies x � z (Transitivity). (4.7)

∀x, y ∈ P, x � y and y � x implies x = y (Antisymmetry). (4.8)

A total ordering adds an additional constraints, of mutual exclusion:

Definition 60 (Total order relation ≺). ≺ is a partial order relation for which

∀x, y ∈ P, x ≺ y or y ≺ x (Connexity) (4.9)

and here ‘or’ means eXclusive OR (XOR).

These concepts are closely associated with the concept of distinguishability of elements.
Note that the definition of order is absolute, not relative to a particular element of the
set. Thus, partial ordering is a ‘Newtonian’ absolute god’s eye view of a process. It’s
tempting to think that a partial order is the most primitive structure that supports causality,
but this is too restrictive.

4.1.4 PREORDER

The most primitive kind of ordering relation is the concept of preorder, which is not
quite a partial order as it can contain loops. In the context of the current discussion about
causality, this implies the concept of acausal loops, which frequently arise in Quantum
Field Theory and Promise Theory, so we should not dismiss these lightly. A preorder
relation ≤ on a set S is a reflexive and transitive relation:

∀x ∈ S, x ≤ x (Reflexivity). (4.10)

∀x, y, z ∈ S, x ≤ y and y ≤ z implies x ≤ z (Transitivity). (4.11)

Note that it is not assumed here that x ≤ y and y ≤ x together simultaneously imply
that x = y. The latter may be considered a coincidence limit of the order relation, as
observed on a large scale33. This coincidence forms an equivalence relation on S such
that x ∼ y if and only if x ≤ y and y ≤ x is satisfied. The quotient set S/ ∼ is thus
partially ordered (see figure 4.1). We return to this topic in section 4.4.1.

4.1. PROCESS CAUSALITY AND ORDER OF EVENTS 99

a
b

c

d

g
fe

Figure 4.1: A pre-ordering turns into a partial ordering be rescaling (coarse graining) of the
points. Representing the order relation by an arrow in the diagram, we have: (a ≤ b), (b ≤ c),
(b ≤ d), (c ≤ d), (d ≤ c), (d ≤ e), (c ≤ e), (e ≤ f), (f ≤ e), (f ≤ g). The direction of
normal time is from left to right (from a to g), but the process order has elements that defy that
monotonicity, with minor loops. By forming equivalence classes and quotient sets to factor out
these loops (dotted lines), giving a unique partial order.

4.1.5 CAUSAL SETS (NON-LOCAL)

A causal set is defined as a poset with the added constraint of local finiteness.

Definition 61 (Cause-set or causal set). A partially ordered set C (poset) with a con-
straint of local finiteness:

∀x, z ∈ C, card (y ∈ C | x � y � z) <∞. (4.12)

Causal sets define an interpretation of a graph Γ = (L,N), with links or edges L and
vertices or nodes N , by identifying the partial order relation with existence of edges E
and the member points x, y, z ∈ C with nodes N .

Definition 62 (Link or edge (primitive)). A pair of elements separated by a primitive
countable instance or order: x, y ∈ C such that x � y, and with no intermediary
I|x � I � y.

As we’ll see, a promise has more structure than this, which is both advantageous and
assumes more, analogous to a total ordering. The distinction between partial order and
total order will turn out to be related to scale and its influence on distinguishability.

Definition 63 (Chains, paths, and geodesics). A collection of points

x0, x1, . . . xn | x0 � x1 � x2 � . . . � xn. (4.13)

The length of the chain is n, and the chain is called a ‘path’ if every chain relation is a
primitive link. A geodesic between x0 and xn is a path between the same.

100 CHAPTER 4. PROCESSES

An important point to raise here is that there is normally only one kind or type of relation
in a causal set model—represented by a single flavour of symbol�. This is a symptom of
the preservation of separatism between spacetime and its interior processes. Yet we know
of three distinct forces (perhaps four, though gravity seems better explained as spacetime
structure) that distinguish events. For this reason, propagation cannot be defined within a
causal set. At best we can identify a general indistinguishable potential for propagation
with paths, as distinctions are unobservable. Using Promise Theory, this naturally gets
extended to add multiple semantics, that can be associated with forces, matter, and energy
typology.

4.2 INTERIOR AND EXTERIOR PROCESSES

Whether we consider agents to be atomic, i.e. indivisible entities, or composite entities
(called superagents), formed from multiple agents with a boundary for encapsulation, an
‘agent’ on any scale has an effective interior and effective exterior. The interior or agents
is always, a priori opaque to exterior observers. Any observable information must be
explicitly promises by the superagent[Bur15a].

We know from the Shannon-Nyquist sampling theorem that each agent needs to
have a sampling process of its own in order to accept signals from neighbours. An agent
needs to be able to sample at least twice as fast as the source of a signal changes in
order to capture its signal accurately. Since it is impossible for all agents in a system
to be faster than all others, we have to accept a level of uncertainty in transmission of
data. This uncertainty corresponds to the uncertainty in sampling, and is the origin of the
Heisenberg Uncertainty Principle in quantum mechanics.

On the exterior of agents, i.e. between agents, a propagation of changes to the state
of agents may be traced as a change in the exterior promises made by each agent to an
observer on a larger scale. Notice that one can never escape the role of the observer
in understanding behaviour. This question of the separation of interior and exterior
processes, with implied boundary follows processes across all scales. It leads implicitly
to the principle of separation of scales (see section 3.6).

4.3 LOCALITY AND PROCESSES

Promise Theory is a theory of cooperation between autonomous (i.e. causally indepen-
dent) locations called agents. Agents are scalable by interaction and aggregation, but
are also the atomic units of process. This doesn’t so much explain spacetime processes
as provides a clean way of modelling them, so there is some turtle stacking going on
here too. Its formal definitions use the language of sets and graphs, but it can be used

4.3. LOCALITY AND PROCESSES 101

quite intuitively at a purely symbolic level. Promise Theory is not about space or time,
per se, but it describes configurations of entities that are spacelike or timelike, as well
as capabilities or basic behaviours, which can be mapped to physical properties, like
charges and boundary conditions. The result is something superficially like an Ising
model, but without the Hamiltonian constraints of[KMS06].

4.3.1 PROMISES (LOCAL)

A Promise Theory treatment of process (i.e. of spacetime) will seem initially strange to
physicists and mathematicians, used to the unequivocal pronouncements of mathematical
relations, but the construction is quite natural from the perspective of scaling locality
and relativity34. For example, the fact that A is next to A′ (or specifically A < A′) need
not imply that A′ is next to A (or A′ > A) in promise theory. Each agent has its own
perspective as an observer, and as a source of expressible properties. In one sense, a
promise agent begins in a state of completely broken symmetry, rather than of complete
symmetry in the case of a manifold.

The primitive elements in a Promise Theory are agents, belonging to a finite col-
lection {A}. Agents are assumed to be autonomous or a priori self-determined, which
provides a clear definition of local that does not depend on assumptions about a light
cone or a finite speed of signalling. Agents make promises, which are autonomously
determined. A promise π is a primitive relation. The ‘body’ b of a promise defines the
nature of the relation, written:

π : A
b−→ A′. (4.14)

An agent may make a promise to any agent, including itself–thus, promising is related to
a partial ordering, but the autonomy of the agents introduces a notion of local relativity,
unlike the god’s eye view of the partial order.

Principle 4 (Autonomy). No agent can make or keep a promise on behalf of any other
agent than itself.

Since the relationship is directed (partially ordered), two roles are defined from Promiser

to Promisee, with body b as:

Promiser
b−→ Promisee. (4.15)

A promiser can make a promise to itself (for example an interior promise – see figure 4.2),
but most promises are between one or more agents. A promise creates half a potential
channel for information transfer.

102 CHAPTER 4. PROCESSES

interior

exterior

Figure 4.2: In order to act as a sampler of information (a message channel), an agent has to have
an interior and and exterior at all levels. This is suppressed normally, to imagine an automatic
transition, but this has implications about the nature of time. We sometimes refer to agents whose
interior promises can be dissected as superagents. A superagent is just a scaled agent. Only
exterior promises (from the outer boundary) are normally observable by exterior agents.

The question of distinguishability of agents is not better defined than for partial
ordering at this stage. Promise bodies come in two polarities, denoted with a ± signs, as
below. The + sign gives origin, assertion, or offer semantics:

A1
+b1−−→ A2 (A1 offers b1) (4.16)

while the − sign gives projection (acceptance) semantics:

A1
−b2−−→ A2 (A1 will accept b2) (4.17)

whereAi denote autonomous agents. The influence transmitted fromA1 toA2 is oriented
by the polarity, and has magnitude b∩ = b1 ∩ b2, and b ∩ ∅ = ∅. Thus, without
mutual participation, information (an influence) can not be propagated from one agent to
another. This is a local observer view in which each agent is fully independent—quite
different from the global and absolute characterization in semantics for partial ordering.
For example, in Promise Theory, the fact that a source is known to emit a message does
not imply that the receiver will receive it.

4.3. LOCALITY AND PROCESSES 103

4.3.2 PROPAGATION OF INFLUENCE

No influence has the potential to propagate from agent to agent without the mutual
promises:

S
+b−−→ R (4.18)

R
−b−−→ S (4.19)

If a propagation occurs, we say that the promises have been kept, which amounts to
an event. The +b and −b promises have roles analogous to emission and absorption
of information across a causal channel. The structure is found in Shannon’s channel
model[SW49] and also in quantum theory of absorption[WF45]. We can interpret this
basic unit of connectivity for potential propagation as a two-point function (two agent
graph):

∆ret
SR ≡

{
S

+b−−→ R

R
−b−−→ S

(4.20)

The symmetry between ± always permits an alternative complementary interpretation
of a promise binding[BB14a], such that we can relabel b ↔ b, and (4.19) may be
reinterpreted as:

S
−b−−→ R (4.21)

R
+b−−→ S. (4.22)

This is analogous to the CPT symmetry in quantum theory, and advanced versus retarded
boundary conditions.

∆ret
SR = ∆ret

SR. (4.23)

The latter promise is acausal in one sense. The complementarity allows us to
reinterpret this causally by lock and key fit. In order to assess propagation of influence,

• O assesses that the promise has been kept by S.

• O assesses that the promise has been accepted by R.

This further assumes thatO is able to resolve the promises by S andR. This is sometimes
represented by distinguishing the information about the promise using the notation:

O
−def(π)−−−−−→ S, (4.24)

O
−αR(π)−−−−−→ R. (4.25)

104 CHAPTER 4. PROCESSES

∆

RS

R
S

−b

+b

+b

−b

i)

ii)

SR

SR

ret

∆

adv

Figure 4.3: Complementary promise pairings require both + and - bindings to propagate infor-
mation from a sender to a receiver. When the + and - promises match exactly, this reflects the
equilibrium boundary conditions of the Feynman propagator (with contours drawn as mnemon-
ics) in classical and quantum field theory, and the unitary symmetry (ψ†)† = ψ in quantum
mechanics.

which distinguishes knowledge of π it from the assertion that π will be kept. In general,
this notation is too specific. If the we label the versions of the promise bodies by their
originator:

πS : S
+bS−−−→ O, (4.26)

πR : R
+bR−−−→ O, (4.27)

πOS : O
−bOS−−−−→ S, (4.28)

πOR : O
−bOR−−−−→ R, (4.29)

then we need

bOS ≥ bS (4.30)

bOR ≥ bR, (4.31)

in order to observer with fidelity. A second kind of relation, known as imposition, may
be written:

S
b−−−−→ R′ (4.32)

Imposer
b−−−−→ Imposee, (4.33)

and invokes an exterior perturbation, like a boundary condition or other symmetry
breaking action. While a promise is a locally autonomous but mutual binding of potential
for action, an imposition may be considered an attempt to induce a response from sender
S ∈ {A} to receiver R ∈ {A}, without prior invitation (promise to accept).

4.4. PROCESSES AS TRAJECTORIES IN SPACETIME 105

In promise notation, the non-local ordering x1 � x2, would be represented between
agents as:

x1
+�−−−−→ x2 (4.34)

x2
−�−−→ x1. (4.35)

A promise model thus consists of a graph of vertices (agents), and edges (either promises
or impositions) used to communicate boundary conditions or system ‘intent’. A promise
is a potential in the sense that promises are not guarantees. Agents are local and their
interior circumstances and capabilities are opaque to exterior agents, unless promised.
Thus an exterior agent may impose b onto and agent that cannot promise b. Even if the
agent can promise b, it might not be able or ready to respond in any deterministic fashion.
Thus, we must be concerned only with what each individual agents experiences locally,
by sampling the channels of influence promised between agents.

So far, we’ve not specified a scale for Ai—imagining them to be elementary objects.
Yet nothing is this description is particular to a scale, only to what autonomous capabilities
the agents can promise. This is the route by which we can scale processes and shift from
thinking about an absolute network to layers of virtual processes moving around on a
statistical percolation network.

I want to point out that there is nothing in these notes that specifies nor attempts to
specify the nature of the ‘agents’. They could be quantum objects, atoms in a crystal,
bees in a hive, or human populations in a social model. The relationships are based
entirely on the notions of causal order, information, and scale. This is the virtue of
Promise Theory’s skeletal approach.

4.4 PROCESSES AS TRAJECTORIES IN SPACETIME

Our normal understanding of space is that processes (e.g. orbits) can revisit the same
location at different times. In a Causal Set model, this cannot easily happen, so the
purely causal model of events does not completely describe spacetime as we understand
it. Einstein’s view on phenomena was to be pragmatic: that which is not observed
doesn’t happen for the observer. A similar idea arises in Quantum Mechanics, as
observation (wavefunction collapse) is disjoint from the causal part of the theory. In
the past, philosophers have tried to mystify this by invoking human consciousness, but
this is unnecessary. Even subatomic particles have to observe one another when they
interact. The emission and absorption of a photon, for instance, involves the observation
of a transition by both ends of the transmission channel.

Promise Theory takes a pragmatic approach here. Every change involves a fundamen-
tal act of observation (an assessment) of promises kept (events aligned according to the

106 CHAPTER 4. PROCESSES

semantics of the promises—which play a role something like ‘potentials’ in physics)—as
in Shannon’s theory of communication[SW49]. In other words, nothing happens unless
it is observed by something.

This now has implications for the meaning of time. How is time counted in a
process? In a Causal Set model, it is the path itself that counts time, but this doesn’t
obviously account for the normal semantics of a clock, in the Einsteinian sense. Assuming
distinguishability of events xi, the proper time of a process is the path travelled from a
starting point. In order for an observer to know the time (even the order of time) it has
to remember and be able to distinguish the elements of the path. This suggests (as in
Einstein’s relativity) that the clock lies equally with the observer and the source—not
with the source alone.

An observer must have a memory sufficient to accumulate an image of the samples
along a path in order to characterize it, and detect causation. The proper time of a trajec-
tory may be effectively counted by stepping along the trajectory monotonically, but what
exactly is this transition? How is the emission and absorption of a transition observed?
Causal Sets have no obvious answers to these questions. In Promise Theory, we model
the semantics by assigning each observer agent interior memory and counting capability
that must follow the local mechanisms of information sampling. The overlap between
what is offered and what is accepted: π(+) ∩ π(−) is a sampling operation, which itself
is equivalent to ticks of a clock. This fits the notion of Alexandrov topology used in
[DHS10]35. Since we cannot separate this from the characterization of observables, this
redraws the ‘turtles problem’ along pragmatic lines: as a problem in the emission and
absorption of information.

4.4.1 CAUSAL AND ACAUSAL PROPAGATION IN EXTENDED

COOPERATION

The existence of an initial source and a final receiver agent defines a boundary condition
on the direction of causal order, which may contribute to some agents’ counting of
time. Classically, one assumes that time always flows in a single direction, but this is
inconsistent with the local definition of clocks. Time may flow forwards or backwards
relative to an observer’s clock, but across different scales time (which records the
advancement of a clock towards an outcome) may have as many directions as a clock
has degrees of freedom, and influence can flow against the large scale direction of
progress within any interior cell through feedback. Feedback loops that transmit influence
backwards against the general flow of causation (see figure 4.4) are an essential dynamical
characteristic that stabilizes dynamical behaviour. Such loops appear strange classically,
but are common in field theory for virtual processes; and they are no more unusual than

4.4. PROCESSES AS TRAJECTORIES IN SPACETIME 107

a feedback loop in an electronic amplifier circuit.

acausal feedback

S2
S

1
S

+b

R
S

macroscopic time direction

3

Figure 4.4: Causal and acausal are scale dependent concepts because the clock that counts
progress to define the positive direction of time has a scale of its own.

From the basics of Promise Theory[BB14a], we have a complementarity law that
for every promise ± there is an alternative formulation with opposite polarity ∓. Thus,
acausal propagation has the appearance of a complementary promise in a causal direction.
This is analogous to observation that particles and anti-particles in physics appear similar
but time-reversed. These occur in field theory as particle processes oriented backwards
in time, which may be re-interpreted as anti-particles travelling forwards in time, by
the unitary conservation[Fey49]. Energy conservation is replaced in Promise Theory by
the requirement of mutuality for complete binding. For every +b, there must be a −b
else nothing propagates. This leads to continuity of influence (which is the equivalent
of Noether’s theorem), so the association is consistent with conservation in physics,
and suggests that the real meaning of Noether’s theorem is about locality rather than
conservation. Conservation is merely a side effect of locality.

4.4.2 THE MEANING OF ADJACENCY AND LOCAL ORDER

In order to establish which agents are next to one another, in a promise graph, we need to
build a picture of mutual interaction. In Promise Theory, it is not automatically true that,
if A1 is next to A2 then A2 is also necessarily next to A1. Spacetime can have one-way
streets and mirrors. This is the price one pays for properly defining the semantics of
locality.

By now, it should be clear that there is a difference between what may be perceived
by a number of agents promising ordered relationships amongst themselves, and what
a ‘third party’ observer can discriminate about the situation from a remote location.
We need to explore this more formally. Let’s explore the meaning of A1 � A2 in an
autonomous sense. In semantic spacetime, agents undergo connections to neighbours,
which are the only locations they have direct contact with or ‘knowledge of’.

108 CHAPTER 4. PROCESSES

b

S2S1S

3S2S1S

+b

−b

+b

−b

+b

R

−b

+b

−b

+b

R

+b

R

R

(−)

(−)

S

S

ii)

i)

b

3

Figure 4.5: The detailed promise diagram for an interior feedback process, whose apparent
acausal feedback may be interpreted as forward flowing anti-promises (complements), somewhat
analogous to the field theory interpretation of anti-particle, and for essentially the same reason.

In principle the exchange of any kind of message is could be seen as evidence of
proximity. We can take this a definition of adjacency: the ability to exchange a promise
with a neighbour36. In an autonomous world, this is not a mutual promise.

Definition 64 (Adjacency promise). An adjacency promise is a promise made by an agent
Ai to another specific unique agent Aj (i 6= j), about its claim to a local interpretation
to a relative orientation i.e. direction between the two. We write:

A
+adj−−→ A′, (4.36)

i.e. I promise that I am next to you, from my perspective.

The agent may, in addition, distinguish different kinds of adjacency (x, y, z, . . .), but
we can drop this for now. Agents making an adjacency promises to more than one
agent cannot simply be exchanged for one another without changing the linkage. Thus
adjacency is the beginning of a form of local order, which may lead to a Long Range
Order, by mutual cooperation37. Let us now examine how many primitive promises are
needed to bind adjacent points in a spacetime.

4.4. PROCESSES AS TRAJECTORIES IN SPACETIME 109

Definition 65 (Adjacency promise binding). A bundle of bilateral promises, analogous
to a contract, binds an agent An with another agent An+1, promising a channel between
them.

• An promises that An+1 may transmit (+) directed influence to it.

• An+1 promises to use (-) An’s offer.

• An+1 promises that An may transmit (+) directed influence to it.

• An promises to use An+1’s offer (-).

This can be interpreted as adjacency. In a forward (retarded) direction,

An
+adj−−→ An+1 (4.37)

An
−adj−−→ An+1 (4.38)

(4.39)

And in the reverse (advanced) direction:

An+1
+adj−−→ An (4.40)

An+1
−adj−−→ An (4.41)

It feels strange according to the traditions of physics to think of being next to something
as a promise, locally decidable by every location individually, but this is not as strange as
it feels. An event horizon is a ‘one way glass’, for instance. In computer science, the
adjacency of locations is a virtual decision made by processes to interact.

Notice that the mutuality of Newton’s third law is not automatically guaranteed in
Promise Theory: that which is given is not necessarily received (it’s more like emission-
absorption, which eliminates the privileged status of spacetime as being outside of
the normal behaviours of physics); hence conservation of promised properties is not
guaranteed, it must be documented with explicit promises just like charge. In this respect,
familiar dynamical concepts of the continuum are puzzling from a discrete information
perspective. Neither mass nor velocity are easy to incorporate.

4.4.3 OBSERVING CAUSAL ORDER

No agent is in a position to know its role in an extended region. This is quite like a cellular
automation[t’H14]. Indeed, suppose an agent tried to promise an ordered relationship
with its neighbour ‘I am greater than you’. On what basis could it make this assessment.

110 CHAPTER 4. PROCESSES

Each agent is at liberty to make the same claim, so that

A
+greater than−−−−−−→ A′ (4.42)

could be countered with

A′
+greater than−−−−−−→ A. (4.43)

This ‘anti-ferromagnetic’ or cellular stalemate could only be broken by a third party
observer O with access to all of the agents. But this is not so straightforward either:
now local names are no longer sufficient for O to keep track of the agents. O has no
information about Ai unless the nodes are distinguishable:

Ai
+name=Ai−−−−−−→ O (Ai 6= Aj) (4.44)

O
−name=Ai−−−−−−→ Ai (4.45)

Ai
+Ai>Ak−−−−−−→ O (4.46)

O
+Ai>Ak−−−−−−→ Ai (Ai 6= Ak) (4.47)

(4.48)

From this information, O is not able to promise an opinion, conditionally on the basis of
what it has been promised first hand:

O
+(Ai>Aj<Ak...) | (Ai>Am),(Aj>Ap),(Ak>Aq)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ A?. (4.49)

Whether the agents Ai also make these order promises or impositions to one another is
irrelevant to O, because (we assume, in the first approximation that) it only receives what
each of the agents individually promises from them. If each agent acts unilaterally:

Ai
+greater than you−−−−−−−−−−−→ Aj (Ai 6= Aj) (4.50)

or if agents act by invitation (with prior affinity)

Ai
+greater than you−−−−−−−−−→ Aj (Ai 6= Aj) (4.51)

Aj
−greater than you−−−−−−−−−→ Ai (Ai 6= Aj) (4.52)

Aj
+less than you−−−−−−−→ Ai (Ai 6= Aj) (4.53)

Ai
−less than you−−−−−−−→ Aj (Ai 6= Aj) (4.54)

In order for this to work, there would need to be a common language understood through
the interactions that matches “I precede you” with “I follow you” for each agent: a
gradient promise.

4.4. PROCESSES AS TRAJECTORIES IN SPACETIME 111

If each agent also passed on overlapping information about its neighbours, then
suddenly topology becomes a second order process—a statistical assessment made
by every observer on a timescale greater than the timescale of adjacency interactions
between the local agents (points). This implies that any observer capable of measuring
relative positions is an agent equipped with sufficient interior memory as to form such a
consistent map of assessments.

By promising its name (some distinguishable property), we ensure that the observer
O can tell the difference between the promises it receives, without imagining a fictitious
non-local coordinate system.

We see that our tacit assumption of a global manifold structure is far from easy to
arrange by local properties alone. An agent capable to making observations compatible
with a coordinate map must be of sufficient interior dimension to possess local memory
accumulated from agents it is in contact with my messaging channels. Thus, any view
of spacetime as a manifold is fundamentally non-local, from an information theoretic
perspective.

4.4.4 CONDITIONAL PROMISES AND SCALING OF ORDER

In Promise Theory, the language for extended cooperation is the language of conditional
promises. This begins with simple Markov processes, and may be extended to chains of
‘end to end’ promises with coordination throughout, to strong notions of entanglement
familiar from Quantum Mechanics.

Definition 66 (Conditional promise). Let b be the promise body, andC be a pre-requisite
condition that must be promised and kept before b can be kept, then we denote the promise
of b given C also by

A1
b|C−−→ A2. (4.55)

The quantities b and C are set valued. A conditional promise is not a true promise.
It advertises no information unless the condition itself is promised. The conditional
promise law states that:

A1
b|C−−→ A2

A1
+C−−→ A2

}
= A1

b−→ A2, (4.56)

i.e. an agent that also promises the condition is the same as making the unconditional
promise. However, a promise made conditionally on a promise being kept by a third party
has a different resolution. Suppose the condition C is promised by A3, then because A1

112 CHAPTER 4. PROCESSES

cannot make a promise on behalf of A3 it cannot promise A2 that it will receive C, it
can only signal its intent to rely on C by using

A1
b|C−−→ A2

A1
−C−−→ A2

A3
+C−−→ A1

 ≈ A1
b−→ A2, (4.57)

The use of the equivalence relation ≈ now signals that these two scenarios are not
completely the same. The effect is the same semantically, but the probability of the
outcome being delivered may be quite different.

ii)

2

A3

A1

A2

A3

A1

+b |C

+C −C

+b |C

+C −C
+C

−C

i)

A

Figure 4.6: Two ways of resolving conditional promises. In i) the resolution of the conditional
is equivalent to the scaling of a single agent; the observer perceives {A1, A3} as a single entity
in ii) the conditional action is relayed by an intermediate agent which has no direct adjacency
with the recipient, in the manner of a Markov process, leading to a different assessment of
the certainty. This tells us that Markov chains do not scale invariantly with respect to external
observers—greater cooperation is required to preserve promise-keeping semantics. This indicates
that the route by which information arrives at the observer A2, as one would expect for scaling of
locality.

This is relevant to the scaling of an agent. If we consider the collaboration between

4.4. PROCESSES AS TRAJECTORIES IN SPACETIME 113

A1 and A3 to be a single superagent ‘molecule’ then A13 = {A1, A3}, and

A1
b|C−−→ A2

A1
−C−−→ A2

A3
+C−−→ A2

A3
+C−−→ A1

 ≈ A1
b−→ A2, (4.58)

which reduces to

{A1, A3}
b|C−−→ A2

{A1, A3}
+C−−→ A1

}
≈ {A1, A3}

b−→ A2, (4.59)

and on the interior

A1
−C−−→ A3

A3
+C−−→ A1

}
≈ {A1, A3}, (4.60)

as shown in figure 4.6.
Referring to figure 4.6, we see that causal fabric may express synchronicity of

promises either in parallel (i) or in series (ii). In the first parallel case, the effective
coarse grained agent {A1, A3} promises collective action, and its exterior promises are
equivalent to a scaled version of a single agent. In the second, serial case, there is no
promise of action (+) by A3, only a (-) promise about the memory of its effect by A1. In
i) there are parallel (+) promises to collaborate in the offer of a single property to A2; in
ii) there is a promise to offer b combined with a promise to recall the reason for b. The
two promises made by A1 don’t match lock-and-key as in the first case (but see section
4.4.9).

Note that the processes represented by the graphs are not reversible. The process
has a definite direction and nothing about the symmetry of ± implies reversibility.
The reversibility implicit in the action principle and Noether’s theorem arise from the
implicit mutual reversibility of spacetime itself, and the assumption that there is mutual
connectivity in both directions between neighbouring points. Locality is ensured by the
± symmetry. If ± became indistinguishable (as they implicitly are in a vector space)
then this follows.

Note that, while the graphs may seem to imply determinism, they only express
affinities, propensities, or ‘intent’.

4.4.5 SCALING OF CAUSATION, ITS RELATION TO CONSERVATION

AND DISTINGUISHABILITY

If we assume the existence some property, represented by the promise body b = (τ, χ),
is conserved then we assume interaction semantics in which an entity represented by b

114 CHAPTER 4. PROCESSES

moves from one location to another. It cannot be in two places at the same time. So, if
we imagine a chain of agents that form a process involving the transfer of b:

A1

+b−−→
−b←−−

A2

+b−−→
−b←−−

A3

+b−−→
−b←−−

A4 . . .

+b−−→
−b←−−

An (4.61)

or

∆ret
12(b) ∆ret

23(b) ∆ret
34(b) . . .∆ret

(n−1)n(b). (4.62)

From these promises, we cannot say a priori when or if the property b is passed along the
chain. The fact that arrows point in both directions along the chain doesn’t change the
directed nature of the graph. All we can say is that there is a ‘field’ influence that tends
to propagate b from left to right. This is not a reversible process. Regardless of when or
how the promises are kept, the promises are uni-directional by virtue of the + and −.

In order to ensure conservation, we need to introduce some form of co-dependence
between the agents. This can be added in a fully reversible way (called entanglement)
[BBKK18] or for the directed case above. Let’s start with the directed chain.

Conservation is tricky because, in order to ensure it, for an arbitrary type of promise,
with full distinguishability, we need to represent the entity as something with its own
independent material existence. In fact, a unique information string suffices—something
like a unique code or password that maintains its integrity. It is indivisible and uniquely
identifiable. If we can relax this uniqueness, there is the possibility of a distribution.

• Sticking with uniqueness for now: let’s call the property Mα, for some unique α,
then we need the agents in spacetime to be able to promise the presence of the
unique information M , and other locations to promise its absence ¬Mα:

A1
Mα−−→ ∗ (4.63)

Ai
¬Mα−−−→ O i 6= 1. (4.64)

where O is some observer agent, which may or may not be a member of Ai. In
other words, one agent must promise ‘Mα is here’ and everywhere else must
promise ‘Mα is not here’. This is how money transactions work, for instance, for
each unique transaction α38 . Any number of such collections of promises could
be made for different α. Crucially, this requires co-dependent cooperation (a form
of entanglement) between every location in space, which is expensive.

• If we are unable to distinguish different messages Mα → M̂ , then at best we can
promise the amount of M̂ at each agent location:

Ai
+M̂(Ai)−−−−−→ O. (4.65)

4.4. PROCESSES AS TRAJECTORIES IN SPACETIME 115

The amount of M̂ here is |M |. This is how money works when we don’t keep
ledgers of transactions, and treat monetary exchange as a Markov process.

Note that trying to single out one instance of a generic M̂ is not the same as making it a
properly distinguishable Mα, because one could imagine some sleight of hand by which
different amounts were rerouted to redistribute M̂ along the way. So these are the two
cases.

The more elementary the scale of the agents Ai, the less likely it is that they would
have the interior memory capacity to be able to promise uniqueness, and thus the more
likely that one would observe elementary agents in classes of distributions.

We can now imagine forming a superagent A = {Ai, ∀i}, which can promise the
specific location i of M̂ for the entire collection of agents to an observer (which must
now be external to X), in any given configuration. This suggests that the promise of a
specific location, for a generic quantity (discrete or continuous but without unique labels,
like cash money) can have no definite position. Counters will distribute themselves and
appear only as the promise of a frequency distribution

A
+ψ−−→ Oext. (4.66)

In QM we might write this something like:

〈O|A〉 (4.67)

and over all agents,∑
A

(
A

+ψ−−→ Oext

)
= A +ψ−−→ Oext ' ψ(A), (4.68)

and ∑
A

(
A
−ψ−−→ Oext

)
= A −ψ−−→ Oext ' ψ†(A), (4.69)

where the final functional inference is allowed to take on the most general representation
of the ± symmetry, which—when conserved—is the unitary group.

In this model, the observer is exterior to the system and automatically has a god’s
eye view of it, by implicit assumption. Moreover, the distribution of M has the form of a
gas, since the Ai have no promised interior structure. The blob of agents is amorphous
on a large scale.

4.4.6 ORDERED AGENTS

Suppose now that a collection of agents effectively (and emergently) promises to crystal-
lize into a coordinate lattice (figure 4.7), by each promising its role of being next to a

116 CHAPTER 4. PROCESSES

neighbour. Now, we need basic distinguishability of agents by their neighbours, in order
to specify their precedence:

A1
X1−−→ A2

X2|X1−−−−→ A3 . . . (4.70)

This is a Markov chain. Filling out the promises in full[Bur14],

A1

+X1−−−→
−X1←−−−

A2

+X2|X1−−−−−→
−X1−−−→
−X2←−−−

A3

+X3|X2−−−−−→
−X2−−−→
−X3←−−−

A4 . . . An (4.71)

This is the promise structure represented in figure 4.6 ii). it leads to serial order, at
the expense of non-local knowledge of neighbouring agents. Notice the apparently
acausal feed-forward promises at each that complete the logical semantics ‘I have made
a conditional promise, and I promise that I have the condition in hand’.

observer

A A
2

A3 A4

X | X 01 X | X
12

X | X23

1

Figure 4.7: A number of agents Ai promise that they are greater than their neighbours and less
than the preceding one. Their gradient promises all have only local significance, as if vanishing a
Newtonian limit were taken—all agents could promise the same, from their own perspective, in
opposition to one another. For an external observer, there is nothing in the information supplied
by the agents that suggests their relative order unless the observer accepts such information from
the remote agents on trust. Otherwise it has to trust its own ability to discriminate messages
by sensory criteria (e.g. the angle of incidence of the signal on its boundary), which assumes
macroscopic interior structure on the observer—suggesting that the size of the observer, and its
relation to promise channels, play a role in the ability to assess order. The labels on the Ai are
for convenience. Nothing should be implied by their order. Indeed, this exemplifies a common
problem we have in assuming our Newtonian abilities to label and order by virtue of unlimited
powers of access and observability.

The notation in (4.71) suggests that every agent need to know a unique name of its
nearest neighbours. That may not be strictly true, since in a Markov process it suffices to

4.4. PROCESSES AS TRAJECTORIES IN SPACETIME 117

know that one has a predecessor in order to build a ladder. However, if we are interested
in maintaining a causal order relation in which each agent knows in which direction a
certain vector continues, that information is not clear without labels that go beyond a
simple predecessor.

For example, suppose you are a spinning top (which has no intrinsic direction sense)
trying to walk in a straight line along across a chess board by hopping from square to
square. After each hop, how does the spinning top know which direction it came from in
order to continue in the same direction? This clearly has implications for quantities like
velocity and momentum along trajectories.

Again, there is no reversibility yet. For that, we would need an independent chain of
promises in the opposite direction:

A1
X2|X3←−−−− A2

X3|X4←−−−− A3 . . . (4.72)

The property of reversibility is not automatic, if one takes locality as an intrinsic starting
point—it has to be promised independently by some or all agents. Why we should
observe symmetry between left and right, forwards and backwards, up and down, is
unclear. We’ve come to assume that symmetry is an absence of information, but if we
treat all agents as a coordinate lattice, that is not the case. Indeed, the opposite is true.
There is long range order.

From equation (4.71), we see that each agent has to be ‘aware’ of its neighbours
in order to form a lattice. This happens because agents are assumed to be autonomous
or independent. Normally in mathematics, we assume that points form any structure
we want because we impose it thus. In a Promise Theory perspective there is no reason
to assume this—and we see no such automatic structure at large scales, so there is no
obvious reason to expect it a small scales either.

In crystals, multi-pole distortions of the lattice on the scale of the electron clouds
exhibit these non-local effects. The indistinguishability of electrons allows the en-
tire structure to remember some average configuration without precise and expensive
promises to track every electron in the role of a unique messenger Mα. At this scale,
the role of agent locations is played by atomic configurations for the different elements,
which promise to fall into a finite number of classes from the periodic table.

4.4.7 SCALING OF PROCESSES

The most elementary processes in the universe are unlikely to have enough structure
in order to maintain stable clocks and memory to distinguish themselves. Far more
likely is that there is a virtual process layer on top of this, with superagent identities QA
that consist of collections of agents Ai at any scale (see figure 4.8). This needn’t be a

118 CHAPTER 4. PROCESSES

regular or homogeneous arrangement. As long as there is sufficient entropy of mixing,
an observer on a sufficiently large scale will perceive the granular structure as metallic or
something like a High Entropy Alloy. Each superagent QA is assumed to be a process

observer

01

1
Q

Q
2

3Q

4Q

X | X23

X | X
12

X | X

Figure 4.8: Scaling up processes based on agents that cooperate on a smaller scale takes us to
virtual particles (superagents in Promise Theory), which are more likely candidates for expressing
different physical properties and distinguishable information than elementary agents. These
virtual entities can move with respect to one another, like amoeboid motion, recall their direction
like particles with momentum, etc. What are the minimal sets of promises that would enable such
behaviours?

formed by cooperation of Ai. The promises we require of QA are sufficient memory to
form clock counters and distinguishing traits.

∇Q =
(QA −QB)

∆Q
(4.73)

Q̇ =
(QA −QB)

∆T
, (4.74)

where ∆Q is a ‘natural scale’ for the granularity of the agents, based on the number of
interior states, and ∆T is a timescale associated with the binding to an observer. Each
observer counts time by itself, but has to rely on the promised properties of QA (that is
can distinguish) to report on the structure ofQA bindings. The reason we can’t determine
∆T is that we need to decide whose counter measures the transition from QA to QB . As
exterior time between the neighbouring agents, there is only one transition and one tick
of exterior time, so only a fixed value for Q̇ = 1 for either of the participants—but that
need not be the case for onlookers who observer remotely.

If we assume that this layer of virtualization is observable, while the underlying layer
Ai is not readily observable, then all traces of absolute spacetime in Ai will be rendered

4.4. PROCESSES AS TRAJECTORIES IN SPACETIME 119

moot, and observers will only experience relativistic measurements. This picture suggests
that Minkowski spacetime would have something like a metallic granular phase structure.
The spacetime propagator associated with motion

DAB =

{
QA

+X−−→ QB

QB
−X−−→ QA

(4.75)

The effective dimensionality of QA may be determined by statistical percolation, as
proposed in [Myr78].

The ratio of scales Q/A (or average distribution of ratios) becomes a key dimension-
less parameter in the scaling of the system, which might plausibly be related to Planck
scales.

4.4.8 THE MEANING OF A LINK

The counting of a regular spatial distance is analogous to the counting problem for time.
In a metric space, the order and regularity of space is defined by a functional dependence
on coordinates. This is often called local, but it is non-local in the sense that the properties
over an entire tangent space are presumed regular and coordinatizable, which amounts to
a tautology.

Every promise made between agents implies a total ordering of the agents, by virtue
of their being unequal. So two agents A1 and An being near or far apart depends on the
channel criteria between them: a sequence of autonomously promised orderings:

A1 � A2 � . . . � An. (4.76)

Suppose each promise is a basic spacetime fabric promise of adjacency with body adj, as
in [Bur14], them an observer can assess each of these promises:

αO(A1
+adj−−→ A2)

. . .

αO(An−1
+adj−−→ An) (4.77)

The assessment depends on the observer O’s self-calibrated understanding of scale. Thus
a metric space has no meaning without a local observer view. The observer needs a
memory of coordinate associations with known sources to make this picture. Even the
pairwise promises in (4.77) above are not sufficient to ensure the total order in (4.76),
while it suffices for the individual agents to treat adjacency as a Markov process, for the
observer the promises need to be made conditionally because it cannot a priori trust the
channels over which information about relative order has arrived.

120 CHAPTER 4. PROCESSES

To say that an agent is close to another requires assessments of � over extended
sequences, and potentially different types of promise. To promise distance, we have
to accept all the promises of intermediacy. This is a version of the well-known the
end-to-end problem in service delivery[BB14a]. The observer may be able to promise
the distance between A1 and An conditionally, based on the promises from An, but this
has a high cost:

O
d(A1,An) | (A1�A2),(A2�A3)...(An−1�An)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ A? (4.78)

In the absence of a god’s eye channel, outside of the ordinary adjacency promise linkage,
this promise cannot be made without conditional evidence39.

Does this show that a metric space is only a consistent concept as a local tautology,
or as an embedding observable from a god’s eye view? The memory component of
coordinates is expressed in gµν(x) by x.

We can’t absolve the problem of basically trusting the integrity and authenticity
of self-consistent observer experiences when describing spacetime as an independent
entity. The implication that information about spacetime locations has to be promised by
sender and receiver, and that every receiver forms its own assessment of the information it
receives, implies that a coordinate system is a trusted label system accumulated over many
interactions with different pairs of agents. It is possibly even second hand knowledge
passed through intermediaries—a model kept in the memory of an observer to classify
subsequent measurements believed to originate from a labelled source. The observer need
to believe it can distinguish the source reliably over multiple observations, i.e. processes
need sufficient stability to form a reliable reference system to be called coordinates. This
is analogous to Mach’s principle about the fixed stars.

4.4.9 THE END TO END PROBLEM, LINK SEMANTICS, AND

DISTINGUISHABILITY

In Causal Sets, one assumes the existence of the order relation (links) as an abstraction,
but it’s interesting to see how such a relation can be constructed within the simple rules
of Promise Theory. This reveals some of the symmetries between the complementary
interacting agents, and makes it clear how there is no automatic reversibility in spite of
these symmetries.

Figure 4.9 shows a situation in which an agent in the role of ‘sender’ or earlier agent
S makes a promise to a receiver or later agent R, with the help of a third party L, an
intermediary can be viewed as a ‘link’ agent. The promised role of L in this example
will show what it means for there to be a causal link between S and R. This takes on a
special importance when scaling. We can think of the sending of a message by a runner,

4.4. PROCESSES AS TRAJECTORIES IN SPACETIME 121

+M

S R

L

−M

+D,−M
−D,+M

−D

+M|D

+D|M

−D

−M

S R

L

−M|D

+M

−D|M

−D,+M
+D,−M

+D

+D

Figure 4.9: The end to end promises for a unidirectional process, with complementary transform.
The right hand version is a relabelling of the left hand version.

or the postal order delivery from S to R with the help of a postal service L. The scale is
not important, nor the nature of the agents, to the structure of causal message delivery.

For example, the interpretations can be read:

+M ↔ Offer message (4.79)

+D ↔ Offer delivery (4.80)

+M = −M ↔ Accept message (4.81)

+D = −D ↔ Accept delivery (4.82)

In the figure, we can imagine a distinguishable messageM is promised by the source
S to a receiverR conditionally, making use of an intermediary Lwhich promises delivery
labelled by D. In other words, L will do the actual work, but the intent is signalled
by the endpoints. S promises +M |D, which reads ‘I promise you M if I get D from
elsewhere’. The source further promises that it has acquired D by promising to use D,
i.e. −D to R. R does not need to know the name of the delivery agent, only that it
exists, so the body D does not contain that non-local information. It will be up to L itself
to introduce itself to R. The receiver accepts the promise of a message, signalling its
willingness to accept such a message −M . It doesn’t have to accept the condition, since
this it has no influence over that decision.

Now there is a link agent L which promises delivery service +D to S, which S
accepts −D. The link agent further promises delivery to R, conditionally on getting a
message from S, i.e. +D|M . Its conditional role is the reverse of that for S, and the
diagram shows the symmetry between S and L as they exchange roles. S also promises
to deliver a package to L, i.e. +M , and L accepts with −M , unconditionally.

There is now a deadlock of precedence relationships promised, whose order can only
be broken by an explicit act of symmetry breaking (i.e. a boundary condition at S).

S
+M−−−−−→ L, (4.83)

122 CHAPTER 4. PROCESSES

i.e. an unequivocal change of state between the sender S and the delivery agent L. A
symmetrical imposition by the receiver does not return the message to sender:

R
+D−−−−→ L, (4.84)

because the extended and non-local process has direction built into it. It is unidirectional.
It amounts to a signal or tick of its clock ‘I am still waiting for a delivery’, which has no
causal impact on S, the origin of messages (unless the process is of sufficient scale to
incorporate processes for customer satisfaction!). This underlines the fact that (in spite
of the complementarity of give and take ±) it takes more to create reversible system,
because every point location or agent is a priori independent in its choices. This is the
result of putting locality first as an organizing principle.

S
+M|D−−−−→ R (4.85)

This promise, by itself is an empty one.

−M |D → −M |∅ (4.86)

+M → +M |D (4.87)

−D|M → −D|∅ (4.88)

+D → +D|M. (4.89)

This examination of the role of intermediate agents in propagation tell tells us two
things. The implication is that the intermediate or ‘link’ agent L is irrelevant semantically
and may be absorbed by superagent scaling. It also tells us that promising a completely
ordered potential in a lattice becomesN2 expensive as the number of intermediate agents
N grows[BB14a]. Even at a macroscopic level, this is expensive and taxes the resources
of agents. On an elementary process, it seems highly unlikely that one would find such
a structure. Evidence in the chemistry of long chain molecules and metals shows at
indistinguishability plays a saving role to prevent conditionality from diverging.

4.4.10 SCALE DEPENDENT ARROWS OF SPACETIME: HOW IS 6= DIF-
FERENT FROM > AND <?

Let’s start with semantics of the partial order relations assumed in mathematics, from
a local observer perspective. If A 6= B and B 6= C, it does not follow that A 6= C,

however if A
<
> B and B

<
> C, it does follow that A

<
> C, so ordered inequality is a

stronger relation than non-ordered inequality. The latter implies a form of ‘long range

4.4. PROCESSES AS TRAJECTORIES IN SPACETIME 123

order’. The question is: how can an observing agent make this non-local distinction
based on only local information? It would seem to need memory.

• 6= is determined by an external observer, and if information about the state is
available this can be used to order the agents as the observer sees fit (figure 4.10).
Seeing that A 6= B 6= C 6= A, an observer O may form its own assessment:

A

observer

X

X
2

1

3
X

α()

C

B

Figure 4.10: Agents promise only nearest neighbour relationships as a Markov process, and the
observer forms a map, from its own assessments, as a model in its own interior memory.

αO(A)
<
> αO(B)

<
> αO(C) (4.90)

and can now promise this conditionally (figure 4.11).

•
<
> is a borrows assessment from information promised by the superagent about
the interior order, trusting knowledge of the promise relationships revealed by
A,B,C:

B observer

α()

C

A

Figure 4.11: Agent’s promise their relative lattice structure as a totally ordered superagent, with
collective behaviour. The observer trusts the promise made to it without further validation or
observation.

124 CHAPTER 4. PROCESSES

Direction is a scale dependent property of spacetime. This is easily understood
by thinking of the following: imagine arriving at a crossroads, you seem to have three
independent choices for going ahead, but it turns out that all three roads eventually meet
back at the same point again. Locally, the forward dimension seems to be three (if you
believe in networks), or two (if you believe in Euclidean embeddings). In fact, on a larger
scale there is only one dimension, as all roads lead to Rome. This is an instance of the
percolation problem well known in solid state physics[New03]40.

4.4.11 DISTINGUISHABILITY OF CAUSAL PATHWAYS

The previous remark points out that there is another way in which distinguishing agents
scale dependent. The direction in which promised information arrives at a location may
be significant, when there is incomplete information. Several routes may lead to the same
location. This is the norm in computer networks, and is usually relegated to the realm of
topological spacetimes in physics (cohomology/holonomy). However, we know this is
not reliable when many non-straight paths can be taken by information, as testified by
refraction, lensing, etc. Path curvature has implications for distinguishability (see figure
4.12).

The difference between a discrete spacetime process and a continuum one is that
topological defects are the norm: we can’t take anything about observation and signalling
for granted. The continuum spacetime theatre model is a great artifice for separating
concerns in arguments, but at the most elementary level, some concerns cannot be
separated. When promises are made directly between source and receiver, there is less
difficulty in making distinctions. When intermediate agents are involved, the certainty of
observations falls off rapidly.

This plays a significant role in the measurement of non-local quantities like velocities
and momenta that require samples over multiple points in order to infer a result—which
goes a bit beyond the scope of these notes.

Semantic spacetime results in a directed graph theoretic picture, consisting of agents
(nodes) and promises (that may lead to links or edges). At every ‘point’ in space, we
assume there is a node in a graph. The dimension of spacetime at every point is a much
more subtle issue in a graph than in a vector space manifold.

4.5 SCALING LOCALITY WITH CO-DEPENDENT ENTAN-
GLEMENTS

When agents make promises that render them co-dependent, by virtue of mutually binding
conditional promises, made equally in advanced and retarded directions, it no longer

4.5. SCALING LOCALITY WITH CO-DEPENDENT ENTANGLEMENTS 125

X

2

1
A

observer

hole

X

X

X’

X’’

A

Figure 4.12: If promises are not made by direct adjacency, but intermediate agents are involved,
new information can be injected into messages. An observer may be able to make a distinction
between the multiple paths between source and itself. Now we need new promises in order for
the observer to be able to distinguish whether it is seeing two different agents or two images of
the same agent. In Promise Theory, the law of Intermediate Agents addresses this question.

makes sense to distinguish the roles of sender and receiver, as both agents are locked
into both roles. In this case, we cannot speak of partial order, or even causal order on
a microscopic scale. Entanglement is an explicit case of a preorder. The behaviour
of co-dependent agents depends on the relative timescales of the processes that keep
promises. Here I’ll largely follow the more extensive discussion in [BBKK18].

When agents collaborate, or act cooperatively, it is natural to define a ‘superagent’
to label them as a collective entity[Bur15a]. When such a superagent, composed like
S = A1 ⊕ A2, makes promises that cannot be attributed to or kept by either of its
components A1 or A2 alone, then we say the sub-agents are entangled, and we say
that the superagent is irreducible[Bur15a]. This happens when promises are mutually
conditional. Consider a two agent system, with agents forming a diatomic molecule,
which we can label left and right.

Lemma 6 (Entangled with respect to b). Two agentsAL andAR are said to be entangled
or irreducible if the superagent AL ⊕AR enveloping both of them makes a promise that
neither of the two agents can make alone. This can only happen if each agent makes
promises conditionally on promises made by the other. �

This definition is compatible with the definition of entanglement in information theory[DCP17].
For any promise bodies bL, bR, the necessary and sufficient solution to this condition is

126 CHAPTER 4. PROCESSES

given by

AL
+bL|bR−−−−−→ AR (4.91)

AR
−bL−−−→ AL (4.92)

AR
+bR|bL−−−−−→ AL (4.93)

AL
−bR−−−→ AR. (4.94)

The proof is trivial: both sides promise bi (i = L,R) with a dependence on the promise
bi from the other, else they would promise independently which would contradict the
definition. If the agents do not promise the explicit dependence on the other in (4.92) and
(4.94), then (4.91) and (4.93) are not complete promises, by the conditional promise law
6.2 of [BB14a], that no dependent promise can be given without accepting the dependent
promise of the other, thus AL must accept bR and vice versa.

In spite of a simple proof, the dynamical behaviours of this co-dependent configura-
tion is not completely defined. It depends on the relative timescales for communication
and sampling at each end. In physics one would normally assume agent symmetry by
default, but that violates the principle of autonomy, and amounts to assuming reversibil-
ity41. When bL or bR changes, these promises may be thought of as cyclicly generating
an evolving sequence of preconditions, which unfolds as a chain of transaction events,
until an equilibrium is possibly reached.

4.5.1 INTERIOR AND EXTERIOR TIME AND OBSERVABILITY

The keeping of promises at each agent has a timescale, as measured by each agent’s
interior clock. This is the clock that determines the rate at which the agent can sample
information. Clocks may be entirely on the interior of a process, in which case they
measure interior time. They may also include ticks ‘driven’ by external sources, in which
case they measure exterior time.

Interior and exterior relate generally to a definition of a boundary, but agents that
are strongly coupled cannot easily be separated and therefore act as a single agent. This
means that entangled agents have a single shared clock, not several independent clocks.
Entanglement is a co-dependent causal evolution of state; i.e. it works in both directions
‘at the same time’, so we must be careful what we entangle, how ‘the same time’ is
defined, and how directionality is arranged. It affects superagent clusters, of scaling
dimension s > 1. Promise theoretically, we can observe that there are implicit timescales
as a result of irreducible co-dependence being composed from atomic elements:

If we define a timescale by ∆t(s) at scale s, measured according to the clock of an
exterior godlike observer (figure 4.14), with access to all information, then each tick
corresponds to a single promise-keeping event. The cells cannot observe these events,

4.5. SCALING LOCALITY WITH CO-DEPENDENT ENTANGLEMENTS 127

which happen in between the ticks of their ‘proper time’ clocks, so we might call this
ability to observe the most detailed equilibrating events subtime42.

A complete cycle of entangled co-dependent causation leads to a natural coarse-
graining of time that corresponds to the aggregation of interspatial events (two agents
L,R keeping +,− promises to close the cycle). The hierarchy of interior clocks ∆t(s)

is bracketed below:

AL
+bL|bR−−−−−→ AR

}
∆t(1)

AR
−bL−−−−→ AL

}
∆t(1)

 ∆t(2)

AR
+bR|bL−−−−−→ AL

}
∆t(1)

AL
−bR−−−−→ AR

}
∆t(1)

 ∆t(2)


∆t(4). (4.95)

To maintain the entanglement, a message b oscillates back and forth between the two
ends on different timescales. If we assume that this happens synchronously, so that the
puck is a conserved quantity, then each agent is independent for s = 1, but the complete
process of emission and absorption of influence to keep the promise requires a tick at
s = 2 of the pair. The same is true for passing the puck backwards, so the complete
synchronous interaction takes a tick of scale s = 4 to achieve reversible symmetry in a
strongly coupled synchronous manner.

If we drop the requirement of synchronicity, each agent may emit and absorb at its
leisure, then the interior clocks no longer tick in step, and there is only a finite probability,
determined by Nyquist’s law, of whether or not a coordination message will be passed
between them. This is a weak coupling. A third part observer with an equal view of
each43 could measure the clock tick rates of left and right agents and compare them
to determine whether one is faster than the other, but without such an observer that
assessment has no meaning to the agents’ assessments of one another.

A moment’s thought shows that the dynamics of this configuration depend on the
sampling rates: whether the process distinguishes sending and receiving as independent
events or not. If sending and receiving are blurred into the same coarse grain of time,
then the co-dependence relation is a deadlock equilibrium condition that implies no net
motion in either direction. If, on the other hand, the sampling is fine grained enough to
be able to detect precedence, then it is a ‘pump’ that oscillates back and forth forever as
long as the symmetry is broken on one side by an initial condition such as:

AR
+bR|bL−−−−−−−→ AL. (4.96)

128 CHAPTER 4. PROCESSES

Entanglement thus implies quantization of both space and time, because nothing inde-
pendent can happen in an entangled network, but we can only observe entanglement on a
coarse-grained timescale44. If we refer to ∆t(4) as exterior time or co-time, and ∆t(s)

for s < 4 as interior time, then we can call ∆t(1) specifically subtime. It is purely local,
and not observable by any other agent. The promise of entanglement (co-dependence) is
only observable at a timescale s ≥ 4. These basic points will inform the discussion of a
protocol by which can use entanglement to built a quasi-deterministic communication
channel. See reference [BBKK18] for more details.

4.5.2 IRREDUCIBLE SUPERAGENT PICTURE OF SPACETIME GRAINS

Co-dependent promises, made (and kept) by the endpoints, must be maintained regardless
of what other independent promises cells might make to any other agent. This happens
when both agents are driven by what happens between them rather than coordinating
their independent activities (see figure 4.13). Our goal in this paper is to explore the
use of this property in order to keep strong promises about message delivery. Notice
that these co-dependent promises are invariant under L↔ R, and are thus timeless and
without preferred orientation.

Figure 4.13: Entanglement results in a new effective picture, with overlapping irreducible
superagents. Entanglement (irreducibility) is not a transitive property, as the diagram shows: the
overlapping of superagents does not imply a single large superagent keeping the same cooperative
promises.

Lemma 7 (Composition of entangled links). The composition of irreducible or entangled
links, as in figure 4.13 cannot itself be irreducible or entangled. �

The proof of this follows from the linear combination omits off-diagonal promises (see
11.1-13.1 in [BB14a]).

4.5. SCALING LOCALITY WITH CO-DEPENDENT ENTANGLEMENTS 129

4.5.3 SINGLE-VALUED CO-TIME FOR PAIRED AGENTS

In the geometry of the link, there are two distinct possibilities for temporal evolution of
the irreducible link superagent. We identify these as local and non-local in spacetime.
They correspond to how we define the clock by which events move forward on the two
ends of the link. When agents are independent, they can each maintain independent state,

C
L

clockclock C
R

clockC
L

C
R

clock

(1)

(2)

ext

observer

Figure 4.14: Two entanglement time models mix interior and exterior time of the agent: (1)
asynchronous local and (2) synchronous non-local models are about where each agent’s clock
signal is sourced.

and hence have independent clocks; but when agents are entangled, or co-dependent,
they share all the state that pertains to their co-dependent promises, including a common
clock.

In effect, an entangled link moderates the flow of information on both sides by
(b) locking observability of state. The challenge in using this as a technology is to
encapsulate the promise to transfer data such that each packet can only be observed on
one side or the other.

The conundrum with this arrangement (see figure 4.15) is that the passage of time
will never be single-valued throughout an application unless we give up locality. Agents
need to have a split brain approach to time in order to i) be able to maintain strong
entanglement promises, and ii) to be able to observe when all activity has ceased on a
link, in order to restart it.

Once primed, the entanglement of end points can form the basis of a simple pendulum,
pump, or motor, which in turn acts as a clock or generator for transfers. Once the LR
symmetry has been broken by insertion of a message (see 7.4.1 in [BB14a]), it will be
superposed onto the control channel and passed from one side to the other, if and only if
the payload can be accepted by the other side. This can be used as a basis on which to

130 CHAPTER 4. PROCESSES

C
L

C
R

strongweak strong weak

Figure 4.15: Agents need to maintain a locally split brain model to retain control over the link,
and avoid harmful deadlocks. If the link drives all aspects of the agents, they become too fragile,
leading to possible failures of the link. This can be imagined as wheels joined rigidly by a crank
(in the entangled region), and decouplable gears that can be introduced to drive or be driven by
the link. This is reminiscent of Maxwell’s original vortex model of electromagnetism.

ensure a conservation of information, as we’ll see in chapter 5.

4.5.4 FUNDAMENTAL ASSUMPTION OF HOMOGENEITY

The ability to ‘trust’ or rely on these behaviours effectively assumes a standard calibration
of both ends of a link against an impartial third party (see figure 4.16). This trusted party
might be common software, or a third party service, but it must exist, else no agent can
be sure of what its neighbour will do with data it attempts to send (it is analogous to
having the same laws of physics at both ends of the link)[Bur14, Bur15a].

Assumption 1 (Spacetime homogeneity). In order to rely on any promise propagation,
all agents involved are assumed to keep the same homogeneous basic set of promises,
according to their agreed left/right roles, because the effectiveness of entanglement
promises depends entirely on a uniform conditional basis. �

This is essentially an assumption of non-local trust in a computing sense, and is the
basic behaviours of cells in biology. Without standard semantics, there is no ‘linguistic’
(i.e. symbolic information) overlap to interpret interactions by. If we don’t assume this,
we have to show how it can emerge—see the discussion in [Bur15a].

4.6 PROCESS MASS

The collective relational encumbrance of a process, with regard to promises or ‘obliga-
tions’ may be used to define its effective mass. The mass of an agent is usually only

4.6. PROCESS MASS 131

L

C

R

Figure 4.16: Collaboration requires a trusted calibration. The calibrator could be any implicit
‘godlike’ observer, or permanent non-local synchronization, e.g. use of common software. This is
analogous to having the laws of physics the same on both sides of the link.

relevant when exterior changes to the agent are promised or take place. The mass itself is
a dynamical property of an agent’s exterior interactions, so its value is only an instanta-
neous sampling of its interactions at each moment. In other words, the mass of an agent
can change over time, according to any observer’s clock.

Definition 67 (Instantaneous process mass). A scalar measure attributed to any agent or
superagent A, proportional to the number of promise bindings it maintains with agents
Ai that are adjacent to it, with respect to the process concerned. For some body b, with
promises that are effectively invariant over the timescale of changes pertaining to the
mass:

A
+bi−−→ Ai (4.97)

Ai
−bi−−→ A, i = 1 . . . N. (4.98)

then we can define the mass as a scalar measure m(A), with some dimensional constant,
and proportional to

m(A) ∝ N. (4.99)

Note that an agent may have interactions with other agents on a longer timescale, but
these do not impact changes that happen on a shorter timescale.

e.g. An atom may occasionally absorb and emit photons, but this does not affect its
mass when moving from A to B. On the other hand, a continuous binding to surroundings
in a crystal lattice does affect the ability of the atom to move from A to B.

132 CHAPTER 4. PROCESSES

4.7 PROCESS VELOCITY

In order to define a velocity for a process, we can’t rely on Euclidean ideas, as agents
know nothing about such effective embedding spaces—instead we need to define what
we mean by distance and time collectively. Distance is a property of coordinate systems,
which are subjective models belonging to agents. Adjacency is normally used to define
distance, but adjacency is also an arbitrary kind of assessment in a multi-typed graph.
As with mass, we can imagine any number of promise types bi, where i = 1 . . . N ,
representing different promises:

πi : A
bi−→ Ai (4.100)

The homogeneity of agents is simply a convention or assessment choice of the agent that
defines the coordinate system. In a crystalline configuration, one might expect agents
to be equidistant, but in a gaseous configuration, distance can be a fluid concept. In
other words, agents are essentially free to make up their own ideas about distance. No
two agents have to agree on an impartial model of distance, but if they are involved
in a collaboration, then it makes sense for them to establish a consistent collaborative
definition.

Definition 68 (Agent distance Dπ(A,A′)). Any scalar measure Dπ(A,A′) attributed
to a promise binding π± between two distinguishable agents A and A′ by any agent in
the role of observer.

Note that each agent can choose to assess distance differently. This is what we mean by
choice of a coordinate system in physics and mathematics.

Next, we define a response time for influences to propagate from one agent to another:

Definition 69 (Response time Tπ(E,E′)). The number of clock ticks assessed to have
accrued, on an observer’s reference clock, that are counted by the observer between an
event E at agent A and an event R(E) at agent A′, where:

A
+E−−→ A′ (4.101)

A′
−E−−→ A (4.102)

A′
R(E)|E−−−−−→ A. (4.103)

The events are assessed to have occurred when the observer accepts the promise of the
events as kept, so the observer is assumed to be in the scope of these promises. Note that
the observer making the assessment may be any agent, including A and A′.

4.8. SUBORDINATED WORKFLOWS: FORCED PROCESSES 133

The rate at which conditional or unconditional promises propagate may now be defined,
as a velocity, using these definitions.

Definition 70 (Process velocity vπ). Where both Dπ and Tπ can be defined, the in-
stantaneous velocity of a process between points A and A′ may be written as the ratio
of

vπ =
Dπ
Tπ

, (4.104)

where Dπ and Tπ are defined in the foregoing definitions, for some bundle of promises π
representing the process.

Moreover, given that motion is a haphazard affair on a graph with instantaneous interac-
tions, the notion of a random walk is useful:

Definition 71 (Random Walk). The trajectory formed by a process, described as a
sequence of dependent events that propagate causally.

The assessment of randomness is a property of the observer, not of the process, since
the information implicit in the promises between the agents leads to a deterministic
trajectory. It is the embedding of the path in the user’s map that leads to the assessment
of randomness.

4.8 SUBORDINATED WORKFLOWS: FORCED PROCESSES

When staging is performed in a more linear fashion, networks become flow charts in
which there is a preferred direction. One imagines pushing work through the pipeline
from one end to the other, rather than imagining a more democratic signalling of equipar-
titioned nodes in a hierarchical network. Workflow networks are driven ‘top down’,
where the input is the top and the output is the bottom. Scaling of staged promises from
a few cases to large numbers effectively turns a sequences of transactions into a kind
of average ‘workflow’. These networks are very important because the model the story
telling manner of thinking about processes used in industrial production and algorithmic
design. Clos networks are a form of staged hierarchical decomposition (see section
11.5.6).

4.9 THE GENERAL PRACTITIONER PROBLEM

In the medical profession, patients will normally be asked to pass a gatekeeper when
seeking medical help—an ordinary G.P in order to avoid wasting specialists’ time.

134 CHAPTER 4. PROCESSES

Is this efficient or well-conceived? By putting together a few elementary Promise
Theory considerations, we quickly see that the assumptions behind this approach a
scale-dependent and therefore not universally true. In the worst cases, this approach may
become the least successful. Medical systems in most cities around the world are, by
now, antiquated with respect to modern technology, and there is enormous scope for
improving them with respect both to speed and patient care.

We can begin by recalling the essential promise binding between agents. It’s useful to
describe these timelines for offers, withdrawals, and revisions to promises as an example.
For medical emergencies, patients P impose themselves onto doctors in Accident and
Emergency departments DA&E :

P
+emergency−−−−−−−−→ DA&E (4.105)

DA&E
−emergency−−−−−−→ P. (4.106)

In more sedate circumstances, they have to negotiate an appointment by invitation.
Doctors promise time slots indiscriminately, and patients may accept them. This is the
calendar appointment phase. A conditional promise of service is then made, depending
on the appointment, and the doctor promises to withdraw direct the promise of the open
slot exclusively to P 45.

π1 : D
+open appointment−−−−−−−−−→ A?, (4.107)

π2 : P
−open appointment−−−−−−−−−→ D (4.108)

π1 : D
+appointment−−−−−−−→ P, (4.109)

π2 : P
−appointment−−−−−−−→ D (4.110)

π3 : D
+consultation|appointment−−−−−−−−−−−−−→ P. (4.111)

As long as the doctor has π2 from P , the conditional promise is valid and exclusive.
Now that we can be sure that the patient and doctor will meet at the appointed time,

we can turn to the substance of the meeting: the consultation service. A G.P can promise
a certain level of general knowledge, i.e. if we break it down we might say the G.P. can
keep more kinds of promise than a specialist. G.P.s may also play a secondary role as
sales agents, selling private specialist services in the case of private practices. For this
reason, the structure of promises is often as shown in figure 4.17. A G.P. may refer a
patient to a specialist if deemed necessary. On the other hand, if patients know roughly
what’s wrong with them, by specialist category then this merely introduces a screening
delay that could cost the patient and the medical system unnecessary time-wasting. Of
course, it is possible that a patient may not know what is wrong with them, in which
case they need to consult with a general practitioner, whose breadth of expertise is

4.9. THE GENERAL PRACTITIONER PROBLEM 135

then specifically called upon without abuse. There is a finite number of specializations:
Ear-Nose-Throat, eyes, heart, cancer, surgery, and so on.

S3
S2S1

G.P.

Figure 4.17: General Practitioners are used as dispatchers or ‘load balancers’ to protect special-
ists, on the assumption that specialists’ time is more limited.

Once a patient has a dialogue with a doctor, there is an unspoken contract of service
so we can drop the promise binding details for now and return to them if we need to.
There may be repeated visits to the G.P., referrals to specialists including X-rays and
testing, also including repeated visits, and follow-up visits—all of which incur and
accumulation of time and cannot be performed in parallel. Doctors are a shared resource,
so the appointment schedule is a queue, in the sense of chapter 12 of volume 1. Once we
deal with queues, we pass from a transactional view to a flow probabilistic view over
long times (see figure 4.18).

This is an important point: to optimize this system, we need to decide which promises
we want to optimize for. That means which scale or specifically which timescale we
choose for optimizing. Long term patient numbers may trade individual benefits for
impressive statistics. Individual patient care optimization may lead to poor long term
throughput. Some doctors may not question what they consider to be proper and ethical–
but this goes to the discussion in section 2.3.6. A specific promise is needed to resolve
this issue. If no promise is made, then nothing can be assumed.

We know approximately how queues behave, so we can determine to some extent
where bottlenecks in this flow of patients will occur. Standards of patient care, and
union rules, place a maximum number of visits per day, or a maximum service rate µ,
per doctor. Patient arrival rates λ are not regulated, however, so the possibility of flash
flooding is a real risk. Sudden epidemics or major incidents can quickly overwhelm the

136 CHAPTER 4. PROCESSES

GP S
GP

GPS

S

Figure 4.18: Patient consultation flows, with and without G.P. gatekeepers, or sales agents?.

process. In such cases, the normal procedure makes way for a simplified one of ‘triage’
that promises rather less than a regular consultation.

System scaling depends on the dimensionless ratios of the different scales, e.g. the
patient arrival rates λGP /λS the service rates of G.P. versus specialists µGP /µS and
the number if G.P.s to the number of specialists in each discipline: NGP /NS . So the
system’s scaling behaviour is a function:

f

(
λGP
λS

,
µGP
µS

,
NGP
NS

)
(4.112)

and perhaps more parameters too. Here the rates are assumed adjusted for repeat visits.
This function tells us that, in order to keep the same promises at the same levels, these
ratios need to be preserved under ideal circumstances. Perhaps more interesting are the
criteria one might promise for success:

• The total service time for each patient.

• The total service cost for each patient.

• The learning experience for doctors be exposure to cases.

• The level of fatigue amongst doctors.

It’s hard to optimize for all criteria, and the complexity of the interaction flow shows
that there is no obvious conclusion to draw about whether time is saved by omitting
one visit to a G.P. However, but the main bottleneck of the initial consultation promises
rather little, so one could easily imagine it being handled by an online questionnaire or
even an ‘artificial intelligence’ based on some initial pre-emptive tests. This would bring
patients closer to expertise more quickly, which might avoid some misdiagnoses and lost
opportunities.

4.9. THE GENERAL PRACTITIONER PROBLEM 137

Clearly there is something more going on here that cannot be handled by the differ-
ence between imposition and invitation. Patients are basically under uninvited attack,
by disease and accident. However, one might try to consider pre-emptive avoidance of
disease. In some parts of the world, doctors are only paid if their patients are healthy.
Would this theat or counter-incentive work to optimize? It has already taken some space
to set up this complicated problem. We can now begin to ask the questions about whether
agents, promises, and assessments are vulnerable to failures, faults, and flaws, and what
can be done to minimize these issues, with respect to which promises. As we saw in
game theoretic analyses of volume 1, there will be conflicts of interest in these choices,
meaning that whatever happens we may be damned if we do and damned if we don’t.

CHAPTER 5

SPACETIME CONSIDERATIONS

Everything that happens in a system takes place in a kind of spacetime—i.e. a basic
characterization of differences between distinguishable states (space) and how they
change (time), as well as the characteristic scales exhibited by different processes relative
to one another. How we describe this arena for system behaviour plays a major role in
how we visualize a system, and it’s detailed properties constrain the possible behaviours
and outcomes at a fundamental level. In this chapter, I’ll sketch out some of the ways in
which spacetime concepts lie at the heart of systems.

This chapter may be principally of interest to engineers and researchers who are
looking to formalize a ‘physics’ of interactions in systems of all kinds, and to those
looking to formulate a programming representation of a dynamical process. Space and
time are the configuration space in which all phenomena occur. The nature of spacetime
varies from system to system. In some cases, it refers to the familiar three dimensional
human world, in other cases it could be a network or a mechanical pipeline.

Assumption 2 (Spacetime in Promise Theory). The term ‘space’ has a strict meaning in
mathematics, but we bend that definition here. In a Promise Theory sense, all of what one
normally calls ‘space’ is formed from a network of agents, and all of ‘time’ is registered
as changes to observable states.

Most of us imagine processes from the perspective of the past flowing towards the
future. This is the model of causality we have been taught since the time of Newton,
and Leibniz. Yet the mathematics of symmetrical processes allows for causality to be
considered both forwards and backwards. In radio wave science, so-called advanced or
retarded wave formulations may be used to model causation, for example. These offer
different perspectives on what drives a system between measurable events in space and

138

5.1. THE ROLE OF SPACE AND TIME IN PROCESSES 139

time. Various principles may be used to make use of the characteristics of space and time
as dependencies to offer a perspective on system behaviour.

Definition 72 (Trajectory (informal)). The trajectory of a system is an ordered path
through spacetime agents from an initial state to a final state.

Scale invariance, or scale-free behaviour, allows us to characterize dynamical proper-
ties of a system as an approximately universal and continuous function of some scale
parameter. Type 2 scaling is an invariant characteristic, i.e. it is not tied to a specific scale
(Amdahl’s and Gunther’s laws compare values atN threads to a single thread rather than
to an arbitrary increase in size. We saw that these laws are not scale invariant in section
8.7.3. In type 2 scaling, we return to the idea of a continuum flow approximation, and
consider its generalization from one dimensional flows to the include the involvement of
more spacetime dimensions.

5.1 THE ROLE OF SPACE AND TIME IN PROCESSES

Time and space (size) are intertwined in sometimes unexpected ways. In an intentional
system, time does not only affect dynamics, but also semantics, because observers
perceive and interpret behaviour according to their own notions of time.

The speed of propagation of influence, i.e. communication, is what connects distance
and time together. Processes measure time, and interactions, which mix scales through
space, also lead to the emergence of multiple scales in time: as systems become larger
in space, they often become slower in bulk. Since time is an important part of whether
a promise is considered kept, scaling can lead to a new subtlety. Large systems might
simply fail to keep their short term promises. Conversely, the accumulation of interactions
from a larger system may place burdens on resources, so that what works for the short
time, might not work in the long run.

Beyond these fairly obvious examples, there may be complicated spacetime involve-
ment in which the geometry of a system funnels work (through dynamical constraints) in
a particular way, and a system needs new policy tradeoffs (i.e. new semantics) to handle
the new behaviours. It is a reasonable hypothesis that such changes in scale, whether
intentional or unintentional, are responsible for many unexpected ‘failures’ in systems.
Observer time interferes with system time, when they interact.

All non-trivial systems develop in time, but some are isolated from their surrounding
space. When a system is embedded in space and time, the geometry of the surrounding
space constrains the flows that feed input and deliver output.

We should not be too blinkered by the idea of workflows, in particular ‘queues’: the
narrative we have created around workflow is linear mainly because human thinking in

140 CHAPTER 5. SPACETIME CONSIDERATIONS

linear, but there are plenty of examples of systems who input or output are multidimen-
sional:

• Water flowing into a drain from a 3 dimensional reservoir.

• Animals feeding around the carcass of prey.

• A loudspeaker radiating sound into three dimensions.

• Traffic flowing through a street network in two dimensions.

• Aircraft lift transducing airflow in one dimension to perpendicular dimension.

• The storage of data streams in two dimensional disks or three dimensional crystals.

• The representation of one dimensional data on two dimensional screens.

5.2 HIERARCHICAL NETWORKS OF PROCESSES

Processes bindings form networks, and networks have large scale structure. It’s a
conspicuous fact that hierarchical systems dominate the world on all levels, from the very
small to the very large. In inanimate terms, this is blessing, else systems would surely be
impossible to comprehend. In the human realm, we are less certain about hierarchies, as
they often represent power structures that disenfranchise individuals. These are issues to
be understood rather than despised—only then will we go beyond idle opinion. Great
progress has already been made thanks to the language of Promise Theory.

Hierarchies play several roles. The most obvious characterization is perhaps to
view hierarchies as the natural generalization of a star network (see figure 5.1). A
hierarchy often has has a natural tree structure, which is a kind of staged centralization—
or delegation. Instead of having only a single hub, a hierarchy has several hubs, which
handle central functions locally in ‘branches’.

In spite of the brittle nature of the networks, broken by a single node removal,
the scaling of hierarchies is quite efficient. The cost of maintaining relationships is
minimized, as the hubs have O(n) connections, where n is the number of subordinates,
at each stage, whereas a mesh may have up to O(N2), where N > n is the entire
network node number. A lot of rhetoric is used to defend centralized and decentralized
designs. They have quite different properties—and a lot of confusion stems from the way
they scale. A decentralized system may scale as a single centralized entity at a larger,
slower scale. At each scale, a centralized system can reach an equilibrium more quickly
than a mesh network because it is only O(n) ≤ O(N2) in promises. However, as the
scale increases, the interior functioning of a central hub must slow down in exactly the

5.3. THE TIME-SERIES MODEL OF PROCESSES 141

Figure 5.1: Network architectures, from a) a centralized star network, to b) a Cayley tree or
delegated star network or hierarchical hub model, to c) an amorphous mesh. The centralized
models are spanning trees with single points of failure, while a mesh has alternate routes between
any two nodes.

same manner as a distributed system—the O(n) scaling then applies at a slower rate to
its exterior satellites (see section 5.12.2).

Example 57 (Data consensus). Data consensus clusters, like Raft and Paxos, are some-
times referred to as decentralized, but they are strongly centralized and monolithic on the
scale of their duplicate equilibrium configuration. Since no node ‘moves’ independently
of the others, they are in lock-step as a single, slower entity, and their sluggishness is a
result of the scaling of the equilibrium time for the cluster.

5.3 THE TIME-SERIES MODEL OF PROCESSES

Our received view of time—as a river of events that moves everything from past to future
at the same rate—is a side effect of living in a rather slow world, which is close to us,
and which we see with no perceptible delay. In IT, we cannot rely on this privileged view,
and we need to rethink time by going back to the basics of how we measure it.

142 CHAPTER 5. SPACETIME CONSIDERATIONS

5.3.1 EVENTS, CLOCKS, AND PROPER TIME

In an information theoretic sense, an event is an observation of change in data sampled
from a source[SW49, CT91]. In the Einsteinian sense, this signal is a tick of a clock that
an observer samples. When the tick originates from within a process (e.g. a CPU kernel
tick), this defines a notion of ‘proper time’ for the local process, indicating an advance in
the state of the process. When there are multiple agents involved, working together, the
language one often speaks of ‘vector clocks’ in IT, referring to Lamport[Lam78].

Other agents, external to a ticking process, may observe changes in it differently,
either because they lack access to observe the changes or because the sampling of the
changes require intermediary processes like message passing to propagate the changes
from source to receiver. Thus the proper time experienced by an agent may not correspond
to the exterior time generated by the sampling of remote events.

Example 58 (Thunder and lightning). When lightning strikes, observers in different
contexts see and hear it at different times. Observers very close, that cannot sample
faster than a certain rate, may not be able to discriminate a difference between the flash
and the thundercrack. Light travels so fast the few agents can detect a delay in the signal,
so they conclude that the flash occurs as ‘the same time’ (during the same sample). But
sounds travels more slowly, so agents at different distances can discriminate the time at
which the sound reaches them. If they synchronize their watches using light, they will
measure different times for the sound—but the event happened due to a process that took
place in a single location, over a tiny fraction of a second. What observers sample is not
always a high fidelity representation of what happened at the source.

Using the language of Promise Theory[BB14a], we can define time from two per-
spectives. For convenience, we’ll make an identification between the concept of an event
Eγ and a line transaction Lγ in a system log, or a data point recorded in a timeseries
database Dγ :

Lemma 8 (Events count time). The emission of an event or ‘log line’ Eγ = {Lγ , Dγ}
is a tick of interior time clock.

This should be obvious, as events are changes that get noticed. We can now define
interior (proper) time and exterior (relative) time:

Definition 73 (Interior time of process Si). An independent count of ticks originating
from within a process S, cannot be observed by any exterior agent A?, unless promised
and reported:

Si
+ticki−−−→ A?. (5.1)

5.3. THE TIME-SERIES MODEL OF PROCESSES 143

Interior time is the image of processes that originate within the boundary of agent Si. At
scale, we can consider superagents of any scale, so interior time scales and changes in
meaning according to our definition of local.

Definition 74 (Exterior time of process Si). An independent count, by a remote receiver
R, of promised ticks (observed and aggregated from any number of sources on a watchlist)
that increases for each sampled event arriving from a exterior process source Si.

Si
+ticki−−−→ R (5.2)

R
−ticki−−−→ Si (5.3)

Si
+tick|ticki−−−−−→ A?. (5.4)

Exterior time is attached to remote processes that may originate on any scale. The
recipient R that samples events may itself be of any scale, with associated loss of
certainty about the definition of its interior clock counters, but ideally R would use a
single source from an elementary agent, for precision.

On the timescales of computers, in our daily lives, this sounds straightforward, but
the processes that calibrate our normal idea of time (the system clocks) are not faster
than the sampling processes we are trying to discriminate by. This leads to a breakdown
in the normal assumptions of universal time for all, and forces precision agents to go
back to basic definitions of time in order to trace processes in band.

5.3.2 CLOCKS AT DIFFERENT SCALES

We cannot avoid the effects that scaling has on clocks. Even atomic clocks may not be
considered atomic, in the transactional meaning, on the scale of subatomic processes.
The lesson that Einstein taught us is that processes need to embody their own clocks, as
single reference sources of truth.

Example 59 (System clock, e.g. Unix). The system clock, provided by most operating
systems derives from a shallow hierarchy of exterior time services, based on processes
that promise approximate alignment. The clock timer C is an independent agent, which
promises a counter (UTC) to processes Pi,

C
+UTC−−−→ Pi (5.5)

Pi
−UTC−−−→ C (5.6)

Using this as a conditional dependency, processes can then promise timestamps based
on the interior counter

Pi
+timestamp|UTC−−−−−−−−→ R. (5.7)

144 CHAPTER 5. SPACETIME CONSIDERATIONS

Note that the coordination between duplicate redundant clocks is weak. A time service
like NTP, provided by agent N , may be used to periodically align independent clocks at
a layer of the hierarchy above each system clock:

N
+UTCNTP−−−−−→ C (5.8)

C
−UTCNTP−−−−−→ N (5.9)

C
+UTC|UTCNTP−−−−−−−−→ Pi (5.10)

Pi
−UTC−−−→ C. (5.11)

Each clock is independent, so it is only meaningful to compare two timestamps from the
same clock. Moreover, the relationship between timestamps and process ticks is inde-
terminate, since process ticks are halted relative to the system clock during timesharing.
The use of timestamps in network protocols should be considered unreliable, and only
for round trip comparisons.

observer
1

A
2

A3

A
4

clock

A

Figure 5.2: A single agent, with a reference clock can be scaled into a superagent provided the
agents within promise to coordinate their behaviours. Thus a collective formed from independent
sources can act as a single reliably ordered source, but at a cost growing like N2 in the number
of agents.

Example 60 (Monotonic counters). Interior process time can be obtained by increment-
ing a counter by an atomic operation. A process P passes a value v to a counter C,
which is a persistent variable, and promises to increment it as certain milestones are

5.3. THE TIME-SERIES MODEL OF PROCESSES 145

passed:

P
+v−−→ C (5.12)

C
−v−−→ P (5.13)

C
+t=(v+1)|v−−−−−−−−→ P (5.14)

P
−t−−→ C. (5.15)

If independent agents need to coordinate their clocks, they can build on a single
source of truth, by appointment to the role (see figure 5.2), essentially transforming
interior time into exterior time.

Lemma 9 (Interior consensus of clocks). The promise to share interior time Ti from Si,
to an agent Rj , with interior clocks Ti is equivalent to the problem of data consensus
between clock ticks.

This suggests that clock synchronization by voting in band (‘realtime’) will lead to a
significant delay in the rate of time that can be promised as agreed ticks by an entire
superagent. This increased ‘mass’ of agent clocks will slow the rate observable by an
outside sampler.

Lemma 10 (Aggregation of clocks). The aggregation of multiple sources of interior
time Ti from Si, by an agent Rj , with or without consensus, is not one to one with the
interior time of the receiver.

The proof of this may be seen from the Law of Intermediate Agents[BB14a], which tells
us that, if there are agents in between the source and receiver (which is nearly always
the case), then no promises are transferred automatically. We need a chain of delivery
promises to form an expectation of what we are seeing. The outcome of this is that every
agent may see a different arrival order, assuming that it can distinguish between data
transmissions. This is a well-known result. Conversely:

Lemma 11 (Promised Order Propagation). The order of a sequence of data, from a
single agent, can be promised by virtue of a single clock or counter.

Note that this does not imply that order will be preserved, only that there is a set of
promises between sender and receiver that can be made to transfer the order information
(e.g. by numbering packets). This is well known in ‘reliable’ data communications,
like TCP. Without proof, let’s acknowledge that the relative order of data can indeed be
transferred reliably between a sender and a receiver, if there is a promised order at the
source (figure 5.2). This requires the introduction of a co-dependence between sender
and receiver, and a detailed explanation has been given in [BBKK18]. Examples include
the well-known TCP protocol, and other more exotic variants.

146 CHAPTER 5. SPACETIME CONSIDERATIONS

This does not imply that data are necessarily observed in the same order by source
and receiver. Once data leave the agents that are entangled in this way, the promise of
order is not preserved, because all agents are causally independent.

Lemma 12 (Promised Order Propagation). Data exchanged without conditional se-
quence promises may not be sampled in the same order as they were promised.

The implication of this lemma is that predictable coordination of sequences as invariant
features between agents is expensive and unreliable: it does not happen unintentionally,
without chains of interdependent promises. This is a rather damning result for monitoring
that relies on timestamps for its depiction.

Order promises can be kept by labelled (sequence numbering) or by waiting in
lock-step for changes one at a time. The independence of agents, and our inability to
make a promise on their behalf, means that data passing through multiple intermediaries
are independent deliveries. Even a single agent cannot be forced to deliver data in order,
unless it has promised (fully intends) to do so in advance, with full observability of the
payload (and a receiver that can sample at the Nyquist rate[CT91, Bur16c]). Expecting
clusters of agents to preserve order, over possibly parallel routes is even more unlikely,
without prior intent. This can be expressed by saying that unless there is a single
clock that determines when packets will be sampled by a receiver, the order will not be
preserved. The default is that an incoming queue of samples serializes them in a random
order, without a surviving chain of dependency.

We can arrange for such a single clock to be authoritative (like a shared memory
counter), but this requires agents to make promises to abide by the order, which in
turn requires cooperation from end to end throughout a channel, to preserve identity
serially and atomically (one agent sampled exclusively at a time). Another approach to
agreeing about time is to bind clocks in lock-step to form a co-dependent relationship
between agents, known as entanglement[BBKK18]. This is used, for example, in TCP’s
SYN-ACK protocol. It promises synchronization at a possibly unbounded cost in terms
of interior time ticks.

Lemma 13 (Promised Order Propagation). The intended order for events originating
from more than one Si may only be promised by interior cooperation at the source, and
assessed uniquely by an agent R with observational capacity according to the Nyquist
law. Each rescaling of aggregated time ordering introduces new uncertainty according
to an observer’s clock.

There is no unique intent, for a collection of autonomous agents, unless the multiple
sources subordinate themselves by cooperation to a single agreed order, but any attempt
to coordinate between the agents (and thus act as single superagent making a common
promise) would result in a change in the ticks observed by R, unless the sampling

5.3. THE TIME-SERIES MODEL OF PROCESSES 147

resolution of R is much less than the exterior time needed to assess interior latency of
interactions for agreement.

The conclusion of these extended remarks is that there is no single clock by which to
define the order of events between different hosts. This is essentially because unrelated
processes have no common time. The whole idea is meaningless. What observers often
seek is a picture according to their own sense of time (observer time) that integrates
different processes into a picture of the moment as they perceive it. Alas, that impression
cannot easily be reconstructed later, even perhaps with a detailed ‘post mortem’, as it
relies on anchoring to out of band processes that were not measured. If we introduce a
single source of time for a collection of hosts, by forming a superagent (with all necessary
interior cooperation), each agent within, we can define a single reference time, but it is
not the proper time of any process.

5.3.3 INFORMAL IDEAS ABOUT TIME

Example 61 (Common assumptions of system time). A commonly held belief is that, in
interactions like network protocols, we might define time in a number of way.

• The ‘actual’ time: there is a single source of truth, by international convention,
which is the official value of UTC. This time standard exists, but is only obtainable
with latencies that render it approximate. Through a hierarchy of services, like
NTP, local system clocks promise to approximate this time and to count indepen-
dently on their own at approximately the same rate. These rates cannot be verified,
so in practice the closest we can obtain is the current value of the local system
clock, which belongs to localhost.

• The observed time: This is a timestamp rendered by sampling the system clock, so
it is relative to localhost’s assumed time standard and has no significance beyond
the agent that sampled it. The observed time may not be monotonic, for example
if clock drift corrections occur in between samples of the clock. System time may
therefore go backwards or forwards at random, over extended processes.

• The publication time: Timestamps may be shared between processes, or recorded,
incurring additional processing delays. The resolution of a timestamp may be
quite low, allowing processes to absorb processing delays, but publication times
are always later than the timestamps they promise, e.g. the timestamp when a log
entry is written is always later than the timestamp of the log entry.

• The receipt or sampling time: If timestamps are shared between agents, e.g. in
recording data in a log, or transmitting data across a network, the published

148 CHAPTER 5. SPACETIME CONSIDERATIONS

timestamp belongs to the sender S’s clock, and the receipt time belongs to the re-
ceiver R’s clock. These two times are causally independent and their comparison
is strictly meaningless. If all clocks promise approximate alignment, the difference
between published and received timestamps may promise an accuracy whose
uncertainty is approximated by the Pythagorean average of the uncertainties of
the two timestamps at S and R.

Clearly, no protocol (except NTP) passes information about its clock time uncertainties,
so network time falls foul of the Intermediate Agent law.

5.4 THE ROLE OF TIMESCALES IN PREDICTABILITY

The purpose of monitoring is to be able to explain behaviour and even predict problems
in advance. Without predictability, monitoring is little more than somewhat arcane
entertainment[HL93, Hog95, Hel96, PS06, SBS99, DF98]. One assumes that, by learn-
ing about the past or by building a relationship with system behaviours in band, we are
able to predict something about the future behaviour. This, in turn, assumes a stability
under the repetition of patterns.

Definition 75 (Predictability). A system that has stable and repeated observable behav-
iour, on a timescale much greater than the sampling rate, may be called predictable.

It’s, of course, paradoxical that the time when most users want to monitor systems is
when they are least predictable and providing observations of no value.

5.4.1 SEPARATION OF TIMESCALES

We can make another observation about what happens in interactions. The principle
of separation of timescales is a design principle for interacting systems, based on the
observation that dynamical influence causes timescales for change to mix. In earlier work,
I’ve referred to this as the most significant principle for engineering—more important
than the separation of concerns based on semantic (functional) separation, such as data
normalization or ‘class’, which is the norm in Computer Science. Briefly, it says:

Principle 5 (Separation of timescales). Functional systems modularize robustly and
effectively when processes with different characteristic timescales are weakly coupled.

By ‘robust’, we refer to ‘stability’[Bur4 b]. This principle makes a connection to the
related problem of data consensus, which is a strong coupling regime that maintains data
consistency over average timescales.

5.4. THE ROLE OF TIMESCALES IN PREDICTABILITY 149

5.4.2 DYNAMICAL COUPLING DEFINED

The foregoing assertions can be justified by looking at what coupling strength means
for interacting agents46. Phenomena that promise changes on very different timescales
interact only weakly and can therefore be treated as logically separate. By contrast,
agents that promise couplings on the same timescale may influence one another and
therefore belong to the same class of phenomena. In terms of the foregoing definitions,
we can state the meaning of separation more strongly, as a theorem:

Theorem 2 (Separation of causal influence). As the ratio of timescales becomes large
TR � TS , the effective coupling tends to zero

e→ 0. (5.16)

tends to zero (weak coupling).

To prove this, suppose a series of partially ordered events at an agent S yields a series
Eγ , γ = 1, 2, Suppose a source agent S transmits the events, which are aggregated
into superagents E(n)(Eγ) of dimension n, by the receiver agent R,

S
+E1,E2,...En−−−−−−−−−→ R (5.17)

R
−E1,E2,...En−−−−−−−−−→ S (5.18)

R
+αE |E1,E2,...En−−−−−−−−−−−→ A? (5.19)

so that the dimension of the information is reduced by a factor of n by R:

α(E1, E2, . . . En) → R (5.20)∣∣∣E1, E2, . . . En

∣∣∣ = n (5.21)∣∣∣αE (E1, E2, . . . En)
∣∣∣ = 1 (5.22)

The average time between events, as assessed by R’s clock, may be denoted

TS ' 1 (5.23)

TR ' n. (5.24)

So R assesses S’s timescale to be 1 and its own timescale to be n:

TR ≥ TS . (5.25)

Thus the average interarrival times for the queue in (5.19) λR ∼ 1/TR, etc, satisfy:

λR ≤ λS (5.26)

150 CHAPTER 5. SPACETIME CONSIDERATIONS

and the effective influence, in fraction of messages received compared to messages sent
is expressed by a coupling constant:

e ∼ λR
λS
≤ 1. (5.27)

In a strongly coupled system e→ 1, timescales converge to the shortest timescale
of the interacting parts, making systems busier and more work intensive. The utility
of this observation is that, if one separates causally independent parts of a system into
superagents that make weaker promises to one another, any observed correlation between
phenomena, that exceeds expectation, can be considered coincidental or potentially faulty.
This can be detected by a change in the proper time event rate, measured by some agent
within a system. This principle therefore has significance to the use of observation for
detecting faults and design flaws in systems. It tends to maximize the signal to noise
ratio between promised and non-promised behaviour[Bur4 b].

5.4.3 COUPLING STRENGTH, MEMORY, AND CONSENSUS

The concept of knowledge is already more uncertain in a distributed system than in a
local system with random processes. Lamport’s papers about seeking the homogeneity
of data sources is effectively a monitoring problem in reverse. A collection of agents
monitors one or more sources and tries to equilibrate the knowledge they promise. Data
consensus is a conditional promise of policy-determined values (called quora), based on
inputs reported from sources Si:

Si
+Eγ−−−→ R (5.28)

R
−Eγ−−−→ Si (5.29)

R
+Quorum(Eγ) | Eγ−−−−−−−−−−−→ A?. (5.30)

This strong coupling, represented by strong dependency on data from a complete network
of dependencies, demonstrated that time and order of events are fundamental obstacles
in a system of distributed computers in which observation has a finite latency (usually
agents that are spatially separated)[Lam78, Lam01, OO14]. The topic touches on the
relativity of simultaneity, and how to make sense of differing views about what causes
what.

The relationship with time is revealed by the ‘FLP result’[FLP85], which exposed the
essential impossibility of consistent distributed knowledge in an uncertain ‘asynchronous’
environment. In an asynchronous message-passing system, source or delivery agents
may delay messages indefinitely, duplicate them, or deliver them out of order. In other
words, there is no fixed upper bound on how long a message will take to be received. A
consensus policy promises:

5.4. THE ROLE OF TIMESCALES IN PREDICTABILITY 151

• All trusted nodes promise the same result (a non-local agreement).

• All trusted nodes will eventually promise a result.

Some approaches to working around the limitations of asynchronicity play with strong
synchrony promises in order to eliminate these uncertainties[BBKK18].

In an asynchronous interaction, each agent’s proper time may be used to define ‘time-
outs’ to receiving data to keep a process from waiting for ever for strong dependencies.
Timeouts are a workaround that weakens the effective coupling strength of an interaction,
by effectively measuring latency in interior time. There is no unambiguous meaning to a
timeout, except the presence of a potential fault. Latency (round trip time) is the only
covariant measure in a relativistic system, because it’s one of the few measures that has a
purely local meaning.

In Promise Theory, the intermediate agent theorem is the analogue of that result:
it says that whenever you rely on agents that are not yourself, to acquire or deliver
information, it no longer promises what its originator intended. And if a remote agent
promises something, but doesn’t promise it to you too, all bets are off and there is a
quadratically growing cost of verifying. In monitoring, we are not usually interested in a
majority view, rather we are interested in what happened specifically at what we believe
was the certain place and time of origin (though this is also subject to uncertainty). We
are sometimes interested in a statistical view (which is not the same as a consensus view,
because it admits and even measures the statistical uncertainty of variations. If certain
nodes lie (sometimes called Byzantine behaviour) we want to know about it, not merely
cover it up.

There is clearly overlap in the concepts of distributed information, but monitoring
seeks a picture of actuality, rather than a cover-up operation to brush uncertainty under the
rug of consensus. Software Engineering therefore has a conflict of intent with monitoring:
it wants to assure complete dependability (promises always kept) by invoking protocols
‘in band’, whereas monitoring is trying to expose when promises are not kept, to ‘out
of band’ human observers. These are the issues we need to deal with in describing
observability.

Readers may feel that the problem of distributed ordering has been solved by dis-
tributed consensus systems like Paxos and followers[Lam01, OO14], but this is not the
case. Consensus systems do not promise the source order of observations, but rather an
average order by which observations are reported, which is a policy decision.

5.4.4 MEMORY PROCESSES

It should be clear that memory is required to stabilize values from multiple sources. To
integrate results from several sources, and to replace then with an agreed result requires

152 CHAPTER 5. SPACETIME CONSIDERATIONS

temporary memory, over the necessary clock ticks of proper time—at least as much
memory as there are source dependencies for each outcome. The role of memory and
its reliability also play a role, but I don’t want to discuss that here. In most IT systems,
memory unreliability is negligible.

5.5 THE OBSERVATIONAL SAMPLING MODEL

Given a stream of trusted values reported by agent interactions, the usual response is to
try to build a timeline for a system as a movie recording of past history, using a panoramic
lens. This throws us a number of questions about how often one should sample data.

5.5.1 SAMPLING RATE

The naive view in the industry is that one should collect as often as possible. Basic
information theory constrains our ability to extract information from data. Many engi-
neers feel that the virtues of fast sampling are indisputable, just as the citing of many
decimal places leads to increased accuracy, but neither are true (for the same reason).
Excessive use of high resolution sampling is a senseless arms race (a watched pot that
never boils). Continuous high density sampling of a non-existent signal is not helpful.
Nyquist’s theorem tells us that we can only know fully of changes that occur half as fast
as the rate at which we sample. Shannon’s theorem tells us that our information about
the system only increases when changes are observed.

Regarding the order of events, it’s common to rely on an independent clock service,
located within a network to try to synchronize clocks to some calibrated count, and then
rely on the homogeneity of manufacturing in chip-sets that count time at a more or less
similar rate. Traditional clocks services count time in seconds, but this sampling rate is
much too infrequent to distinguish processes in modern processes, where nanosecond
timing discriminations are becoming.

Physics tells us that relying on the counting of an exterior agent is futile when clocks
are located in regions of very different gravitation, or when they are moving with respect
to one another. This already has to be corrected for in satellite systems. The same effect
applies if agents are in virtual motion with respect to one another. Only the interior
proper time of a process can be relied upon for comparisons.

Local measures of observables have to be aggregated into coarse grains in order to
measure them against one another. Histograms of observational distributions are usually
the best we can offer in terms of observability. But distributions only tells the past
probability of behaviours in fairly static cases. When we most want to know about a
system, that’s when it’s hardest to understand. 47

5.5. THE OBSERVATIONAL SAMPLING MODEL 153

Time-like changes are normally assumed to be instances of what may potentially be
significant events. The result is that human operators get excited by graphical traces that
suddenly rise or fall—which has an undoubtedly hypnotic appeal, but means nothing
without a larger context. Sliding windows are often used to detect gradient changes
in time-series. Ensemble averages are used and even forced in data distribution and
consensus processes (see figure 5.3). In other words, aggregation over time (not space) is
a necessary part of the learning that provides context for prediction.

Principle 6 (The sampling rate). The sampling rate for a variable should typically be
about half the auto-correlation time for a variables in order to detect meaningful stable
variation.

This is the timescale suitable for learning. For the purpose of anomaly detection, one
might see a sudden change in timescale as a result of an unexpected coupling. Faster
sampling could then be introduced on suspicion of a transition in behaviour—just as
biological heart rates and attention spans quicken under stress. Recording and storing
reams of data that are zero or constant cannot be in anyone’s interest. Such data is
compressible. It contains no new information. The potential problem with that approach
is that the cost of sampling is not free; the impact of sampling on the system may become
significant. Some authors have advocated such adaptive sampling[pap19]. One then
has the decision about which part of the sampling process to scale back: the act of
measuring on each local process has one cost, the act of aggregating the samples in
some central repository has another cost. Neither of these is easily controllable, since
multitasking operating systems make the sharing decisions to allocate cores, interrupts,
network transmissions, and tasks quite opaquely. It may be difficult to assess which is
the greater evil: uncertainty due to adaptive sampling or uncertainty due to oversampling
or undersampling.

S

RS

C

C

C S

Figure 5.3: Aggregation of observations from multiple sources can happen at any node in a
distributed process. When causal influences come together, in this way, the confluence point
becomes an effective observer of the sources that feed into it. Observers are not only human!

154 CHAPTER 5. SPACETIME CONSIDERATIONS

5.5.2 SHARED RESOURCE COUNTERS (KERNEL METRICS)

The consequence of lemma 13 is that scaling of observations causes not only a reduction
of information transmission rate, but possibly a loss of information about the origins of
shared assessments. Resources counters, computed from the aggregation of data (like
most of the kernel resource metrics typically recorded in popular monitoring tools), erase
details that belong to their higher resolution origins, in an unrecoverable way (see section
12.6). There are many such recorded values in timesharing computer systems, because
they are useful mainly to the sharing agent. The fact that they are shared with separate
processes is a mixed and slightly misleading blessing. It’s sad to see so much effort
expended in sharing noise to observers desperate for insight. I think we can do better.

Shared measures erase the information about data origin, and thus such collective
phenomena cannot be traced backwards to an appointed cause. For example, measuring
the load average for a computer cannot determine which programs caused a spike in
the load[Coc06]. This is not, on the other hand, a reason to retain every individual data
characteristic for ever, because the opposite is also true: some data cannot be exposed
without computing those high level functions.

5.5.3 INSTRUMENTATION OF PROCESSES

Our symbolic representations of processes are algorithms expressed as program ‘code’. In
a distributed system, programmers have begun to instrument workloads for interprocess
communication using service meshes and centralized logging services. These do not
reveal behaviours interior to the processes, but may provide traffic patterns by which to
hypothesize about process behaviours and intentions.

For process tracing, one needs to be in the inside of the process, where the interior
time ticks. From the foregoing discussion, it’s clear that the system clock service is not
the correct measure of time for process diagnostics. The proper time of a process is
measured by the number of program counter transitions or program steps incurred by its
execution. This count is significant because each increment is the result of an explicit
causal jump instruction. The program counter’s value can be promised at each instruction
in code for debuggers to trace, forming a causal set of correspondences between program
locations and increments. However, attempting to share these proper times between
processes is meaningless.

The system UTC clock, even an approximate local copy of it, comes from an
independent agent, and although shared between many processes its increments do not
correspond to single channels of causation. Rather they represent only the implicit
increase of entropy in collecting from all processes. When processes are timeshared, they
may be halted and interleaved in complex ways.

5.5. THE OBSERVATIONAL SAMPLING MODEL 155

5.5.4 SIGNIFICANT EVENTS AS SPATIO-TEMPORAL SIGNPOSTS

As discussed above, the major drawback in time-series thinking, for a distributed system,
is that there is no unique meaning to the order of transactions originating from different
sources when they are aggregated from different locations. There may be a lack of
an obvious or agreed coordinate system. Observer’s might have to rely on ad hoc
documentation of events, without a clock or measuring stick to calibrate them.

Each observer in the universe sees events from their own perspective. The lightning
bolt and the thunder arrive earlier for some than for others, because different processes
propagate information at different rates, over different routes, and with different latent
delays. Consensus is expensive, heavy handed, and its goals are different to the goals of
observation.

Moreover, we have no uniform metric for time other than the exterior clock, which
has issues of its own—it doesn’t represent local causation except for the process that
generates it. The question we want to answer is: what was the reason for an event E? i.e.
can I infer the condition, state, or quality of the system from this event, based on what I
have observed beforehand? Times are not causes.

A better approach, based in interior instrumentation is to create a semantic counter
that traces a distributed process that we can trace backwards to causal origins. Samples
can be taken when something is found to be significant within the context of the process
itself. This is the proper passage of significant times. Regular sampling of processes is
not an efficient way to record them because processes may be busy or idle, etc. This is
what system logging enables—but the opportunity is usually squandered from a lack of a
proper model.

Metric coordinates (clock times and numbered locations) are not helpful when
we have no invariant measuring devices to define them by. The alternative is to use
descriptive labels, or semantic coordinates.

Definition 76 (Significant event). An event marker, provided by a source process, that
signals either an intentional change or an unintended deviation from expected state.

Anomalies and faults fall into this. Processes that are not able to keep their promises may
also be significant events.

When seeking the ‘root cause’ of an event, we really want to go back to prior events
that were significant. The rationale behind this is that, in a stable system (one that we
expect to be predictable), when all is as expected, unexpected events are most likely
to be caused by previous significant changes and anomalies. Clearly, for every event
there is a prior one, until we reach the very beginning of time (the system ‘Big Bang’).
However, we also have episodic boundary conditions that act as ‘Little Bangs’ for more
constrained universes. Boundary conditions are semantically special events that we

156 CHAPTER 5. SPACETIME CONSIDERATIONS

attach special significance to—they are the origins of causation. We aren’t interested in
every intermediate change, only in prior events that make a splash.

We want to create a causal chain, a journal, something like a linked list. Instead of
selecting data by voting, we can select values based on their perceived importance to
outcomes of interest. This shifts the focus of policy from the intermediate aggregator of
data to the observer: the observer is now expected to have a specific question it wants
answered, rather than voyeuristically consuming data for entertainment.

5.5.5 FROM METRIC TO SEMANTIC COORDINATES: NAMING

The use of ‘signposts’ for labelling locations or process paths is a form of semantic
coordinate assignment[Bur19c]. It traces back to before the time when maps and cal-
endars were invented by human civilizations. Instead of imagining a regular, idealized
coordinate grid, numbered impartially in an ordered sequence, signposts could be set up
relating to events that were basically anomalous. Anomalous ‘events’ are less regular but
highly recognizable things that we can observe (the big tree at the river, Mount Fuji, the
Matterhorn, the year of the flood, the eclipse of the moon, etc). This provides anchors
for accessing memory and plausible anomalies that might have exerted causal influence.
We use these events as boundary conditions on episodic sub-processes. Sometimes, the
role an agent plays in a promised arrangement is sufficient to distinguish and label it in
interactions.

Example 62 (Unumbered BGP interfaces). The network routing protocol BGP sets up
policy based relationships that point coherent classes of IP address to other coherent
classes, allowing a scaled concept of regions to point to one another by a system of
signposts. A routing table within each autonomous routing region (superagent), known as
an ‘AS’, points the direction to send data, forming a self-organizing map. Conventionally,
each interface that points to an exterior location is assigned a name in the form of an IP
address. However, this is redundant and only leads to configuration complexity. When
two agents are connected by a single wire, naming the ends of the wire is redundant,
because they know how to find one another, and the data they exchange are sufficient
to identify their roles in a process. Thus, omitting explicit names actually brings a
significant simplification to BGP.

Descriptive naming (semantic coordinate assignment) is thus more useful than
ordinal naming (numerical coordinates). The checkpoints and paths that participate in
processes may not be invariants, and the numerical value of coordinates is irrelevant48.
We may need to identify a repeated pattern to some degree of approximation in order to
exemplify a general concept from which lasting knowledge can be derived. Anomalies
that do not recur become effective invariants, in memory, because they are rare and worth

5.5. THE OBSERVATIONAL SAMPLING MODEL 157

remembering. Featureless invariants (like empty space) are indeed the most invariant of
all, but have such high entropy as to contain no information of significance.

The significance or meaning of a signal is a kind of ‘heuristic inverse’ of the (incom-
pressible) information within it—a key for the value. The more information we need to
characterize a room, the less stands out about it. If there is one part that dominates, the
rest is negligible—hence the principle of signalling significance.

Lemma 14 (Significance vs information). Maximum entropy distributions contain no
significant events: they are causally random, and all events are observationally equiva-
lent. Minimum entropy distributions have the maximum significance, as they imply strong
correlation.

Entropy plays a subtle role in statistical distributions, and therefore in ability to infer
meaning from data.

5.5.6 REVERSIBILITY VERSUS TRACEABILITY

Why juxtapose these two concepts? The ability to throw a system into reverse, undoing
itself, depends on our ability to follow it unambiguously as it unfolds. We want to
be able to trace our knowledge of a system back to know the cause of an effect. The
intended outcome is programmed into it, but there are also unintended outcomes caused
by environment leaking into causal pathways. Because of the culture of ‘rollback’
thinking in IT, which originates from database transaction semantics, IT often muddles
the concept of traceability with reversibility49.

We must distinguish between the ability for an observer to trace backwards from a
sequence of observations to reconstruct the cause of a significant event, and the ability
to roll the state of a system back to what it once was. For example, it’s possible for an
observer to trace the source(s) of a river, but it is not possible to reverse the river and roll
it back to an earlier state.

In the former case, the enabling condition is for no origin information to get lost in
the chain of unfolding events (see figure 5.4). In the latter case, the necessary condition
for being able to undo a causal sequence is that agents of the system itself have to
promise the inverse of every promise in the forward direction conditionally on an undo
condition—this is an additional set of promises pointing backwards along the path, which
is much more than an observer being able to trace knowledge of promises backwards.
The necessary condition is insufficient even to promise the result: agent processes must
also be isolated from external interference, else the precise inverse operations may be
deflected off course by noise[BC11].

158 CHAPTER 5. SPACETIME CONSIDERATIONS

5.5.7 PARTIAL ORDER OF AGENTS AND EVENTS

As a process propagates by passing messages, the messages separate earlier times from
later times on the process’s own clock or counter. Suppose this is reflected in a sequence
of messages, or lines in a log. In a chain of lines Lγ belonging to a single source Si,
we can define a countable metric distance between lines by the total ordering of the
sequence, also in the language of promises:

L1
+precedes−−−−−→ L2

+precedes−−−−−→ . . . Ln
+precedes−−−−−→ Ln+1. (5.31)

The observational binding is equivalent a more classical ordering relation <:

L1 < L2 < . . . Ln < Ln+1. (5.32)

where

S < R ↔

{
S

+precedes−−−−−→ R

R
−precedes−−−−−→ S

(5.33)

We need to be cautious about the interpretation of these promises. Each agent is making
a separate promise, but (by the law of agent autonomy) these agents cannot make the
assessment or promise it to an observer who happens to be watching all of them. Each
agent can make its own promise available to the observer, but it’s up to the observer to
order them in the final instance. This ordering may be come mixed with other orderings as
data are aggregated. The promises indicate that the relationships are considered persistent

observer

A A
2

A3 A4

X | X 01 X | X
12

X | X23

1

Figure 5.4: Causally ordered change in a process, and information observed about the process
are two distinct things. As long as the observation of the process retains the order of the process,
inferences about causality can be made, regardless of whether the system itself could be reversed.
You can trace the source of the Nile, but you can’t make the river flow backwards.

or even invariant by the promisers—not merely local assessments made on the basis of

5.5. THE OBSERVATIONAL SAMPLING MODEL 159

spurious data. However, if at any time the events being ordered become indistinguishable,
they can no longer be ordered. This can happen when data are aggregated without
complete labelling.

Ordering reduces to the existence of (local) conditional promises, whose scope may
extend to other observers in a scope σ[BB14a]. The n-th agent in a sequence; by the
axioms of Promise Theory, we must have a chain of the form (figure 5.4):

An
+Xn|Xn−1−−−−−−−→ An+1 (5.34)

An
−Xn−1−−−−−→ An+1 (5.35)

An+1
−Xn−−−→ An (5.36)

(5.37)

And, in general, we may consider a general scope for the above promises:

An
+Xn|Xn−1−−−−−−−→

+σ
An+1 (5.38)

Given such a set of promises, we can define a measure of observable distance between
agents An and Am by assessment. Again, we note that interior relativity makes distance
an assessment by one agent about the relationship between itself and one or two others.

5.5.8 TRANSLATION OPERATOR AND NOETHER’S THEOREM

Let’s make a slightly technical digression. If the agents were sufficiently homogeneous,
we could consider an operator interpretation for ∆, as the generator of a translation on a
set of states realized by the positions (like ladder operations):

∆|Ai〉 → |Ai+1〉. (5.39)

In fact, for every kind of promise there would be a separate propagator, like a complete
basis:

∆ =
∑
τ

cτ ∆τ . (5.40)

The problem with this kind of interpretation is that is suggests the existence of a god’s
eye view once again. It takes the existence of a privileged observer to be able to order
and rank the states in this way.

In classical physics, the continuity of the energy function with respect to spacetime
is what generates conserved quantities like energy and momentum, thus allowing these
quantities to be used consistently as counters for behavioural descriptions. We can see,
from the Promise Theory, that this conclusion also follows from a privileged god’s eye
view of spacetime locations.

160 CHAPTER 5. SPACETIME CONSIDERATIONS

This tells us that it is the assumption of continuity by the observer that rationalizes
the use of counting metrics, including jumps and changes in metric behaviour. If source
observability does not reveal discontinuities in the assumptions amongst independent
sources, the observer will not be able to discern that information merely by monitoring.

If we assume the conservation of b as an axiom, the ordering of b-influence must
follow paths automatically, even when the agents make unsynchronized (asynchronous)
promises, like a first order Markov process. In order to explain conservation and causal
order over non-local regions, we need to extend the promises to be conditional on
non-local neighbouring patches. Ordering information itself needs to propagate.

5.5.9 TRACEABILITY (INFERENCE)

Lemma 15 (Traceability). If an observer has complete information about promise
causality, a process graph may be called reversible, i.e. for every pair

S
+XS | c−−−−−→ R (5.41)

R
−XR−−−→ S, (5.42)

providedXS ⊆ XR. We can infer origin by using complementarity to interpret a reversal
of causal tracing: XR = c and c = XS , such that

R
+XS | c−−−−−→ S (5.43)

S
−XR−−−→ R. (5.44)

If a set of agents An precedes another set An+1 by a promise

An
+Xn|Xn−1−−−−−−−→ An+1 (5.45)

An+1
−Xn−−−→ An. (5.46)

Traceability requires that O be in the scope of this chain, and that it assumes reversible
semantics for X , as ‘is followed by’ (which is automatically interpretable as ‘follows’).

5.5.10 REVERSIBILITY (CAUSATION)

In the rare cases when systems can be made approximately deterministic and reversible,
changes to a system can be potentially traced forwards and backwards in process time.
This may not enable one to go as far as pointing out a unique ‘root’ cause, because
aggregation points can introduce points of potential equivalence, but it will point out the
causal sets that act as source (spacelike hypersurfaces) of the process.

5.5. THE OBSERVATIONAL SAMPLING MODEL 161

Lemma 16 (Reversibility). Reversibility requires the much stronger criterion for infor-
mation transmission, that there be a unique inverse for each step in a chain of agents:

An
+Inv(Xn)|Inv(Xn−1)
−−−−−−−−−−−−→ An−1 (5.47)

An−1
−Inv(Xn)−−−−−−→ An. (5.48)

This holds for any agent (or superagent) An.

The condition for forensic back-tracing of a system state (detection of cause) is that

• A complete chain of prior origin data be available across the graph.

• There should be no acausal loops in the process, else there may be branch alterna-
tives (eigenstates) or divergent unstable behaviour.

Example 63 (Service lookup thunder and lightning). Consider the order of a process
(figure 5.5) described in the following promises:

A
−dns−−−→ S (5.49)

S
+dns−−−→ A (5.50)

A
+relay(dns)|dns−−−−−−−−→ R (5.51)

R
−relay(dns)−−−−−−→ A (5.52)

−DNS

AS R

−dns

+dns

+DNS | dns

Figure 5.5: Causal order may be different from clock time. It is generated by prerequisite
dependencies: either by underlying topology or by constraint. Agents can only trust directly
agents that they are in scope of (in practice, their direct neighbours), as they have no calibrated
information about the promises of agents.

Agent A promises to listen for a DNS lookup (a query, i.e. an invitation to reply).
As long as this promise exists, it can be considered to be polling S for a response. S
promises to provide DNS data, but it hasn’t specified what or when. If there is a fortuitous
match between the two, data will be passed from S to A. A, in turn, promises R to pass
on the data it receives from A. It does a better job of promising conditionally, so it will
only pass on fresh data from S when a reply is received, because the promise in (5.51) is
conditional. R, in turn, promises to accept data, which can only happen after they arrive.

162 CHAPTER 5. SPACETIME CONSIDERATIONS

The effect in each interaction is to order data, but we don’t know, from these promises,
how many times data get passed between A and S, nor do we know how much latency is
experienced by any of the agents.

The conditional promises (dependency) represent causal ordering. We can’t say
anything about the relative order of promise keeping unless it is constrained in some
fashion. Often we rely on incidental or ad hoc serialization at a single observation point
(a queue) to define the ticks of our process clock. The problem is that this serialization
does not represent an invariant of the process, so it’s unreliable.

5.5.11 METRIC DISTANCES

Order is important, when it can be distinguished because it allows us to measure intervals.
We sometimes use intervals as significant measurements, though Einstein pointed out
that intervals are not invariants, they are only ‘covariant’, changing with the system of
measures we establish.

Principle 7 (Distance semantics). Distance is an assessment made by an observer with
two complementary interpretations: distance suggests what might lie in between the
bounds of the interval, or it suggests a measure of how similar two agents are, with
respect to location in some criterion ‘space’.

The distance between two events Lγ and Lγ+β is related to the ability of an observer to
trace and count the number of similar events in between. The distance between events in
a journal may contain implicit information about what happens in between, but it is not
a substitute for the information itself. Metric distance is therefore a counter that pays
just enough attention to agent properties to discriminate between them on the basis of
label, and be able to count, but not necessarily enough to classify agents meaningfully.
If events follow on as nearest neighbours this tells us something; if the same pattern is
suddenly interleaved by more lines this could be an indication of an anomaly.

A histogram is a classification of multiple events that get counted and form a
distribution. The order of the classes may (or may not) express a metric policy about how
near or far events are when they fall into one of the classes. There is no a priori order
to these classes, but there might be a distance. It’s therefore an assessment policy of an
observer to ensure proper classification according to a model presumed by the observer.

The proliferation of logs in IT systems means that they get receive disproportionate
focus, in the hope of extracting far more than they are usually capable of representing.
The variety and standard of logging is very poor indeed, in my view. What happens to
order and distance relationships in logs after aggregation? There are many tools that imply
log aggregation is a good way to bring together all logs into one location, but there is little
discussion around the significance or usefulness of the result[DS05, BD07, WDSC07].

5.6. THE ROLE OF DIMENSIONALITY 163

Aggregation of agents Lγ into superagents {Lγ} may preserve or discard the order
and interval distances between lines. Sometimes, data are not intentionally numbered by
the sender and order is assumed by the order to transmission (e.g. in UDP transmissions).
In that case, message packets may become reordered by network redirection, or loss.
Some messages could be also be lost. Let’s refer to the cases by the common terminology

• Reliable: promises all packets delivered in order.

• Unreliable: ad hoc, no promises about order or loss.

In either case the latency between transmission and final arrival is uncertain. Consensus
of data is easy, because the data are point to point and there is only a single source and a
single receiver for each message.

One way of trying to work around the law of intermediate agents is to build up
the notion of entanglement between processes [BBKK18]. This takes several cycles of
mutual interaction between a pair of agents, on some scale, as well as a small cache of
local memory. Entanglement can transform partially reliable transmission of influence
into fully reliable transmission at the expense of some added sub-cycles in the interaction.

The aggregation of messages without reference to the agent and the interior timeline
that generated them implies that causal origins can never be traced backwards. Times-
tamps have no value, because they are unrelated to the process causation. We can thus
show that a log may preserve the reverse tracing of causal history, but does not imply
reversibility of state. We can trace a story back to where events played significant roles
in the timelines of processes, but we can’t necessarily reconstruct the states of those
processes.

5.6 THE ROLE OF DIMENSIONALITY

The three strategies for output scaling are:

1. Serialization of workflow: make it faster (vertical scaling).

2. Parallelism: multiple channels to increase throughput (horizontal scaling).

3. Multiplexing processes to interleave sparse arrival processes (quasi-parallel shar-
ing).

What may be surprising to information technologists, who work exclusively with serial
workload scaling, is that the behaviour of a system can involve more than one spatial
dimension, and result behaviour that is less like a queue and more like a funnel. The
involvement of spacetime geometry in processes is not something that is currently

164 CHAPTER 5. SPACETIME CONSIDERATIONS

modelled in information technology. In a building, or a city, where people can move in
two or three dimensions, the dimensionality is critical to avoiding contention and enabling
throughput. Consider the evacuation of a building through a single emergency exit on
the ground floor, and compare this to a queue to enter the building. Dimensionality is an
interesting issue—far less rigid than we are taught to expect from the simple classical
models we learn in school. At high speed, an agent’s world is dominated by time, and a
single vector of motion. In a world dominated by time, there is only serial processing,
even with rudimentary parallelism, and the world is largely one dimensional. In a world
dominated by space there is multidimensionality, and volumes can quickly become
relevant in a continuum limit.

The promise of semantic space, or infrastructure, is to deliver one dimensional
time saving services to its clients. That means it needs to deliver either high speed or
multiplexing of resources, in the space of the clients. Our narrative about semantics,
and promises, involves graphs, not spatial variables. From a graph viewpoint, multiple
dimensionality promotes an increased average connectivity for the graph because more
neighbours can crowd into a three dimensional region and a two dimensional region or a
one dimensional region.

Mathematically, a graph’s spacetime dimensionality at a point is the number of
possible degrees of freedom radiating from the node, i.e. the number of independent
vectors emanating from it, or the node degree k[Bur14]. However, in a system realized
in the context of the physical world, graphs must be embedded in a spatial volume of at
least two dimensions, or more generally D dimensions. Physical agents have physical
dimensions, i.e. they take up space, and links between them may not be allowed to cross
because they occupy space (see figure 5.6). This places restrictions on behaviour that do
not apply in the virtual world.

When we reach the topic of universal scaling relations, in section 5.15.4, we delib-
erately ignore the differences between labelled objects, including boundaries, i.e. by
reclassifying them or counting them by lumping them into fewer categories, labelled by
a scale parameter. The symmetry can be broken by the presence of a boundary.

5.7 SEPARATION OF SCALES AGAIN

When we try to scale systems, intentionally, to encourage greater output (such as building
a larger factory, or a bigger datacentre, adding more servers, etc), we risk the fact that
system mechanisms will not actually scale in accordance with our intentions. Designing
systems for a large scale, or to span several scales, warrants different considerations
compared to those for a small ad hoc system.

5.7. SEPARATION OF SCALES AGAIN 165

S S

S SSLRLL RL RRS

L R

P P P P
LL LR RL RR

A

L

A A A A A A A

L L L L L L L

LL LL

LL LL

LR LR

LR LR

RL RL

RL RL

RR RR

RR RR
R

L R

L R

L R

L R

L R

L R

L

L

R

Figure 5.6: A redundant Clos fabric, takes up a three dimensional space. There is no
approximation in which its behaviour can be understood in less than two dimensions.

Definition 77 (Coarse graining (informal)). The elimination of detail from a system by
aggregating low level details into fewer variables that represent the same situation over
a new aggregate scale.

Statistical averaging is one coarse graining procedure. After coarse graining over
space, the interior details of a region are no longer observable, because we probe the
system only as the average effects over longer distances. A consequence of this is that
we are free to focus on the effective exterior interactions at the new scale, between the
grains.

If we take an ensemble of systems, of different sizes, in similar circumstances, which
keep a specific set of exterior promises, they might fail in different ways because of un-
observable differences in the networks of interior promises. In other words, grains might
appear to be superficially similar, whereas in fact they are different. The microscopic
specifics of an system may play a role, if they remain significant as we scale.

Principle 8 (Separation of scales). In a weakly coupled (quasi linear) system, the details
at one scale do not lead to strong effects at a different scale. This principle breaks down
in non-linear systems with strong coupling.

Non-linearity in systems is a source of great unpredictability because it prevents
decoupling of scales. Small details can be amplified into large scale effects through
interactions.

166 CHAPTER 5. SPACETIME CONSIDERATIONS

5.8 THE SCALING OF REGIONS OF AGENCY

To describe the spatial structure of agents, in which the composition of elements is
consistent, we need to describe how agency scales collectively, through aggregation and
reduction of elementary agents. The concepts of scaling are familiar to physicists for
dynamics, but here we also want to extend them to incorporate semantics. This might be
motivated by questions of the following kind:

• How does a team promise something as a unit?

• How does an organization appear as a coherent entity?

• How does a collection of components promise to be a car?

Since we can aggregate promises into a single promise, and aggregate agents into
a single agent, the ability to detect or resolve parts within a whole depends on the
observer’s capabilities. Similarly, the ability for an agent to perceive a collection of
individual agents with a collective identity (i.e. a superagent) depends on the capabilities
of the observer agent. Elementarity and composability of agents thus go together with a
hierarchy of observable agents, which needs to be elucidated.

5.8.1 SUBSPACES

A partial region of a semantic space, at any scale, may be called subspace. We may
distinguish the boundaries of such a region in any way convenient. A subspace is assumed
to be connected, but not necessarily homogeneous of isotopic.

Definition 78 (Subspace). A subspace is a collection of agents, in which every agent is
adjacent to at least one other. The agents may be:

1. Identified and associated by an external observer by their (-) promises, or

2. Intentionally labelled and coordinated by its members with a (+) promise.

Subspaces can be defined by partitioning a space, or by constructing a space agent by
agent. There is good reason to consider both of these points of view, so let’s describe
them below.

5.8.2 INDEPENDENCE OF AGENTS UNDER AGGREGATION

We begin by considering how to identify discrete, elementary components within a
system of autonomous agents, making promises. If we assume that sufficient knowledge

5.8. THE SCALING OF REGIONS OF AGENCY 167

of agents in available, then an observer can assess the independence of agents by the
absence of mutual information, i.e. zero overlap.

Definition 79 (Independent agent). Two agents A1 and A2 are independent iff the
following overlap relation holds:

A1 ∩A2 = ∅. (5.53)

An agent that it independent of another agent may be said to be outside or exterior to the
agent. An agent that overlaps with another agent may be said to be inside or interior to it.

5.8.3 COMPOSITION OF AGENTS

The treatment of a collection of agents as a single entity is a choice made by any observer.
It can be made with or without promises from the composite agents themselves (see
figure 7.3). Agency or ‘agentness’ can be defined recursively to build up hierarchies
of component parts. In [Bur14], I showed how spatial boundaries can be defined by
membership to a group or role. We still have to explicate the relationship between the
internal members and the structure of the whole, as perceived by an observer.

intA

intA

intA Σ

Π
ext

Π
int

Aext

Figure 5.7: Agent structure consists of an element that makes a number of exterior promises,
some of which are scalar, some vector, etc. Interior promises are invisible from the outside.

We define a collective superagent as a spacetime structure that has collective agency,
i.e. its intended semantics relate to a collection of agents surrounded by a logical
boundary, with collective semantics (see figure 5.7).

168 CHAPTER 5. SPACETIME CONSIDERATIONS

Definition 80 (Bare superagent). A superagent of size S is any bounded agent com-
posed of individually separable agents, partially or completely linked by internal vector
promises. The bare superagent is defined by the closed graph, without any external
adjacencies. It is a doublet:

Asuper = 〈{Ai},Πint
ij 〉, i = 1, 2 . . . S. (5.54)

whereAi is an internal agent ofAsuper, and Πij is the promise adjacency matrix between
the S internal constituents.

Definition 81 (Dressed superagent). A dressed superagent is the bare superagent to-
gether with its set of exterior promises. It is a triplet:

Asuper = 〈{Ai},Πint
ij ,Π

ext
sε1〉, i = 1, 2 . . . S. (5.55)

Superagency allows promises to exist within and without a superagent boundary. We
call these interior and exterior promises, respectively.

Definition 82 (Exterior promises). Exterior promises are made by agencies within
the superagent boundary, to agents outside. They represent inputs and outputs of the
superagent, i.e. how it interacts with an external space.

Definition 83 (Interior promises). Internal promises are made by agents inside the
superagent boundary to other agents inside the boundary. They represent the bindings
that make the superagent behave as a single cohesive entity.

In principle an observer could draw a line around any collection of agents and call it a
cell or composite superagent. This is an assessment any agent can make, as part of its
definition of an agency scale. However, it might still be of interest to distinguish special
criteria by which such an arbitration might occur. In component design, for instance, the
choice of boundary has often to do with the a choice interface an agent wants to interact
with.

Superagent interior configurations are composed from three basic categories (see
figure 5.8):

(a) A membership in a group or associative role, where the central membership
authority may be either inside or outside the boundary. In this case, we are
identifying a group of symmetrical agents.

5.8. THE SCALING OF REGIONS OF AGENCY 169

1

2

3

4

1

2

3

4

(a) (b) (c)

Figure 5.8: Three interior configuration patterns for binding agents into a collective agency.
Another way is to simply make an arbitrary collection, unified by the promises they make (called
a role).

Ahost
+membership−−−−−−−−→ {Atenant} (5.56)

{Atenant}
−membership−−−−−−−−−→ Ahost (5.57)

(b) A total graph or collaborative role. In this case, we are identifying agents with
coordinated behaviours.

Ai
±membership−−−−−−−−−→ Aj ∀Ai, Aj ∈ Asuper. (5.58)

(c) A dependency graph, path or story. In this case we are identifying dependency
bindings.

Let us now define the converse properties:

Definition 84 (Subagent). A sub-agent is an agent assessed to be a resident of the
internal structure forming a composite (super) agent.

Definition 85 (Residency). A sub-agent A is resident at a location L iff it is defined to
be within the boundary of the agent:

A∩L 6= ∅. (5.59)

170 CHAPTER 5. SPACETIME CONSIDERATIONS

Since an observer can form their own judgement about superagent boundaries, we
cannot say that residence is the same as a promise of adjacency.

There are two types of adjacency, somewhat spacelike, which may or may not be
interchangeable (see figure 5.9). Normal ‘physical’ adjacency promises, and resident
adjacency, which might link agents virtually even though they are not physically adjacent.
I’ll return to this topic when discussing tenancy below.

A B C D

Resident at AR
e
s
id

e
n
c
y

Adjacency

Figure 5.9: A resident adjacency forms a superagent by accreting to a seed agency that represents
the location anchor.

Lesser agents can become satellites of other agents. This leads to a hierarchy or
‘planetary’ structure, by accretion into superagents.

5.8.4 SUPERAGENT SURFACE BOUNDARY

Superagent boundaries may be formed with different structural biases.

• Simple aggregations of agents, related through membership to a single leader
(leader may be inside or outside the superagent), and the connections are made
through the leader as a proxy-hub.

• A cluster of agents linked by cooperative vector promises.

• Strongly cooperative agents which are inseparable without breaking an external
promise. E.g. an organism made of components that are all different and non-
redundant to the functioning of the whole.

Interior promises are those entirely within the surface boundary of a superagent.
We may define interior and exterior promise matrices for any agency, using a matrix

5.8. THE SCALING OF REGIONS OF AGENCY 171

analogous to the adjacency matrix:

Πint
ij =

1 iff Ai
∗−→ Aj

0

}
Ai, Aj ∈ Asuper (5.60)

Πext
iε =

1 iff Ai
∗−→ Aε

0

}
Ai ∈ Asuper, Aε 6∈ Asuper (5.61)

Definition 86 (Surface of a superagent). The exposed surface Σ of the agent is the subset
of interior/internal agents that have adjacencies to agencies outside the superagent.

Σ ≡ {Ai} ⊂ Asuper

∣∣∣ Πext
iε 6= 0 (5.62)

A superagent surface may also make new explicit promises that are not identifiable with
a single component agency (see section 5.8.13).

Example 64 (Molecules). In the molecular example above, the superagent makes interior
promises50

A1
+H−−→ ∗ (5.63)

A2
+H−−→ ∗ (5.64)

A3
+O−−→ ∗ (5.65)

from internal agents, and collectively M = {A1, A2, A3}

M
+H2O−−−−→ ∗ (5.66)

This promise implies some interior structure, and it does not emanate from any smaller
agent. Thus if an external observer is able to resolve the component agents within M ,
the promise of H2O is not longer a promise.

As noted in section 6.3.1, an observing agent may or may not be able to discern an
internal elementary agent within a superagent, i.e. whether the agent has internal structure,
or whether it is atomic. This depends on whether the agent promises transparency across
its surface.

Definition 87 (Superagent transparency). All promises whose scope extends beyond the
boundary pass transparently through the surface of the superagent. Scope includes the
list of promisees.

172 CHAPTER 5. SPACETIME CONSIDERATIONS

5.8.5 SUBAGENTS AS THE SUBJECT OF A PROMISE: EMISSION AND

ABSORPTION

An agent may itself be the subject of a promise body. Agents can conceivably promise to
spawn new agencies: cells multiply, particles transmute into clusters, humans give birth,
organizations spin off departments into new organizations, etc.

Assumption 3 (Emission and absorption, parent-child relationships). It is within the
allowed behaviours of an agent to emit (send) or absorb and incorporate (receive) a
child subagent, which has a formally distinguishable identity to the parent.

The exchange of a subagent as an independent promise implies the exchange of the
promises made by it too. However, there is no assumption about the promises having
been kept before or after the keeping of the promise to emit or absorb the subagent. This
might be reified later. The promising of an agent is thus somewhat like the passing of a
point reference, with possibly late binding.

Lemma 17 (Emission and residency). In order to not violate the autonomy of agents,
an agent Aparent could only make a promise to produce an agent Achild if, at the outset
Achild ⊂ Aparent i.e. resident.

The understanding that agents embody strings of information (with an arbitrary physical
realization) makes all of the arguments simple. An agent might spawn another, such as a
device Adevice emitting a network packet Apacket:

Adevice

+Apacket−−−−−−→ Anetwork. (5.67)

The agent referred to in the body can, in turn, promise another agent in its body, e.g. a
verifier of the checksum authenticator:

Apacket
+Achecksum−−−−−−−−→ Averifier. (5.68)

In order to be an intermediary, the exchanged package should promise to both sender
and receiver:

Achecksum
+structure−−−−−−−→ {Apacket, Averifier}. (5.69)

This does not necessarily imply the existence of a promise about another promise. A
promise of the existence of an agent has to result in an autonomous agent, by the rules of
promise theory.

Definition 88 (Emission of a body part).

Asuper
+Asub−−−−→ Arecipient (5.70)

Asuper
Asuper→{Asuper−Asub}−−−−−−−−−−−−−−−−→ Arecipient (5.71)

5.8. THE SCALING OF REGIONS OF AGENCY 173

Checksum

Packet

Device

Figure 5.10: Agents may be emitted if they start as residents.

Definition 89 (Absorption of a body part).

Arecipient
−Asub−−−−→ Asender (5.72)

Arecipient
Asuper→{Asuper+Asub}−−−−−−−−−−−−−−−−→ Asender (5.73)

The signs inside the set braces imply union and complement removal, i.e. set difference.

5.8.6 THE EXISTENCE OF A GROUND STATE

Is there an empty space? Is there a discrete lower bound on agency? Can we infer the
existence of a state of empty space in any system?

A
∅−→ A? (5.74)

Suppose there is a lowest level to the hierarchy of agency at which point no new intention
can be inserted. The promises made by the agent are purely names, since a name is a
promise that identifies the presence of the agent. A name or label cannot be subdivided
without simply resulting in more than one name, i.e. without increasing the number of
promises.

Hypothesis 1 (Lowest level of hierarchy). There is a level at which names cannot be
subdivided without losing the ability to function and be understood (or connected to).
The ground state is a gaseous state of maximal symmetry. At this level, the only promise
that an object can make is its name (this is a tautology).

Does an agent that makes no promises even exist? As mentioned in [Bur14], it is
completely disconnected from the rest of a space, so we may consider it either to be
non-existent relative to an existing spacetime, or be an entirely separate spacetime51. If
we do not allow a complete absence of promises, then this suggests that empty spacetime
must, at least, promise adjacency. That is, empty space requires at least a promise of
adjacency. The promise might not be kept all the time, however, as is the case in a
gaseous phase. This issue need further study.

174 CHAPTER 5. SPACETIME CONSIDERATIONS

5.8.7 AGENT SCALES

Superagency is a scaling transformation, in the sense of a dynamical system. It is
therefore an important bridge between dynamics and semantics, with consequences for
both. Because promises incorporate semantics, which may be arbitrarily applied to a
collection of agents, boundaries for superagency may be defined around any collection
of agents.

Definition 90 (Agency scale). A named collection of agencies considered to be the
irreducible entities of space, i.e. it defines a set of possibly aggregate atomic agencies
that are to be considered the set of addressable agents at the scale concerned.

Unlike dynamical scales, there is no a priori identifiable measuring stick for semantic
scales: they are non-ordered symbolic quantities, and must be promised independently
by an observer, by promise types and body constraints. An agency scale is a thing
in between a semantic scale and a dynamical scale. The identification of agency is a
semantic issue, but the scale is a well-defined dynamical unit.

Example 65. Suppose we have atomic agentsA1, A2, A3, which make exterior promises:

A1
+H−−→ ∗ (5.75)

A2
+H−−→ ∗ (5.76)

A3
+O−−→ ∗ (5.77)

and interior promises

A1
+e−−→ ∗ (5.78)

A2
+e−−→ ∗ (5.79)

A3
−e,−e−−−−→ ∗ (valency 2) (5.80)

We may combine these agents into a superagent by defining a scale:

Molecular ≡ {M}, (5.81)

where M ≡ {A1, A2, A3}. At the molecular scale, we now have a single superagent A,
instead of three resolvable atomic agents.

Example 66. Consider figure 5.11.
At the level of atomic agents, we have exterior promises:

π1 : A1
+b1−−→ A5 (5.82)

π2 : A2
+b1−−→ A5 (5.83)

π3 : A4
+b2−−→ A5 (5.84)

π4 : A4
−b3−−→ A6 (5.85)

5.8. THE SCALING OF REGIONS OF AGENCY 175

v
s

v

s

s

s

s

S
R

A

A

A

A

A

A

A

3

1

2

4

6

5

7

+b1

+b1

+b2

−b3

Figure 5.11: The transformation of promises under a coarse-graining transformation. How
promises appear to emanate from the superagent surface.

and interior promises

π5 : A3
+b4−−→ A2 (5.86)

π6 : A2
+b5−−→ A4 (5.87)

π7 : A6
+b6−−→ A7 (5.88)

The superagents are defined by:

S = 〈{A1, A2, A3, A4}, {π5, π6}〉 (5.89)

R = 〈{A5, A6, A7}, {π7}〉 (5.90)

Scales have to be defined semantically in a promise model, since the interpretation of an
aggregate boundary is arbitrary; thus, if we define the following scales:

Atomic = {A1, A2, A3, A4, A5, A6, A7} (5.91)

Hybrid = {S,A5, A6, A7} (5.92)

Super = {S,R} (5.93)

Then, at hybrid scale, the promises (5.82-5.88) above collapse to:

S
+(b1∪b2)−−−−−−→ A5 (5.94)

S
−b3−−→ A6 (5.95)

and at super scale:

S
+(b1∪b2),−b3−−−−−−−−−→ R (5.96)

176 CHAPTER 5. SPACETIME CONSIDERATIONS

Example 67. The human eye is an example of a coarse grained receptor, i.e. a use-
promise to accept radiation in certain frequency range. Light emitted at all frequencies
in the range may be promised by emitters; however, only three coarse receptors (for
red, green, and blue) cover this range. Thus colour vision in humans is limited to
interpretation through these three channels.

5.8.8 GAUSS’ LAW FOR PROMISES

The divergence theorem (Gauss’ theorem) is a simple universal identity that applies to
vector fields enclosed by a boundary. We may apply it to vector promises too. In its
well-known form, if may be written:∫

σ

~V · dσ =

∫
v

(~∇ · ~V)dv (5.97)

i.e. the integral of vector flux emanating from a surface σ is the result of the divergence
of the vector field generated from the volume enclosed by it.

Using definitions for unadorned graph theory, we can show that a coarse graining
is a simple application of this result. In other words, the promises that come out of any
volume or grain of space are only a result of what agencies are inside it. Consider a grain
consisting of a number of agents with a surface boundary, and let

πij = πint
ij + πext

ij . (5.98)

We observe that πij is the j-th component of a local basis vector êj , surrounding any
agent Ai. We can define a vector field in this basis by

~π(Ai) =
∑
j∈

bij êj =
∑

j∈grain

bijπij , (5.99)

where bij is the body (semantics) of agent Ai’s promise to agent Aj , where i, j run
over all agents (or just the nearest neighbours of Ai) that are picked out by πij . The
components of the ~π(Ai) as a row vector are thus easily constructed:

~π(Ai) = (bi1, bi2, . . .). (5.100)

The values are not really important, as long as they can be defined, since they will cancel
out of the sums. The derivative of this vector is anti-symmetric in i, j:

~dj~π(Ai) = (b(i+j)1 − bi1, . . .) (5.101)

and thus the divergence is the sum of these where i = j. It is thus easy to see that the
sum over the volume enclosed by any grain surface cancels everywhere except for those

5.8. THE SCALING OF REGIONS OF AGENCY 177

vector components that protrude through the surface:∫
d(vol)

∑
i

(~di · ~π(Ai)) = 0 + exterior contributions (5.102)

=
∑

i∈surface

(biεi , . . .) · ~σ (5.103)

=
∑

i∈surface

~πext(Ai) · ~σ (5.104)

where ~σ is the unit surface vector. This is exactly (5.97) for ~V = ~π, summed over the
grain. i.e. ∑

i∈surface

~π(Ai) =
∑

ε∈neighbours

~πext(Aε) (5.105)

5.8.9 COARSE-GRAINING AND AGGREGATION

Coarse-graining is what happens when one invokes a change of scale from a high level
of detail to a low level of detail, i.e. from a large number of smaller agents to a smaller
number of larger agents, by aggregation. This is usually done for systems assumed to
have infinite detail, in the so-called continuum limit.

In a discrete system, it is straightforward to define a coarse graining by aggregation of
autonomous agents into collections. In physics (dynamically), one does this by defining
characteristic lengths (see the discussion for pseudo-continuous information in [Bur03]).
In a semantically labelled theory, there are no such easily defined lengths, and we are
forced to define granular scales explicitly as sets, see definition 90 (section 5.8.7).

Definition 91 (Coarse-graining). A transformation in which the collection of agencies
representing spacetime are changed for a smaller set, with a corresponding reduction in
detail. Coarse graining involves:

• The summation of bulk properties, and relabelling of composite superagents by a
single collective label.

• The elimination of all interior promises, which are not visible between the agents
at the coarser scale.

• Loss of information to exterior from the above.

In a spacetime without boundaries, we identify self-similarity by the idea that a
system is functionally and dynamically similar in its promises and behaviours, before
and after coarse-graining by the coarse graining function:

178 CHAPTER 5. SPACETIME CONSIDERATIONS

Definition 92 (Coarse-graining function). A many-to-one function whose domain is
the semantic spacetime 〈{Ai}, πMij 〉, composed of a collection of agents {Ai} at scale
M , along with its promise matrix πMij , and whose co-domain is the image doublet
〈{Sk}, πM

′
kl 〉, at scale M ′:

〈{Ai}, πMij 〉 → G(〈{Ai}, πMij 〉) = 〈{Sk}, πM
′
akl〉 (5.106)

where i, j = 1 . . .dimM , and k, l . . . dimM ′, where dimM ′ ≤ dimM

The function G() is a dimensionless renormalization transformation. Scale-free behav-
iour can not usually apply to a bounded space, as boundaries pin the system at a fixed
scale. It might still be possible to compute effective equations for dynamical systems
however[Bar96, Bar03]. Two spacetimes may be considered equivalent iff:

Definition 93 (Spacetime equivalence function '). The equivalence of two semantic
spacetimes designated by 〈{Ai}, πMij 〉, and 〈{Sk}, πM

′
kl 〉 may be written

〈{Ai}, πMij 〉 ' 〈{Sk}, πM
′

kl 〉. (5.107)

where there exists a permutation group relabelling of i, j → k, l πMij ≡ πM
′

kl and dim
M = dim M’.

The transmission of influence by promise exchange is a dynamical property that
must also be affected by coarse graining. This is the essence of the Renormalization
Group in scaling systems[Bar96]. When a coarser grain size influences a smaller grain
from the top down, it takes the form of effective boundary conditions on the behaviour of
the smaller scale. This tends to introduce non-linearity, as it modifies the propagation
law for behavioural trajectories. If a smaller scale interacts with a larger scale, from the
bottom up, it takes the form of a perturbation, which probes the stability of the larger
grains.

There is no a priori connection between scale and influence; this depends, as usual,
on what exterior promises are made by the agencies regardless of grain-size. Multi-grain-
size models are perfectly possible. Indeed, they are the natural state of materials like
steel and plastics.

Let’s examine the coarse graining of interior and exterior promises. Which promises
are lost through coarse graining? Effective external promises, made by a superagent, have
their origin in the internal constituent agents, but they do not preserve all of the internal
details, and they might add new ones (see section 5.8.13). In order to scale agency, we
therefore need to understand the scaling of both interior and exterior promises, and how
they preserve the semantics of a system during a scaling transformation (see figure 5.12).

5.8. THE SCALING OF REGIONS OF AGENCY 179

Figure 5.12: Agent coarse graining. If there is a mismatch in scale between promiser and
receptor (if the screwdriver is too big to fit the screw), the promise might not make sense. In some
cases, it might be possible to build a large scale solution from smaller grains, but not vice versa.

Example 68. The chemistry promised by an atom does not depend strongly on the nature
of the isotope of a chemical element, only on the electron structure. Thus electron shells
made exterior promises from the surface of the agent.

5.8.10 COARSE-GRAINING DIRECTORIES

How could we restore the transparency lost under coarse graining? Promise Theory
predicts the obvious answer: a lookup table, or directory. Promises that remain exterior to
a given grain, under a coarse graining process, may be combined under the idempotency
rule for promises, and the combinatorics between common end-points. Hence promises
of the same type will merge into a single maximal promise, defined below.

It remains possible for a single agent (coarse or fine grained) to make different
promises to multiple recipients. These cannot be combined. However, promising from
different subagents to the same recipient becomes an instance for the idempotence rule
once the difference between the promisers is coarse-grained away. Promises with uniform
promisees are idempotent, or cumulative by virtue of the set union. The general scaling
rule for promisers is thus:

180 CHAPTER 5. SPACETIME CONSIDERATIONS

Definition 94 (Scaling rule for promiser). Let bi be a set of promise bodies of the same
type, i.e. τ(bi) = τ, ∀i, originating from a set of distinct agents Ai. Then we may define
the coarse graining of the set of agents, over constant τ, ε, by:

Gn

(
A1

b1−→ Aε, . . . , An
bn−→ Aε

)
= Gn (A1, . . . , An)

maxi({bi})−−−−−−−→ Aε

= Asuper
maxi({bi})−−−−−−−→ Aε (5.108)

where max(xj) represents the union of the sets pertaining to set xj intended for agent
Aj:

max(xi) ≡
⋃
i

xi. (5.109)

Not this rule does not depend on the sign of the promise body bi.

In other words, the coarse-graining of a set of promises is equivalent to a possibly smaller
set of aggregate agents, which promise the composite effect of the individual promises.
The total number of promises is reduced from n to 1 in this coarse graining.

A coarse-graining procedure is not a bijection, i.e. it is not an invertible map or
function. When a coarse graining of promisers is undertaken, information about the
specific fine-grain promises is lost. In order to reverse a coarse-graining process, we
would have to preserve the information lost.

Definition 95 (Coarse-graining directory). The information lost during coarse-graining
in equation (5.108), takes the form

πdirectory(τ) =
{
A1

b1∈β1−−−−→ Aε, . . . , An
bn∈βn−−−−→ Aε

}
(5.110)

for promises of type τ , expressed in language β. Hence, whenever we group agents under
a common umbrella, by coarse-graining, there will be associated map, of the form,

〈τ, πdirectory(τ), β〉, ∀τ, (5.111)

that preserves the lost information, and could restore the detailed view of which subagent
is able to keep a promise perceived at the level of the whole. This is the information that
becomes unavailable at the coarser scale52. We may call such a map the superagent
directory or index map, and write its promise:

A
+directory(A)−−−−−−−−−→ A′ (5.112)

Coarse-graining replaces πdirectory(τ) with a single promise of type τ , and an
effective promise body. So, for each external promise of type τ(bi) = τ, ∀i, coarse-

5.8. THE SCALING OF REGIONS OF AGENCY 181

graining leads to a surjective map, between the collection of promises made by subagents
and the single effective promise made by the superagent. This map cannot be inverted,
however it can be resolved to direct the external agent to an appropriate microscopic part
of the superagent.

Lemma 18 (Resolvability of superagent detail). LetAsuper be a superagent at scaleM1,
formed by coarse graining promises at scale M0. From in equation (5.108), we see that
the information lost during coarse-graining M0 →M1, takes the form of a collection of
promises called a directory or index πdirectory(τ). By preserving, this directory we may
expose and resolve the scale M0 under M1:

πM1 + πdirectory(τ) ≥ πM0 . (5.113)

How an external agent resolves a microscopic inspection of a superagent will be discussed
in section 7.8.2.

5.8.11 PROMISEE COARSE GRAINING

For scaling of the promisees, the scaling rule is simpler than for the promiser. It basically
amounts only to a redefinition of scope. Information about the scope within the promisee
is lost to coarse-graining, but can be restored by using the coarse-graining directory
(section 5.8.10), through scale transduction (section 7.8.5).

Definition 96 (Scaling rule for promisee).

Gn

(
A1

b1−→
σ

Aε1 , . . . , An
bn−−→
σ

Aεn

)
= A1

b1−−−−−→
Gn(σ)

Gn (Aε1 , . . . , Aεn) , . . .

. . . , An
b1−−−−−→

Gn(σ)
Gn (Aε1 , . . . , Aεn) ,

= A1
b1−−−−−→

Gn(σ)
Asuper, . . . , An

b1−−−−→
Gnσ)

Asuper,

(5.114)

and Gn(σ) is obtained by replacing any Aε1 . . . Aεn with Asuper.

In other words, the coarse graining of a set of promises, in which only the promisees
are aggregated, leads to the same set of promises (because promises originate from the
promisers), made to the smaller set of aggregate agents, with only loss of detail and
possibly redefined scope. This is now a question of definition, as the information about
specific promisees and scope membership is lost as agents are aggregated.

182 CHAPTER 5. SPACETIME CONSIDERATIONS

5.8.12 INTRA-AGENT LANGUAGE UNIFORMITY

The assumption of the previous sections has been that every agent shares a single uniform
language. As superagency forms by aggregation of parts, there is nothing to constrain
the language inside the superagent boundary. Hence, we must expect linguistic diversity
inside a superagent, limiting the interactions on the interior.

Definition 97 (Language of a superagent). For the purpose of all exterior promises, the
effective language of a superagent S must be considered the union of all sublanguages:

βsuper =
⋃
i

βi, (5.115)

where i = 1, . . . , dimS. The promised language will only be understood with a reduced
probability however, since the coverage by subagents is non-uniform.

This information about linguistic diversity is also lost under coarse-graining, hence it
must become part of the coarse-graining directory.

5.8.13 IRREDUCIBLE PROMISES AT SCALE M , AND COLLECTIVE

BEHAVIOUR

In addition to the exterior promises, which emanate from composite superagencies, as
the remnants of microscopic promises belonging to component subagencies, we may also
observe that completely new promises are possible at each scale, which do not belong to
any specific agent inside the surface.

Definition 98 (Irreducible superagent promises). Let M be an agency scale, and As be
a superagent formed by an aggregation of agents. A promise with body bs made by As

πM : As
bs−→ A? (5.116)

As = {Ai, . . .} (5.117)

may be called irreducible iff there is no set of subagents Ai ∈ As, for which

bs ⊂
⋃
a

ba, a = 1, . . . all promises to A? (5.118)

where ba are existing bodies promised to A? by Ai, and Ai 6= As.

In other words, if there exists a combination of promises made by one or more subagents
(and we assume that the subagent is not the same as the superagent), then that is semanti-
cally equivalent to the full promise made by the composite agent, when one could say

5.8. THE SCALING OF REGIONS OF AGENCY 183

that the superagent promise could be reduced to the promise of one of its components.
As long as no single agent, working alone, can make such a promise, it makes sense to
talk about the collective superagency making a new promise that is not explicit in the
capabilities of its subagencies. Thus, irreducible promises at scale M take into account
emergent effects, and collective effects of agent interactions.

receiver

loudspeaker

listener
listener

loudspeaker

receiver

battery

battery

radio

radio

Figure 5.13: A radio is an example of a composite ‘super’-agent, with interior agencies and
promises of circuit connectivity, and exterior promises to play music. The radio and listener
define one agency scale, but the components and a repair engineer could form another. Scales of
interaction are not necessarily subject to uniform coarse-graining in a world of semantics.

Example 69. A radio is a composite agent that makes the exterior promise of playing
radio signals on a loudspeaker (see fig 5.13). Interior promises are made by many
component agents like resistors, capacitors, transistors, etc. The radio has a semantic
surface which interacts with people as promisees53. Does this mean that the components
inside the radio have to interact with the components inside a person (cells, organs etc)?
Not really. Implicitly, this might be partially true by the distributive rule, but clearly that
is not a requirement. Any agency can interact, semantically, with any other agency at
any agency scale, provided there is a physical channel for the communication to work.

Irreducibility is thus a result of collective phenomena in the underlying semantics
and dynamics. The latter answers classic objections against the naive reductionism
of systems. Yes, we can decompose systems into a sum of parts, but one must not
throw away the promises when doing do, else it will not be possible to reconstruct both
semantics and dynamics. This is a consequence of boundary information or systemic
topology.

The form or collective identity of a superagent can be enough to signal a promise, by
association. This is an emergent promise in the sense of [BB14a], i.e. one inferred by a

184 CHAPTER 5. SPACETIME CONSIDERATIONS

potential promisee rather than given explicitly by an agency. Nevertheless, some scaled
objects do make promises: tables, chairs

Law 1 (Reduction law). When reconstructing a system from components from finer-
grained scale M ′ to a scale M , all superagencies at scales below M , and their compo-
nent promises must be retained in order to reconstruct the system as the sum of its parts.
This is achieved if each superagent promises its coarse-graining directory, providing
dynamic transparency.

Thus increase of detail downwards may not be at the expense of loss of upward irreducible
information. If we try to view a compound agent as a collection of parts, with component
promises (on the interior of the superagent), the component promises revealed do not
replace the high level exterior promise: they are simply prerequisites for it. The only
reason to disregard irreducible promises belonging to a coarse grain is because one is
focusing on the internals of an agent in isolation (what one calls a closed system in
physics).

If a superagent has no agency of its own, how can it make a promise? Clearly, a
collection of agents has agency through its members, and these may or may not have
the ability to keep promises related to scale M . So where do promises come from in a
superagent?

• + promises: the collective appearance of a superagent, at a certain scale, must
provide the information to signal a promise. The declaration of the promise may
or may not come from a single agent. The keeping of an irreducible promise
does not come from a single agent, by definition. New irreducible promises are
dependent on the individual agents, only through their cooperative behaviours.

Example 70. A troop unit promises to surround a house (+ promise). The troop
leader can make the promise on behalf of the group, but no single agent can keep
this promise, but collectively they can. In this case, the promise would often be
given by a team commander, with a centralized source of intent, and subordinate
agents. However, a team can also arrive at this promise by cooperative consensus.

• − promises: a promise to accept another promise, made by an external agent,
might only apply to certain subagents with the appropriate capabilities. It must be
provided as an exterior promise based on the by cooperative agreement amongst
the agents.

Example 71. The Very Large Array of radio telescopes in Mexico has 27 receivers.
Each receiver (- promise) is coordinated with the others so that they act as a
single superagent. No single agent can see what the full array can see working

5.8. THE SCALING OF REGIONS OF AGENCY 185

together, up to diffraction. Hence the combined array can make promises that
individual agents can’t.

A superagent’s agency is thus conditional on the existence of its subagencies, even though
its promises are not locatable in any single agent. In both cases above, the promise made
by a superagent could not be made by a single agency (this is what we mean by a ‘host’),
or by distributed consensus. Irreducible promises are thus conditional, not only on the
uniform cooperation of the subagents about a single promise, but on their making all the
promises that indirectly lead to the irreducible property.

Lemma 19 (Irreducible promises are conditional promises, for all scales greater than
M0). Irreducibility is not expressible directly as a sum of component promises of the
same type as the irreducible promise, but it is second-order expressible in terms of
subagent promises, by building on the existence of these contributing promises.

With no promises to build on, a collective agent cannot make any kind of promise, since
nothing can be communicated, and it has no independent agency. Crudely, a superagent
is indeed the sum of its parts, as far as agency and promise-keeping are concerned; but, it
is not merely a direct sum as new promises are possible through cooperation.

If the scope of exterior promises extends to the interior of a superagent boundary,
that scope becomes ambiguous under coarse-graining. External observers can no longer
see which agents are make or receive the interior promises, nor is there any way to refer
to them independently after coarse-graining. Observers can only assume that the scope
of a promise includes all subagents, but this might not be the case, and might result in
erroneous expectations. Indeed, there is no reason why the subagents would even all use
the same body language. We explore this more in section 7.8.1.

5.8.14 SCALING OF PROMISE IMPACT, AND GENERALIZED FORCE

As we scale agency to deal with larger entities, it seems unreasonable to expect the
impact of a single promise from a subagent to have the same impact on the superagent as
on the microscopic parts before coarse-graining. When might we be able to disregard a
promise? If system is stable, i.e. small influence leads to small effect. Without going
into too many details, I’ll sketch how this can be dealt with.

Example 72 (Density scaling effect). In dynamics, one has the notion of a change
of momentum (a force), as well as pressure (force per unit area). The way force is
distributed over a region is important to how agents share the impact. It’s important
to construct such a notion of force density or pressure for promises too. However, we
would note that even though momentum transfer alters in magnitude, the semantics of

186 CHAPTER 5. SPACETIME CONSIDERATIONS

momentum transfer do not change, i.e. Newton’s law of momentum conservation does
not change.

Example 73 (Scaling of rights). Some rights and freedoms, in a society, that seem
innocent enough can become a public nuisance if the population density grows too large,
e.g. urinating in public, allowing stray dogs, crime, even certain forms of speech such
as hate-speech. All these are unproblematic as long as they are sparse events, but like
all queueing processes their significance grows non-linearly with frequency. Extremely
populous regions are thus likely to regulate behaviour more than sparse regions.

An effective force (see section 6.3.1) is one possible measure of impact. It’s attraction
is that it works for semantics and dynamics, though it is clearly modelled after physical
dynamics. If we tried to scale this relation, we would scale the promises first, but then
we also need to scale the assessment function. I’ll leave that exercise for another time, or
as an exercise to the reader.

The coupling of one scale to another has some coupling strength which depends
on or describes the transmission effect of information between agencies. In physics we
have the law of conservation of momentum as the currency of influence, and energy as
a ‘stored wealth’. For semantics, we need an impact if intent where intent is preserved,
but not necessarily outcome. This is more analogous to the conversation of charge in
physics.

There is thus a reasonable algorithmic procedure for progressively disregarding the
impacts of certain promises relative to the scale of certain agencies, as we coarse-grain a
system.

The characterization of weaknesses, cracks, and defects, in spatial promise structures,
is an obvious follow-up question to this notion of semantic impact. If two superagents or
subspaces come into contact, could there be catastrophic outcomes by which one region
might not be able to withstand the influence of the other? This introduces concepts
like dynamical stability and material failure. Here, instability transduces the smallest
dynamical effect into the largest semantic importance.

5.9 PROPAGATION OF INFLUENCE BY STATE MESSAGES

We see that state does not lead to influence unless it is observed, and there are conditional
promises that use it to promise conditional behaviour. This is the behaviour of a ‘switch’.

We can now think about this in terms of dependencies. In order for remote state to
affect a local process, a source agent has to share it, then the receiver has to observe,
accept it, and subsequently alter its behaviour according to it (see section 5.10.2).

5.9. PROPAGATION OF INFLUENCE BY STATE MESSAGES 187

From section 7.7, what we call the beginning and end of a process is a scale-
dependent characterization. We make a choice about which agents we want to include at
a given scale. The common understanding of processes has some basic elements however.
Each process has a lifecycle of major states that characterize it, which we can call epochs
in the lifecycle of the process.

• Definition (of promises).

• Initialization of resources (Initial state).

• Execution (keeping promises).

• Termination (Final State).

This is basically the same model one has of any dynamical system in mathematics or
physics. It maps on to the equivalent, e.g. think of solving differential equations:

• Definition the equation.

• Initial boundary condition.

• Find the propagator that computes the derivative states.

• Final boundary condition.

These are the major elements we use to describe the causality of a system, and fix its
trajectory.

In a cloud setting, these correspond to

• Building software

• Configuring software settings

• Executing the software (runtime)

• The desired end state (outcome)

There is state in each of these epoch timescales. We are free to redefine the placement of
changes. e.g. keeping code or configuration invariant during execution, or to write code
or configuration that rewrites itself (as in learning systems).

188 CHAPTER 5. SPACETIME CONSIDERATIONS

5.9.1 SCALING OF LOCAL STATE

A proper discussion about the localization of state can only made with reference to a
theory of scaling. What is local at one scale is composed of many locations on a smaller
scale54? We therefore need to decide on the agents, or units of localization: what do we
mean by entity, agent, location in a given context? As mentioned above, a certain locale
could refer to anything from single chip register or a distributed database, depending on
the author’s state of mind!

Computer processes are made up agents, which are discrete processing units. They
sometimes work together in clusters—represented here as superagents. By making
promises, they form many patterns such as client-server interactions, data pipelines,
object models, microservices, container pods, backup servers, redundant failover, etc.
Promise Theory provides a simple view of scaling, based on boundary semantics, that
easily accounts for the cases found in IT[Bur15a]. We can thus ask, to what extent
are promises (e.g. about state) within or without of a boundary? Is state implicated in
decision-making at the level of a conditional promise on the interior or exterior of an
agent boundary? How is state implicated in propagation of assisted promise-keeping?

Locality refers then to the ability to draw a semantically defined boundary around
an agent (i.e. one based on what it promises rather than based on where it happens to
reside) and decide what is on its interior (local) and what is exterior to it (non-local).
Every system of agents that interacts with other agents breaches its boundary or grows it
to accommodate new members, so the definition of a system ‘module’ is always an ad
hoc matter. Modules are often chosen based on functional separation in IT55.

Part of the confusion in the colloquial use of ‘stateless’ is that ‘state’ itself refers
an implicit and specific scale for many authors, namely whatever favoured object they
happen to be working on (i.e. a location like a programming class, a process container, a
cluster, or a host computer). Software engineering does not teach practitioners to think
across multiple scales. State may therefore refer to all scales, from interior microstates to
aggregate macrostates, and refer to real or virtual space. In order to observe and measure
state, it needs to persist relative to the process that samples it (i.e. for some finite number
of samples or duration of proper process time). Different processes tick at different
rates, and interactions often lead to waiting. The issues of observation were discussed in
[Bur19a].

A notion of ‘total state’ may be accumulated over many interactions, either laterally
across many redundant concurrent processes, or longitudinally over multiple similar
interactions, such as in data collection and machine learning applications. Already it
seems clear that we need to distinguish different kinds of state and that the intended use
of the data play a part in what is objectionable about statefulness to some authors. If we
think of sampling as an information channel, in the Shannon sense, then the separation

5.9. PROPAGATION OF INFLUENCE BY STATE MESSAGES 189

of timescales amounts to partitioning process samples into different channels according
to the timescales over which we assume that certain state we rely on will be invariant, i.e.
constant with respect to multiple samples.

5.9.2 STATE LOCALIZATION AT DIFFERENT SCALES

If we redefine the agent boundaries or partitions of a system, we can shift state formally
from one location to another, but we can’t do so without altering the promises kept by
the outer boundary. This assumes, naturally, that state is depended on for a purpose. Free
state is irrelevant baggage.

We can try to summarize statelessness without referring to a particular case, like
client-server or data pipeline, or even to a particular scale, while—at the same time—
unifying semantics and dynamics for the process:

Definition 99 (Locally stateful). A locally stateful process is one in which memory is kept on
the interior of a process agent or superagent cluster. This memory is promised for as long as the
process agent’s dependent exterior promises persist, and access to process memory occurs over
interior channels.

application boundary

V

π()V

state

mediating
agents

partition

exterior

promises

interior
promises

π()

Figure 5.14: A partitioning of a process ‘entity’ or superagent. Within its semantic boundary
there are stateful parts and stateless parts. Should we argue these as separate or integrated? The
exterior promises are conditional on the interior state dependency, but the mediating agents are
stateless (memoryless). This approach was used in Kubernetes, for example, where container
services were initially assumed weakly stateless, with possible database services partitioned into
separate containers and storage services. Later, this was rationalized to weaken the claim of
statelessness.

190 CHAPTER 5. SPACETIME CONSIDERATIONS

Definition 100 (Non-locally stateful). A non-locally stateful agent is a composite agent,
in which any persistent process memory accumulated over the history of interactions
is partitioned and kept independently of the agent mediating an exterior conditional
promise (see figure 5.14). The mediating agent is then merely a conduit for state that
persists in an agent belonging to a ‘backing’ process partition. The loss of the mediating
agent does not incur a loss of partitioned process memory for the collaboration.

This deliberate indirection—pushing state out of one agent and into a dependency—
seems to implicitly reference shared resources and risk mitigation, not whether state is
promised or used56. So reference to state is a red herring for intended purpose, and it
conceals assumptions about the timescales and number of times over which the state will
be used before it changes. Such matters are critical and therefore the assumptions are
unacceptable.

final state

causation

+R | c−c
A

CLIENT

states

intermediate

SERVER

BACKEND

dependent promise

dependency

initial state

Figure 5.15: Conditionality is causality. The states that are causally implicated in a conditional
promise include initial state, including code and prior configuration; then there is runtime state
and shortlived intermediate computational state, which may be reconstructible from code and
inputs. All these combine to an output that may be strongly or weakly dependent on the full set:
how many intermediate states are involved in computing a virtual transaction? Is the scope of
that state private or shared between distinct exchanges? These are all questions of process scale.

The key question about state, then, is not whether it is retained, but rather whether or
not it is used as a dependency in the keeping of a larger promise. If the loss or latency of
such state gets in the way of a larger dependent promise being kept, then one would be
better served by a collaborative architecture in which that risk may be mitigated. The
term ‘shared nothing architecture’[Sto86] is more accurate than ‘stateless’ to address this.
It implies a form of sharding or partitioning of agency in a system: possibly at either
the client side or the server side. Both ends can end up having to deal with inconsistent
promises57.

Whether we keep state in primary RAM memory rather than in secondary disk

5.10. STATEFUL (MEMORY) PROCESSES 191

storage or even tertiary services like databases is not the issue. The issue is how do we
depend on it, i.e. what happens if it’s lost. What sources do we trust to keep stable
promises?

Unfortunately, a ‘shared nothing’ partitioning of dependencies to localize causal
interference has its own problems. A set of services (e.g. for web, database, and storage)
is already made up of separate processes, even if they run on the same host, or with the
same common storage. Just how much separation is ‘shared nothing’? If they all share
a common purpose, then they must be connected by something. Should we wrap them
in layers of virtualization (containers, virtual machines, etc), or run them on different
hosts, in different racks, in different datacentres? By handing off state to another agent
that serves it up as a backing service, we only introduce a new shared dependency.

Example 74 (Containers and firewalls to prevent harm). We often try to protect ourselves
from the ravages of ‘complexity’, i.e. the unwanted propagation of causal influence,
by trying to build boundaries to prevent propagation. This may or may not succeed.
When systems have complex networks of causation, predicting a final stable state may
be practically impossible. Boundaries may help to assure local predictability, but they
may also cripple the intended function of a system as consequence (this was a common
complaint of security standards known as STIGs for US government).

5.10 STATEFUL (MEMORY) PROCESSES

We can now put these key elements together to understand causal dependence, or chains
and transition matrices across networks of agents. What’s key about a process is what
invariant information we have to constrain its trajectory. Initial and final conditions are
the available external fixed points. The process rules (promises) may also implicitly
contain fixed point behaviour such that the process converges to a ‘desired state’.

When processes depend on one another, they observe one another’s states. The
amount of memory they have, internally, defines the extent of their dependence on their
own causal past or future, both as memory for storing their program and for representing
decisions as a ‘log’ or ‘journal’ of prior states.

5.10.1 TIME DEPENDENCE AND MEMORY PROCESSES

Processes that do not depend on any recent history do not need to carry their own
clocks. In other words, they don’t need to carry the memory of previous states with
them as part of their processing. Such processes can be called memoryless. We can
supply an invariant definition of memorylessness using stochastic processes. The term
‘statelessness’ is sometimes used to refer to memorylessness in the sense of a Markov

192 CHAPTER 5. SPACETIME CONSIDERATIONS

process: the dependence on current state is inevitable as long as there is input to a process,
but dependence of behaviour on an accumulation of state over many iterations is what
people usually mean by stateful behaviour.

Variables are embedded agents that keep simple promises to remember a value. A
stateful process accumulates parametric data over a number of interior times t0, t1, t2, . . .,
so that we could write each promise made by the process as a function of all those times:

π : A
+V [d(t0),d(t1),...] | d(t0),d(t1),...−−−−−−−−−−−−−−−−−−−−−→ A′

' A
+V [d(t)] | d(t)−−−−−−−−−→ A′ (5.119)

which schematically means that

∂π

∂d
6= 0, (5.120)

∂π

∂t
6= 0. (5.121)

i.e. the promise made by the agent is not constant over the interactions it promises. The
memory d(t) is accumulated from some initial time, making the promise evolve. This is
called a memory process. The converse of a memory process is a memoryless process. A
memoryless process may be constant in time, or it can depend on only that last known
state, like a ballistic trajectory (imagine billiard balls whose change in behaviour is
entirely determined by the last ball to strike them)58.

Memoryless processes are also called Markov processes (see figure 5.15). Their
behaviour is ‘ballistic’ in the sense that the arrival of a prerequisite state effectively
triggers the release of what is promised by each agent. A Markov process is usually
described as a chain of agents that satisfy a condition about random processes, and based
in probabilities[GS01].

Definition 101 (Markov Chain). Let Xn be a discrete random variable, for non-negative
integer n = 0, 1, 2, . . ., taking values in {x}.

P (Xn = s | X0 = x0, . . . , Xn−1 = xn−1) =

P (Xn = s | Xn−1 = xn−1) (5.122)

for all n ≥ 1 and s ∈ {x}. A Markov process has a transition matrix or scattering matrix for the
discrete set of states Xn:

T
(n)
ij = P (Xn+1 = j|Xn = i) (5.123)

If this transition matrix is independent of n, i.e. T (n)
ij = pij , for all n, then the chain is said to

be homogeneous or translationally invariant.

5.10. STATEFUL (MEMORY) PROCESSES 193

Probabilities, in the usual sense are globally defined, but we can replace them with
assessments in Promise Theory, which are the local equivalent. Each observer agent O
in a system may form its own assessment αO(π) of the probability that a promise π will
be kept, for any definition of probability. Then the above definitions apply for any local
observer by the association:

O
(n)
ij = αO(Xn+1 = j|Xn = i). (5.124)

In a Markov scattering process, each input leads to a unique output by a fixed rule.
The scattering doesn’t depend on the order of the inputs nor their relative frequencies.
The scattering matrix does not remember past inputs; everything depends on the last one.
This makes the scattering agent autonomous or causally independent59.

Definition 102 (Causally independent). An agent is causally invariant under a promised
influence x if it does not depend on a parameter x, so that.

x→ x′
implies−→ V (x) = V (x′), ∀x, x′. (5.125)

In a quasi-differential shorthand, we might also be tempted to write:

∂V

∂x
= 0. (5.126)

Finally, we should note that this should not be taken to mean that V is differentiable, as
no such mathematical property exists in the real world, but we can construct state space
extended generalizations that include averaging, and so on, so I’ll ask the forbearance of
readers and follow common practice and use this as a shorthand for the expression of
independence of V on some parameter x. For a popular discussion of the meaning of
this, see [Bur13a].

5.10.2 SHORT MEMORY PROCESSES: LINEARITY

A perspective, which addresses increasingly popular ideas about complexity and chaotic
behaviours, is process linearity. Linearity is related to weak coupling, and addresses the
relative scales of process interactions (see [Bur19a]). Non-linearity is associated with
memory behaviour—behaviours in which past interactions change the system so that
new interactions experience a modified system. This is learning behaviour. A non-linear
process cannot simply be replaced or restarted without access to a complete history of
interactions, synchronized for all times, because it’s outcomes depend on that unique
memory of interactions. Non-linear agents cannot be redundant, as their unique histories
distinguish them.

A system may be called linear if it comprises conditional promises that are Markov
processes of order no greater than 1 (Markov processes are described in the appendix). In

194 CHAPTER 5. SPACETIME CONSIDERATIONS

other words, if the process is independent of past inputs to a scale that goes back n > 1

samples into the past (where the ‘past’ is defined to mean a chain of prior samples). This
matters when the delivery of data could be carried out in a transactional way, but the
promised methods that receive and process the data are changing concurrently as part
of an independent process. Dependency graphs may span multiple processes implicitly.
They might be quite invisible in program code.

Consider a simple interaction, of the ‘client-server’ variety, in which an agent C (in
the role of client) promises or imposes a request c onto an agent S (in the role of server),
which is accepted by S i.e.

C
+c−−−−→ S (5.127)

S
−c−−→ C. (5.128)

The absorption of c by S implies that a state has changed in S, for some timescale that
persists for a sufficiently long time to enable a response r to be returned. Let’s say that
the response is a simple storage lookup, like a database record or a web page. This acts
as a key-value pair, where the key is c and the value is r(c), which depends on c

S
+r(c) | c−−−−−→ C. (5.129)

In order for S to make this conditional promise, it has to contain the state variable
V = r(c) on its interior. The state variable is persistent, so S is clearly part of a system
that promises state. Now, it might ‘outsource’ this capability to another agent (a backing
service, in the vocabulary of [Wig17]). Then, we have an assisted promise[BB14a].
Suppose the assisting or backing agent is D, then S hands off responsibility for state to a
subordinate agent, and must therefore make an assisted promise that depends both on the
client request c and the promise of state storage d:

S
+r(c) | c,d−−−−−−−→ C, (5.130)

S
−d−−→ C, (5.131)

S
−c−−→ C, (5.132)

(5.133)

where S hands off the request to its subordinate:

S
c′(c) | c−−−−−→ D (5.134)

D
−c′−−→ S (5.135)

D
d(c′) | c′−−−−−→ S (5.136)

S
−d−−→ D (5.137)

5.10. STATEFUL (MEMORY) PROCESSES 195

As long as each dependence is a Markov process, forming a Markov chain, the depen-
dency on c is linear.

Definition 103 (Linear conditional promise). A conditional promise π is linear with respect
to a dependency d iff,

π : S
+V (d) | d−−−−−−−→ R (5.138)

implies that ∂V/∂d = const over the life of π (see appendix).

Linearity literally implies that a functional dependence on d is linear (of polynomial
order 1), and does not alter the functional form of the promise V (d). The dependency
d does not alter the promise, except to act as a lookup key. If we were to repeat the
keeping of the promise over some timescale, i.e. over some chain of promise keeping
assessments, an observer would not assess there to be any difference in the result of
V (d), over a number of samples T . The promise is therefore invariant over a timescale
T .

The qualification of a bounded interval T is important, because no system is truly
invariant for all future history (see figure 7.9). Changes do occur to systems and their
promises: new versions of software promises are made, for example. The real issue is
whether one can redefine a process to ensure that invariants are fixed somehow before
runtime execution starts and all the way up to when it ends60.

Lemma 20 (Linear promises and weak coupling). The need to wait for state history increases
the service time for a queue, increasing the ratio of λR/λS .

We need to define clear timescales for the assertions (promises) we make. Slowly varying
changes decouple from changes that occur on the timescale of the promise because each
sampling of a linear system is an independent variable, and a sequence that depends on
multiple samples is independent of the sample if the sample has already been integrated
(e.g. refactored) into the definition of π61.

5.10.3 LONG MEMORY PROCESSES

Long memory processes depend on the sequences of states that led to their current state:
e.g. does it matter which route you used to enter the city? This is the typical domain of
machine learning.

The memory required to keep this promise determines a minimum scale for the
process. Long memory processes cannot be stateless, in any definition, but it may be
possible to separate part of a long memory process and isolate certain subagents whose
behaviour is memoryless.

196 CHAPTER 5. SPACETIME CONSIDERATIONS

5.10.4 INVARIANT DEFINITIONS OF STATELESSNESS

Given the popular usage of the term ‘stateless’, it seems appropriate to accommodate the
commonplace ideas with a clearer definition, so that we do least violence to present day
intuitions. This leads to what I’ll call weak statelessness:

Definition 104 (Weakly stateless process). A memoryless process (Markov process of order
1) promises that its interior memory of past interactions is the empty set:

A
+V (t)=∅−−−−−−→ ∗. (5.139)

The definition is only weak, because it doesn’t say much about what other behaviours
the process may have. Implicitly, it suggests that that the next outcome of the process
can only depend on the inputs at each step. Inputs could easily include data from long
term exterior memory. The key point is that the promises that are purely local to the
weakly stateless process are decoupled from, i.e. invariant, for all possible input-output
transitions, as in (5.124).

Memory processes, or stateful processes, are those that are not weakly stateless.

Definition 105 (Stateful (memory) process). A process that promises:

A
+V (t)6=∅−−−−−−→ ∗. (5.140)

When these two kinds of process are composed, to form a superagent on a larger scale,
the result is naturally stateful.

Lemma 21 (Stateful + stateless = stateful). An agent that promises to be both stateful
and weakly stateless is stateful by composition.

The proof is trivial:

A
+∅−−→ ∗

A
+V (t)−−−−→ ∗

}
≡ A

+V (t)−−−−→ ∗ (5.141)

If we want to be strict in the definition of statelessness (what we might call a purely
ballistic process) then the agent responsible has to refuse all input.

Definition 106 (Strongly stateless process). A process that has no exterior (-) promises to
accept input from any source during its lifetime. The agent’s promise is thus completely constant:
it does not rely on the order or substance of any other information.

What we surmise is that basically all non-trivial processes must be stateful on some
scale, because a promise of stateful behaviour overrides a promise of stateless behaviour
on any scale.

5.10. STATEFUL (MEMORY) PROCESSES 197

scale n+1 agent

backend

client

server

client

server

backend

scale−n agents

Figure 5.16: A client-server system with a backend can treat the backend as part of a service,
or as a separate service. If the exterior promises remain the same, then these configurations are
indistinguishable. We are always free to compose or decompose agents at scale n into agents at
scale n− 1 or n+ 1 by redrawing the boundaries around modules. This shifts a discussion about
interior to exterior or vice versa, but cannot affect the outcome observed by an agent on a scale
greater than the total system.

5.10.5 TRANSACTIONS ON SCALE T

It’s usual to define transactions in terms of atomicity and consistency. Here we can define
the concepts more simply using invariance of promises:

Definition 107 (Transaction at scale T). A transaction is the promise of an invariant sequence
of messages M1,M2, . . . ,MT , of length/number T , accepted by a process agent A, whose
memory of the messages is also invariant over the sequence, and contains all the data needed to
keep the conditional promise

A
+X|M1,M2,...,MT−−−−−−−−−−−−−→ (5.142)

In other words, the agent A doesn’t let go of the information from its cache until it is
acknowledged by the receiver. Failures on a large enough scale can still wipe out all
the information of the transaction, but this adds some assurance of invariance if the data
survive the transaction.

With this definition, we do not presuppose any model or scale for the meaning of
a transaction. As long as the transacting agent is invariant over the completion of its
promised task, and the data require no dependencies. The virtue of this definition is
to make such transactions repeatable, as all the conditions of the transaction are self-
contained, and thus invariant. Put another way, transactions turn messages into scalable
autonomous (super)agents, without exterior dependencies beyond their promised scale
T .

Lemma 22 (Transactions are repeatable). Any valid transaction at scale T leads to a
repeatable process, given the same message and conditional promise.

198 CHAPTER 5. SPACETIME CONSIDERATIONS

Notice that the process is only memoryless if T = 1, i.e. we choose a particular scale,
but the all important invariance is scale independent.

5.10.6 SCALE DEPENDENCE OF STATE AND CAUSALITY

Under scaling transformations that aggregate processes by causal dependence, the fore-
going discussion should make it clear that we can state quite strongly:

Theorem 3 (Statelessness is scale dependent). A process that is weakly stateless at scale n
may be stateful when causal promises are composed or decomposed at scales n− 1 and n+ 1.

The proof of this is elementary. Consider agents A1 and A2 that make promises that are
stateless and stateful respectively, such that A1 depends on the promise of A2

A1
stateless−−−−→ ∗ (5.143)

A2
stateful−−−→ ∗ (5.144)

{A1, A2}
stateful−−−→ ∗ (5.145)

This theorem renders statements like ‘transactions cannot span entities’[Hel07] mean-
ingless, as there is no plausible definition of an entity without a clear specification of
scale.

Causality itself is about the transmission of prior state, along the trajectory of each
autonomous process, causality must itself be scale dependent. Indeed, as we’ll see,
influences may appear to be determined by states that are only reached in a process’s
future. Time does not follow a simple imperative ballistic view of prior state. In the
frame of the process itself (the proper time) acausal changes frequently take place, by
advanced boundary information.

5.11 CAUSALITY AND EVENT DRIVEN PROPAGATION

Several authors have commented on the importance to time relativity for understanding
process execution[Hic09, Bon16, Car18]—already bringing insights from spacetime
relativity, and ‘many worlds’ interpretations of Kripke and Everett[Kri63, Eve56]. Time
has been the domain of physics for centuries, and it would be a mistake to not pay
attention to the full range of patterns developed there. To fully understand causality in
distributed systems we need to expand the simplistic understanding of universal past,
now, future into a local view in which causal behaviour depends on all three in a scale
dependent way.

5.11. CAUSALITY AND EVENT DRIVEN PROPAGATION 199

5.11.1 PAST, PRESENT, AND NOW

Past, now, and future are representations of order relative to a process of observation.
What an observer calls ‘now’ is a snapshot of its interior state. The interior state is, in
turn, a representation of its clock (see interior time[Bur19a]). Obviously, this is not a
scale invariant assertion. Agents may be aggregated into superagents, which are the
smallest grains on a larger scale.

The common view of causation is the retarded view:

Definition 108 (Retarded process). In a chain of dependent promises, a process depends on
an invariant initial state or boundary condition. The final state of the agent does not play a role
in determining the outcome of the process.

Example 75. In a process to build a tower, the balance of the project bank account
starts with the invariant boundary condition of zero money. Its final state is a sum of
transactions related to that initial state. The final outcome of the tower plays no role in
determining the final amount in the bank account.

The contrary view, often used in radio engineering is:

Definition 109 (Advanced process). (includes desired end-state, recursion, etc). In a chain
of dependent promises, a process depends on an invariant final state or boundary condition. The
initial state of the agent does not play a role in determining the outcome of the process.

Example 76. In the space race to the moon, the final invariant outcome of the process
was to land a person on the moon. The chain of transactions leading to that point was
not dependent on the initial conditions of the project.

In the latter case, the final state of an agent is implicitly or self-determined, and
the promises work backwards to search for a path to reach it from the undefined initial
state. This approach is used in transactional ‘rollback’, for instance. It’s also how a
GPS navigation system works, for example. A process to solve a Rubik’s cube is also
anchored in the invariant future state (the desired end state of ordered colour[Car18]).

Example 77 (Proper time clocks). For example, the increments of time for a cloud process
could be measured by ticks that represent the starting and stopping of container processes. Or
we go count each function call as a tick of a clock, or each statement. This is not nit-picking: it
matters to the issue of causality how we define the evolution of progress.

In a flowchart view of programming, which represents the most common imperative
view of time, the future is thought of as a function of the past.

Tnext = f(Tthis). (5.146)

200 CHAPTER 5. SPACETIME CONSIDERATIONS

Each prior statement leads inevitably to the next by an implicit jump instruction in the
process counter. No statement changes the past, because everything advances at the same
rate: the result of each statement is the essentially deterministic keeping of an exterior
promise of its agent.

At a function call level, this is somewhat ambiguous, because a function call involves
recursion, which poses the promise of the outcome before the execution the keeps the
promise, i.e. in the assignment x := f(y), the right hand side is assumes that f(y)

exists, which involves stack frames to create a sideways dimension of ‘subtime’62, whose
incorporation into the process is acausal from the perspective of a programmer. Past and
future get muddled by an assignment that behaves like an advanced boundary condition,
while a subroutine advances with a locally retarded boundary condition of the function
argument. The discrete scaling of a process into lumps, or subroutines, implies that time
does not run in a simple fashion for any observer outside the system (see figure 5.17).

state

interior

exterior feedback at scale n+1
at scale n

feedback

initial

state

final

Figure 5.17: Feedback on the functional scale, including iteration and recursion, leads to apparent
causation in the reverse direction relative to large scale exterior time (against the observed flow as
seen by an exterior observer), but because this is unobservable, the promised outcome, measured
by exterior clock time always appears to flow in a constant direction from start to finish. This
is what we interpret as from past to future. The direction of time on a large scale is from left to
right, but inside the subroutines it may be counter to this monotonic progress.

Functions that are non-deterministic may also employ data that are not accounted for
by the promises of the agent[BC11]. Such systems are known to be irreversible, but can
be made to behave consistently by using advanced (exterior future) boundary values.

Definition 110 (Interior feedback). Interior feedback at scale n is a causal sequence of
messages whose channel runs counter to the direction of the system’s proper time at scale n+ 1.
It is unobservable from the exterior of the agent containing it. In other words, the process clock
only ticks after iterations and interior subtime machinations have reached an outcome that can
keep the agent’s exterior promise.

Feedback may appear causal or acausal depending on the scale of the agent making that
assessment. This only illustrates how the meaning of time is naturally complicated in
distributed multiscale processes. It’s neither deep nor trivial.

5.11. CAUSALITY AND EVENT DRIVEN PROPAGATION 201

Definition 111 (Exterior feedback). Exterior feedback is the same from the perspective on
the inside. A dependency from downstream of the process (the causal future) which is merged
with a dependency from upstream (the causal past).

5.11.2 FACTS, MESSAGES, AND EVENT HORIZONS

Messages are the transport mechanism for program transitions between agents. Events
are the observation of a state transition by any agent O. The preservation of an event,
as an immutable fact, is not a priori guaranteed by any agent. It is design choice (a
promise) made by the receiver, whose default is non-immutability. An invariant promise
interior memory to remember it, and—since all resources are finite—there will be a
cut off lifetime for such facts to be remembered (an event horizon). As the scale of a
dependent process, it encompasses an increasing amount of memory, which implies a
growing power cost and increased interior time latency for data retrieval. Eventually, the
ability to recall prior facts must become much greater than the lifetime of the agent’s
promise lifetime.

Example 78. This cost has been made clear in the early blockchains, where coherence or
consistency of the chain (the transaction journal) is the causal promise.

The idea that the past informs the future is too simplistic for distributed processes. A
model of computation is a model of causally ordered events, but the order of causality is
actually undefined because we place certain information in the rules of propagation and
other information in the boundary conditions.

Einstein taught us that causality is what an observer sees. The arrival of messages,
leading to events, defines a perceived direction for time for each observer independently.
It is always measured at the scale of whatever observer assesses it. What happens on the
interior, including acausal feedback loops, is usually discounted (see figure 5.17). Interior
process sequence numbers may be used to pay for determinism of causal ordering by
coarse graining time, i.e. by paying for order preservation with a delay in interior time;
this may not appear to delay the process on the exterior, but adds a cost in terms of unique
distinguishability of messages to sender and receiver. Other information, like desired
end states, fixed points and other ‘attractors’ may bring about convergence around states
that only exist in the relative future, and a process only ends (in interior time or subtime)
when that future state has been reached63.

5.11.3 REPEATABILITY AND SINGULARITIES (FIXED POINTS)

The true goal of information systems as tools is to strive for repeatability or predictability.
It should now be clear that this is about the larger goal of arranging invariance over

202 CHAPTER 5. SPACETIME CONSIDERATIONS

process conditions, i.e. dependencies. The surrogates that often stand in place of this,
such a statelessness, and causal ordering, are themselves non-invariant characteristics
and should therefore be avoided.

A common mistake is to try to assure invariance by acting ‘only once’ (the FCFS
random walk approach to state, rather than the determined fixed point). For example, in
the delivery of a transaction. We might number transactions, like TCP sequence numbers,
and tick them off a checklist as they are completed. This leads to a growing process
memory (a stateful process). It can be replaced by a memoryless local process using
advanced causation.

Advanced causation (treating the end state as a fixed point) has many uses. Systems
whose interior states are changing may not have homogeneous transitions, but their
choice of attractor can either lead them to trouble or redemption. This goes beyond the
possible interferences noted for invisible changes to global state, leaky channels etc.

Relying on thing that happen only once is a non-invariant Messages may be echoed
and isolation is not a promise that can be kept easily (process isolation is often the first
thing violated by intrusions and security exploits). If we seek a deeper level of safety,
it makes sense to rely not on the keeping of promises that are fed as data, but on the
characteristics that are more likely to be preserved, such as convergence to fixed points64.
The surest means to achieve repeatability is the maintain the promises on a timescale
shorter than that at which they are sampled. This is the Nyquist sampling theorem in
action.

Advanced propagation determines based on a desired state xD

xend = f(xany) (5.147)

xend = f(xend) (5.148)

We see that the final value is insensitive to the initial value, which is in strict opposition
to the functional idea of past forming immutable facts. The immutable fact lies in the
definition of the function itself, which refers to an ‘inevitable’ future state.

The outcome is idempotent when it reaches its final state, not after a certain number
of transactions ‘once only’ has been reached[Bur4 a, Bur04c]. The approach is what the
immune system does, and was used famously in CFEngine[Bur95, Bur04c] and later
configuration tools65. It’s also the approach used in pull requests, and GPS locators.
The processes are designed to favour a predetermined outcome. The outcome will only
become an event in the agent’s future, and will only be observable as a future event by
other agents that depend on it.

On the interior of a process, a fixed point of a chain satisfies conditional promises:

A
+Xp|Xi−−−−−→ A′

A
+Xp|Xp−−−−−→ A′. (5.149)

5.11. CAUSALITY AND EVENT DRIVEN PROPAGATION 203

The more familiar retarded process is a Markov chain, to some order, and has no
deterministic end state unless the agents keep their promises perfectly, which is essentially
impossible to promise.

Example 79 (Closure operator). A closure operator Ĉ over a set X has three properties.
It is:

1. Monotonic: i.e. if x ⊆ X then Ĉ(x) ⊆ Ĉ(X).

2. Extensive: i.e. x ⊆ Ĉ(X), i.e. there is a fixed point, in the equivalence generated
by the action of some quotient generate G, so that the quotient set Ĉ(X)/G = x.

3. Idempotence of the operator: i.e. Ĉ2(X) = C(X), so that x doesn’t leak.

The fixed point x belonging to each closure operator C is an advanced boundary
condition. The extension of the x to its closure set is directly analogous to the extension
of a partial order to a pre-order by a scale transformation.

It is also an equivalence in Category Theory that a so-called ‘monad’ over a poset is
precisely the closure operator:

Example 80 (Monad over partial order �). A monad over a poset is precisely a closure,
for the following reason. A monad on a category X is a tuple 〈C, µ, η〉, consisting of

1. A functor C : X → X , that maps between self-similar structures on the same
category, like a symmetry quotient generator. So x � y implies that C(x) �
C(y).

2. A natural transformation η : 1X → C, so there is a map transforming every x
into C(x), i.e. x � C(x), i.e. C is extensive.

3. A natural transformation µ : C ·C → C, so that the map is idempotent on its set:
C(C(X)) � C(X).

All the category formulation does is rename a few things, and extend the well-known
properties of the mappings between elements into formal classes and subclasses.

Example 81. CFEngine convergent operators The CFEngine operators discussed in
volume 1 were precisely closures on an orthogonal set of policy promise states [Bur95,
Bur04c]. In a set of computers, user and environment behave like a collection of sources
Si that lead to the divergence of state in a number of computersRj that one would prefer
to be replicas of a desired configuration state. The CFEngine policy language was a set
of operators C(q) that would accept any system state q = Rj as an input and output a
desired state as a convergent advanced boundary condition (a closure), making C(q) the
downstream desired selection.

204 CHAPTER 5. SPACETIME CONSIDERATIONS

5.12 SINGULAR REGIONS AND CENTRALIZATION

The uniqueness of singularities makes them points of special dynamical significance.
They have automatic semantics. This is a property which is invaluable for calibrating
intent, from an information perspective. A single fixed point has no entropy—no distri-
bution of possible bodies. In a functional sense it is ‘single valued’. Fixed points and
singular instances have a functional role in systems for this reason.

5.12.1 CALIBRATED CONSISTENCY OF PROMISES

The consistency of an interaction between pairs of agents is a form of equivalence
relation—a symmetry. When a collection of promisers Si makes an ostensibly single
promise to collection of promisees Rj , are we able to say whether the promises were
consistent, i.e. equivalent so that is doesn’t matter which Si interacts with a given Rj ,
and vice versa?

To define this carefully, we need to use the (-) promise of a recipient or promisee as
a calibrator of the (+) promises it accepts.

Definition 112 (Calibrated consistency of promises). A non-empty collection of agents
Ai may be said to make consistent promises of +bi relative to a single hypothetical or
real agent O, if it would assess the promises of each agent Ai to be equivalent under the
promise to accept a calibrated standard −b: i.e.

Ai
+bi−−→ O (5.150)

O
−b−−→ Ai, αO (bi ∩ b) = const, ∀i. (5.151)

Notice this this depends on the resolution of the observer, and its ability to discriminate
between the agents. Promises may be judged consistent relative to their recipient because
they promise the same (+) or because they are accepted (-) as indistinguishable.

There are several ways in which an interaction can be observed to be consistent:

• The promisers Si promise their behaviour is mutually consistent.

• The promisee Rj promises the behaviour observed is coincidentally (or emer-
gently) consistent.

• The promisee Rj promises to render the behaviour consistent by normalizing or
filtering.

5.12. SINGULAR REGIONS AND CENTRALIZATION 205

Now, suppose we assume that a single agents R1 makes a consistent promise, to a client
C1

R1
+b−−→ C1 (5.152)

C1
−b−−→ R1 (5.153)

and compare it to the case that a collection of replicas Ri promising the same to a
collection of clients Cj . What does it take to ensure that the same consistency is true of a
collection of the single collective promise?

{S1, S2, S3, . . . Sn}
+b−−→ C1 (5.154)

C1
−b−−→ {S1, S2, S3, . . . Sn} (5.155)

In other words, how do we scale from a single consistent promise between two agents, to
a single consistent promise between two superagents, rather than merely having many
similar promises (see figure 5.18)?

R3

R
1

C
1

C2

C3

R4

R2

+b

−b

R3

R
1

C
1

C2

C3

R4

R2

+b

−b

R C

i)

ii)

Figure 5.18: The parallel or horizontal scaling of a single promise by consistent cluster of agents.
The agents must promise to ‘move as one’ by coordinating on the interior of the superagent
boundary. Note that the interior coordination may be i) by peer, or ii) by central calibrator (white
circles).

The coordination between the interior agents may be in the manner of a peer to
peer agreement, in which every pair independently equilibrates with every other in a
decentralized manner, or it can employ a central hub which acts as a standard for all the
others (matroid construction). The latter centralization is cheaper in terms of interactions,
being of O(N) rather than O(N2). It also illustrates the consistency scaling a single
source to a larger equivalent source, from a seed of consistency on a small scale, which is

206 CHAPTER 5. SPACETIME CONSIDERATIONS

then amplified by promising to replicate outwards. This is the strategy of centralization
(see section 5.13).

Consistency seems to be the opposite of singularity. It’s dissemination, but we can
look at it as the scaling of uniform state.

Example 82 (‘Moving as one’ (teams)). Centralized, calibrated consistency is a way
to make a system ‘move as a unit’. Brain-like controller behaviour allows animals,
composed of billions of cellular agents, to act as a single larger superagent—an organism.
This kind of coordination may lead to a faster response of the total organism than if
its control is decentralized, e.g. like a slime mould. But it might not. That kind of
centralization assumes that the communication from command central to extremities is
faster than the situations is needs to respond to, and that the lines of communication
are protected and reliable. A calibrated brain might be too simplistic in giving the same
commands to different parts of the system though. In ‘team’ collaborations, this ability
to move as a singular unit leads to agility for the whole organism, whereas the abilty
to move as independent decentralized agents brings local contextual adaptation and
resilience.

5.12.2 TIME TICKS SLOWER FOR SUPERAGENT PROMISES

A very simple observation about scaling is that exterior promises get slower as the
interior size of a superagent is scaled up. This is the cost of interior collaboration. This
is an intuitive result, which assumes a large fraction of the interior agents make use of
serial stimulus-response interactions (i.e. they are not simply a group of agents working
redundantly in parallel), but nonetheless an important one. It has implications for the
centralization of system functions and for equilibration of consistent data (see section
5.13). The must follow from the assumption that all promises take a non-zero amount of
time, as measured by a recipient, to keep, i.e. TO(π) > 0,∀π (chapter 1).

Suppose a single agent A1 promises to tick at regular intervals. An observer, watch-
ing the agent, assesses that the agent ticks every ∆t time units.

π0 : A1
+∆t−−−→ O (5.156)

The timescale for keeping this promise may be assumed (according to the observer)

TO
(
A1

+∆t−−−→ O
)
' ∆t. (5.157)

If we now introduce another agent with interior coordination promises between the two:

π1 : A1
+(∆t1=∆t2)|∆2−−−−−−−−−−−→ A2 (5.158)

π2 : A2
+(∆t2=∆t1)|∆1−−−−−−−−−−−→ A1 (5.159)

5.12. SINGULAR REGIONS AND CENTRALIZATION 207

with supporting

A1
−∆t2−−−→ A2 (5.160)

A2
−∆t1−−−→ A1. (5.161)

and exterior promises,

A1
+(∆t1=∆t2)|∆2−−−−−−−−−−−→ O (5.162)

A2
+(∆t2=∆t1)|∆1−−−−−−−−−−−→ O, (5.163)

The interior promises are conditional, and therefore kept serially, so the time is the sum
of all promises in the process, or simply:

TO(π1) ≥ TO(π0) (5.164)

TO(π2) ≥ TO(π0) (5.165)

The two exterior promises are equivalent to a collective promise:

πext : {A1, A2}
+∆t|∆t=(∆t1=∆t2)−−−−−−−−−−−−−→ O (5.166)

so

TO(πext) ≥ TO(π0). (5.167)

The promise to the outside is now conditional on the equilibrium state, so it must be
delayed by the equilibration time, since the agents have promised to keep that promise
first. To verify and maintain these promises, even after equilibrium is reached, must still
take non-zero time (even if it is less than the worst case relaxation time for achieving
equilibrium), so we can state with certainty:

Theorem 4 (Coarse grained time is slower). The timescale for an exterior promise must
be greater than the timescale for any of its dependent interior promises.

We can go on adding agents to this cluster and increasing the serial time needed to
complete the exterior promise. We can’t necessarily say how long a process will take, but
we can say that it is at least as long as the keeping of a single agent autonomous promise.
If the receiver ticks quickly compared to the equilibration process in the replicas, then
much time could pass according to its clock (like waiting for water to boil). On the other
hand, if it sleeps in between, it may scarcely notice any time pass. This inertial ‘mass’ of
being encumbered by dependencies leads to interior latent processing time.

Note, that even though an observer can observe the time difference, it is free to
ignore it, and absorb it into its own promise processes66.

208 CHAPTER 5. SPACETIME CONSIDERATIONS

5.12.3 EQUILIBRATION OF REPLICAS TO SINGULARITY

Achieving consistency is about reaching an equilibrium between the promises made
amongst a set of replicas R in a service (see figure 5.19). See also example 53 for some
helpful context.

Calibration of the state can be resolved by

• Promotion of a desired state by cooperation (+).

• Selection of a desired state by receiver (-).

We therefore have alternative approaches to seeking consistency. Note, however, that the
downstream principle always favours a (-) promise over a (+) promise. Agents may do
their best to offer a consistent state (+), and that’s nice to have, but ultimately it’s the
responsibility of the receiver to check.

Let’s apply the results above to services. Redundant replication seems to be the
opposite of a singularity, but it too can be handled as a desired state, if we rescale our
thinking. In services, where we need to scale access to its process ‘horizontally’, e.g.
in scaled data services, clients want to know that the promises made by each service
replica agent are the same, so that is doesn’t matter which one they interact with. If
there were only one agent, the promises would usually trivially self-consistent—though
it need not be the case. Agents can easily interleave inconsistent promises to different
clients, treating some better than others, but we’ll assume that doesn’t happen here. At
least by minimizing the number of agents assigned a single role, one maximizes the
chance of experiencing stable semantics and dynamics from the promiser. The question
of consistency is how do we scale that property? What is the meaning of ‘one’ instance,
when agents can be scaled to form superagents that make singular promises of their own?

To address this point, we return to the set of issues associated with the diagram first
shown in figure 5.19, and focus on the second stage of the pipeline—the replica sets.

Example 83 (Database replica consistency). The problem of distributing data or service
from a set of sources Si across a set of identical replicas Rj is a central problem in
database design (see figure 5.19). In this problem, each replica plays the role of an
observer watching for changes to the source. The replicas may have different views of the
source at different stages of their on-going process to collect data. If a client C should
ask any of then about what happened at S, they may not report the same answer.

In computer science, so-called consensus technologies try to solve this problem by
asking the R to agree about their position on S, even if their position on S is incomplete.
In other words, no matter whether the answer is right or wrong, all replica agents in R
should agree and changes should happen in lock-step.

5.12. SINGULAR REGIONS AND CENTRALIZATION 209

SOURCE
CLIENTREPLICA SERVER

upstream downstream

(+)

(+)

(+) (−)

(−)

(−)

(+)

(−)

(+)

S

R C

Figure 5.19: Data are stored in a database that consists of a redundant cluster of replica servers.
Clients may query any of the replicas at any time. Will they experience a consistent view?

There are therefore two equilibrium processes that need to stabilize in order to
receive both accurate and consistent information about S:

• The process of transmission from S to R.

• The process of equalization from R to R.

Because there is a lag in time to propagate the change from the source to the replicas,
or from replica to replica, unless the right of C to observe R is restricted, the observed
value may not be synchronized according to the replica processes ‘proper clock’. So,
without additional constraints on what R promises to C, each named record becomes a
random variable.

Principle 9 (Equilibration before observation). Before measuring a variable, it should
be in a quiescent state. For statistical variables the process of equilibration with whatever
sources it depends on should have ended before sampling.

The equilibration before observation sets up a race between competing processes that
every system engages in either intentionally or unintentionally.

• Equilibrium between S and R:

Since S is time dependent, by assumption, an equilibrium between S and R can
only be temporary. If S changes before R can catch up, R will never be able to
promise a faithful representation of S67.

210 CHAPTER 5. SPACETIME CONSIDERATIONS

R
2

R
3

R
1

R
4

R
5

T
ra

n
s
a

c
ti
o

n
s

consistent

Figure 5.20: When racing S to fill up a number of replicas of S’s history, the process needs to
converge to a persistent fixed point. The convergent fixed point for policy is a future bar in which
the cumulative transactions of the replicas converges to a desired state.

The race for R to keep up with changes from S is equivalent to a process of
filling identical buckets Rj = {R1, R2, . . . , Rn} from a set of sources Si =

{S1, S2, . . . , Sm}, for some n,m. There are two ways in which this process can
be conducted:

– By ‘push’: S imposes data onto a single recipient in R, which must then
impose the changes onto its replicas.

– By ‘pull’: Each R samples each S independently. If the sample sets are
complete, there will be equilibrium of R as soon as each R has finished
(see figure 5.20). If the sets are different, the R need to undergo some
algorithmic process to reach agreement about the complete state of S.

In both cases, R needs to outpace S in order to capture all the data.

If we sample at regular intervals, or map the imposed signals into data records
the simplest way to achieve equilibrium for a sampling interval is to make new
records for each time step, i.e. not to overwrite a value, but to use sequence
numbers for samples. Then, even if the buckets in R are slow to fill up, they will
fill eventually. This is known as the eventual consistency of replicas. Obviously
all consistency happens ‘eventually’, but we want to know how long ‘eventually’
is. The problem is equivalent to that of a queue, somewhere between S and R
(see volume 1). The race is only won if the rate of acceptance at R (often called
µR) is greater than the rate of change at S (called λS).

5.12. SINGULAR REGIONS AND CENTRALIZATION 211

We can express the condition to win this race in different equivalent ways. The
simplest case is to start from single agents S to R. From a rate perspective, the
average rate of change of S needs to be much less than the average rate of change
for R so that R can outpace S and easily match what S does. Imagining smooth
differentiable processes, we would need:

∂S

∂t
� ∂R

∂t
. (5.168)

In fact, the processes are not smooth or differentiable at all, so we can instead
appeal to Nyquist-Shannon sampling law for discrete samples[SW49, CT91]. For
a discrete process, the sampling law tells us that R needs to sample each agent in
S at least twice as fast as S changes in order to capture all of its changes. If fX is
the sampling rate of X , then:

fR ≥ 2fS , ∀R,S, (5.169)

or in terms of queueing

µR ≥ 2λS , ∀R,S. (5.170)

As far as the rates are concerned, if the source data are constant ∂S/∂t = 0, then
it is straightforward to catch up.

When data are pushed to a single agent in R, rather than all sampling indepen-
dently, then we still need to address how the R replicas reach internal equilibrium
too, for each change in S. The fixed equilibrium needs to persist for long enough
for C to see it. For a single agent, this

• Equilibrium within R :

The time for a cluster of agents R to reach equilibrium cannot easily be predicted,
since it depends on many factors. We can write it as a polynomial in the number
of agents n within the cluster:

∆TR ∼
(
a+ bn+ cn2)∆T, (5.171)

for some timescale ∆T , and some constants a, b, c.

We know that, if the source data are kept constant, i.e. ∂S/∂t = 0, then it is
straightforward for R to catch up eventually. One way to assure that is to keep
every unique sample as a proper sequence of versions (like a version control
system, or timeseries). Then, even late arriving data will be mapped to the correct
sequence bucket, and new data can be separated cleanly from old. Each source

212 CHAPTER 5. SPACETIME CONSIDERATIONS

data sample is then effectively constant and treated as immutable. Accidental
repeat measurements are of no importance, since they are idempotent by virtue of
being constant. A policy of immutability effectively engineers a fixed point for
each data sample, to which the system can converge, and a fixed bar of eventual
convergence for the cluster R (figure 5.19).

The concept of consistency amongst a collection of replicas is a promise made
by the replicas. It might depend on the promises originally made by the sources,
but that is not relevant. A promise of consistency is a promise to act as a single
valued function. For every question, there is one and only one answer.

So far, we assume only that we need to get R into a consistent state. But what about
the client C, who is getting second hand information about S from R. It will try to
contact an agent in R for service. It might be lucky and get an up to date picture, or it
might be unlucky and get a slow agent that lags behind. Once again, the introduction of
a new stage introduces a sampling process and turns apparently deterministic data into a
random variable. If version sequence numbers are used, the client may not see an up to
date version, but it will be able to discriminate the freshness of the result.

One way to prevent observation of inconsistent results is to limit the observability
of the cluster R until is has reached equilibrium. Let’s assume that the cluster R has a
process by which it can assess equilibrium, then we define the promise of equilibrium
for some service query qS as

R
+Equil(qS)−−−−−−→ C. (5.172)

The replicas can now limit observation of any result by making it conditional on the
equilibration of qS :

R
+qS | Equil(qS)−−−−−−−−−→ C. (5.173)

Moreover, we are tacitly assuming that no other changes occur in R, i.e. it is isolated
from tampering. In this case, we can claim that C will only observe promises that are
kept consistently over R.

Example 84 (Transactions isolate and limit observability). In a transactional system, all
replicas are always changed in lockstep, in an isolated process protected from tampering.
Transactional consistency is simply eventual consistency over a single forced time step,
enforced by a lock. This is applied to data [GL06] or operations [BS97]. If a consistently
disseminated state is the desired state in a convergent process, then we must treat the
scaling of the entire region as a single agent. It is then singularity on a larger scale.
Such a singularity is a closure.

5.12. SINGULAR REGIONS AND CENTRALIZATION 213

Example 85 (Eventual consistency in blockchain). In a blockchain there is no strong
coordination between agents over the state, rather there is a uniform selection policy. As
new blockchain data arrive on a FCFS ordered basis, different agents may append data
to their parallel replica of the chain, creating more than one version. The singularity of
the chain’s structure (in spite of its replication) is now compromised. However, it can be
restored by the selection of a desired state (figure 5.20 applies). The desired selection
is the the longest chain, which is a quasi-invariant advanced boundary condition. With
agents promising to make this policy selection, the replicas can converge to a single
candidate everywhere.

Example 86 (Push requests in transaction logs). Most centralized databases receive
data by imposition from outside sources that ‘push data in’. The database isolation
kernel attempts to serialize these transactions into a transaction journal or log, which
defines a convergent order (figure 5.20 applies). The desired state of a push log has no
convergence principle—the database is essentially a random variable and just works
as hard as it can to keep up with impositions. Impositions that cannot be accepted are
dropped, like network switches. Replicas of the database Rj pre-select a single leader
which is the one accepting impositions from sources Si. The replicas promise to try to
keep up with converging towards a desired state defined by the transaction log. This is
a retarded boundary condition, together with an extensive journal of delta changes to
reach convergence. This approach has been called a congruent (instead of convergent)
approach. It is strongly dependent on isolation, as it can be shown that the replicas will
not converge if they can be tampered with from sources other than the transaction log.

Example 87 (Pull requests in transaction logs). In version control systems, like git,
developers act as sources Si and fork replicas Rj of the repository code. They modify
them creating divergent ‘parallel worlds’. The authors of these branches act as sources
Si and may submit changes to be integrated into the desired state of the main version
branch, which acts as a receiver. The convergence policy is different from the blockchain
example. Now, the main branch policy agent is effectively the client C, who selects can
integrate parts of the state from the other branches, in no particular order. The altered
main branch is then automatically selected as the desired state (by default), bringing
convergence of the many worlds back into one.

Note how the downstream principle applies again: it’s the client C’s responsibility
to select the new desired state and repair the ‘fault’ created by the divergence.

Example 88 (Eventual consistency in synchronous transmission). By forming a co-
dependent superagent between the sender and receiver of a promised message, one can

214 CHAPTER 5. SPACETIME CONSIDERATIONS

lock the assessment of a time step in the manner of a closure operator so that neither side
can advance without the other (see example 79). This idea has been used to implement a
form of reliable distributed network transaction on a very low level[BBKK18].

Example 89 (The CALM conjecture for eventual consistency). The CALM (Consistency
as Logical Monotonicity) conjecture proposes that a computer program has a consistent,
coordination-free distributed implementation, if and only if it is monotonic[HA19]. As
stated, it is missing the need for the full closure properties, and symmetry between
independent data sampling processes across the cluster of agents we wish to assume
consistent, but is essentially correct, as a trivial application of advanced causation,
as proven in [Bur04c]. Of course, this says nothing about how long such consistency
may take. Convergence without coordination must therefore assume much more than
monotonicity of process—each agent has the independent responsibility to source the
correct prerequisite dependencies in the correct version, unless the process approaches
a fixed point that is independent of source data altogether, such as a constant policy
determined state (an advanced boundary condition).

5.12.4 TIMESCALES IMPLICIT BEHIND CONSISTENCY

Consistency in a changing environment is a race against ‘time’. Whose time? If we refer,
once again, to figure 3.4. There is a process leading to a source of change S, and a set of
replicas R that attempt to capture the changes, so that they might report them to various
clients C. Will all the C a consistent answer to a consistent question?

There are hidden assumptions behind promises of consistency. The first crucial
assumption is that the proposal or desired outcome is invariant over the lifetime of the
consensus process, else one could not stabilize a transmission in a particular direction.
The proposal exposed in the first step of the agreement process, described in the previous
section, may not change as the agents go about their interior promises to observe, copy,
and agree to it. In the language of clocks, the object of agreement, in any common
knowledge problem, needs to be persistent on a timescale longer than the promises to
abide by the intermediary steps. So, whereas one typically talks about ‘correctness’ in
computer science (a semantic assessment), it is more a question of stability (a dynamical
assessment), or invariance of assumed targets, during the key change processes[Bur13a,
BB14a].

So, to converge on a stable target, it is assumed that the timescales (as measured on
the clock of some godlike observer) for the lifetime of the exterior promises to transmit
with integrity, must be significantly longer than the timescale over which the interior
promises are defined and kept, by a good margin, else one is racing against a moving

5.12. SINGULAR REGIONS AND CENTRALIZATION 215

target:

∆texterior � ∆tinterior. (5.174)

It is not coincidence that this is also the condition of equilibrium, with equilibration or
‘relaxation’ time trelax for transactions:

∆texterior � ∆trelax � ∆tinterior, (5.175)

or equivalently:

∆tcommon knowledge � ∆ttransaction � ∆tTICK , (5.176)

In our technical implementation, this translates into the rates of interior TICK /TOCK

processes relative to the rate of new messages M .

∆tM � ∆tP � ∆tTICK , (5.177)

We expect to be able to achieve consensus about M is there are many more TICK events
than there are new messages. This (hopefully) seems like an obvious point, but most
consensus discussions brush over such limitations. The upshot is that an ideal technology
should seek to maximize the rate of interior equilibration. Faster is always better.

co−timereal timesub−time

TECK

TACK

TICK

TOCK

SHARE

SIGN
AGREE

Figure 5.21: Locally, the composition of timescales for quantization of certainty may be viewed
at three scales: individual subtime transactions, round trip times, and co-time assured transfers.
Using the analogy of version control, only the co-time units are ‘committed’ as accepted new
versions of the current transaction. Equilibration time is kept comparable to subtime, according
the the observer’s clock at each end.

The core assumption (often unstated) is, therefore, that consensus equilibrium sys-
tems is that the data cannot be allowed to change faster than the superagent can reach
equilibrium or consensus. Moreover, things that depend on the value need to be frozen
for the duration of the message transfer, so M is a slowly varying quantity.

Example 90 (ACID and BASE in databases). The promises made by databases are the
subject of much discussion in computer science. Two broad philosophies have been

216 CHAPTER 5. SPACETIME CONSIDERATIONS

summarized by the whimsical acronyms ACID for ‘Atomic, Consistent, Isolated, Durable’,
and BASE for ‘Basically Available, Soft state, with Eventual Consistency’. These are
often treated as fundamentally different but are, in fact, rescalings of one another.

ACID makes promises about the relative timescale of processes, with a sharp sepa-
ration between interior and exterior time (see section 5.14), while BASE does not. The
key term ‘atomic’ implies that a process’s exterior time should only tick once for each
completed transaction, and a transaction implies that—within an isolated kernel that
accepts no input from any source but the process transaction data—all replicas of that
kernel of agents will promise the same information when the transaction finally ticks.
This may involve ‘waiting’ or ‘blocking’ of the process on the scale of interior time
(subtime). This is a deliberate manipulation of observability, widely used to provide
mutual exclusion locks (mutex) for processes in computers. The isolation boundary is
essential to the partitioning of time, and to the ability to keep the promise of identical
replicas.

In BASE, there is no waiting for a transaction to equilibrate across all replicas, so
results can be observed more quickly, on the clocks of exterior agents. There is no block
on observability. One speaks of eventual consistency, as there is no promise made about
when the data in replicas will be identical or complete.

In both cases, designating a dataset by either of these requires a notion of when
an atomic or eventual process is complete. This builds on the notion that each atoms
represents a desired, convergent (or monotonic, idempotent) state.

Example 91 (Adiabatically smooth systems). In smooth systems, as functions of time,
where significant mesoscopic change can occur, it’s natural to change variable for
propagation functions that depend on two times ∆(t, t′) to the interior and exterior
coordinates:

t̃ =
1

2
(t+ t′) (5.178)

t = t− t′, (5.179)

where the average exterior timescale for change characterizes t, and the interior time,
which approximate relative time translation invariance is represented by t̃. The same
transformation can be applied to the position variables for propagation in spacetime.

5.13 CENTRALIZED AND MONOLITHIC SYSTEMS

An immediate further application of the use of scaled singularities for system coherence
is to be found in the meaning of centralization and decentralization. This is a widely
misunderstood issue, as a few examples reveal. Our intuition about centralization is

5.13. CENTRALIZED AND MONOLITHIC SYSTEMS 217

based on position rather than function. This is a direct application of the equilibration
consensus problem in section 5.12.3.

Definition 113 (Centralized system). A centralized system has a star configuration of
promises at its core, i.e. all promisees feed or depend on a singular source. Let R be any
superagent, composed of any number of subagents Rj , then if each agent promises

Rj
+qj−−→ C. (5.180)

C
−q,−−→ Rj . (5.181)

A centralized system might maintain different contextual promises to each of its satellite
clients. The client C is centralized with respect to all the Rj , but it C is not necessarily
monolithic with respect toRj—only if qi = qj for all i, j. Centralization may be physical
or virtual—there is no implication about size or relative distribution of the interior parts
of the central system as the definition show: both C and Rj can be centralized.

Lemma 23 (A single atomic agent is centralized). The promise of equilibration is
trivially true for a singular, elementary agent, and thus the centralized system property is
trivially true.

Definition 114 (Monolithic system). A monolithic system promises to act as ‘one’ entity,
by exposing an opaque interface to agents on its exterior. Let R be any superagent,
composed of any number of subagents Rj , then if each agent promises

Rj
+qS | Equil(qS)−−−−−−−−−→ C. (5.182)

Rj
+Equil(qS)−−−−−−→ C. (5.183)

to an exterior observer or client C, it behaves as a coherent or singular singular source
for all intents and purposes to C, because the singularity of the equilibrium dependence
renders all parts equivalent. A system whose promises appear to emanate from a single
boundary set of agents, e.g. a single point of contact or a number of points that act as
an promise interface to outside promisees, is therefore monolithic. The boundary set is
opaque to interior promises.

In a monolithic process, when a promises can’t be kept a promise-keeping process will
be blocked until the equilibrium of any redundant members can be promised internally.
A centralized agent may or may not promise to ensure its own interior consistency before
keeping its exterior promises—but, if it does, then it is effectively monolithic.

218 CHAPTER 5. SPACETIME CONSIDERATIONS

(a) (b)

Figure 5.22: The difference between a monolithic and a centralized system is subtle: (a) is
centralized as all parts rely on a single dependence; (b) is monolithic because the system has an
effective boundary that acts as an entity. The core of a central system is often monolithic.

We note the difference between a singular or centralized system and a monolithic
one. The perception that a system is monolithic depends on the assessment of its apparent
interface. Are we talking to a single entity or to a collaboration of different representative
processes? On the other hand, the perception that a system is centralized is decided by
whether any perceivable interior components act tightly and inseparably within a singular
boundary.

Example 92 (Monolithic computer software). A monolithic application is computing
is a program that exposes all its independent promises through a single interface, so
it appears to be an indivisible entity. This is sometimes used to accuse systems of
a lack of modularity, but that assessment can’t be made as the interior details are
unknown. From the interior of a monolithic system, the agents could have a highly
modular structure, whether as parallel or serial collaborations. The level of modularity
is a scale independent characterization, relative to each exterior promise.

Example 93 (Centralized computer software). A centralized application is one in which
the entire system acts as a singular entity. No matter how much parallelization is
concealed behind a boundary set, an exterior agent is unable to tell the difference
between different interface agents on the boundary: they make identical promises to the
exterior.

Lemma 24 (Monolith versus centralization). A centralized system is monolithic if and
only if it does not discriminate between the agents it promises.

The distinction between monolithic and centralized is a subtle one. A monolithic
system may be perceived as decentralized on the scale a particular observer, even though
it is unable to complete its function without all the parts. The parts may lack coherence
in space and time, but the final outcome promised by the complete system is singular.

5.13. CENTRALIZED AND MONOLITHIC SYSTEMS 219

Example 94 (Central and distributed systems in computing). In the past, centralized
systems were single monolithic computers. Computer scientists and engineers sometimes
assume that adding more computers connected by a network creates a decentralized
system. Such a system is obviously physically decentralized on the scale of a single
computer, but it may be centralized on the scale of a datacentre (rather than scattered
around in people’s homes). Moreover, a network of scattered computers may still be
virtually centralized.

To understand the uses of centralization or monolithicity, we need to look at all the
different kinds of interactions the component parts of the whole make. A system may be
centralized with respect to one function and decentralized with respect to another. Nearly
all systems have some functions that rely on centralization or monolithic response. All
specialized modules are mini-centralizations. For example, the organs in an organism,
or the organisms in an ecosystem are locally centralized. In information systems, the
lookup of names and addresses in directory services is centralized to a special service.
All service points on the Internet have a single address entry location on the web.

Example 95 (Coordination by consensus). Over the past decade or more the practice
of using small key-value pair databases to coordinate distributed systems has become
increasingly common. Consensus technologies like Paxos, Zookeeper, Raft derivatives
(consul, etcd, and so on) are used to centralize the command and control, index data for
services to scale them horizontally. These key-value clusters act as a single entity for all
intents and purposes. The cost of scaling the equilibration of key-value data limits the
size of the clusters to a handful (typically 3-7 replicas).

Example 96 (Global symmetries and cloning). One of the mysteries of natural science
is why there are apparent global symmetries—for example, why all the points in the
universe seem to behave like all the other points. Also why tissues of cells are all the
same. John Archibald Wheeler once exclaimed that he understood why all the electrons
are the same—because there is only one electron, and everything we see is an image of
that. This is a matroid construction[Bur14] to explain a scalar property. The universe
itself is not a single point, but the theory of the big bang tells us that all points have
been effectively clones from the original singularity point far back in the history of the
universe—just as cells in a biological organism all cloned by cell division from a single
image. All points have common causal origins. Singularity calibrates properties and
propagates them to generate global symmetries.

Some properties of monolithic system:

1. Clean separation of interior and exterior promises, where the interior promises
are kept at least as fast as the exterior promises.

220 CHAPTER 5. SPACETIME CONSIDERATIONS

2. Coherence of exterior promises.

3. Coherence is useful for calibration, i.e. making singular promises that can be
used as a ‘standard candle’ comparison scale, as explained in section 5.12.

4. Dynamically, a centralized controller avoids the problem of inconsistency of
imposition, i.e. contention when intentions are imposed, also called the split brain
problem.

5. Monolithic systems are a single point of failure, on the exterior scale of the agent.

Some properties of centralized system:

1. Central systems are a single point of failure, on the exterior scale of the agent.
Internally, their strong coherent coupling transmits faults efficiently so that the
working state of the centralized system is to behave as a single agent—somewhat
binary in its promise-keeping (all or nothing).

2. Some centralization may be based on locality, and for economic reasons, e.g.
exterior redundancy is too expensive or too complicated to achieve68. Thus, in
spite of the fragilities of centralization as failure points.

3. During scaling, a central point acts as an anchor for surrounding parts, like a seed,
or a skeleton frame on which to hang other parts. This is the function of basic
utilities and infrastructure.

The potential for monolithic and centralized control is thus to make a kind of ‘brain’
or controller model for systems (section 2.9) if it can respond quickly enough to be faster
than the exterior promises it needs to keep, i.e. a place in which information can be
compared and correlated, mixed and matched, very quickly. Thus monolithic ‘brain’
models need to scale vertically (see section 8.6) in a coherent manner, and this implies
the following properties:

STRONG COUPLING CO-DEPENDENCE LOCKSTEP

ANCHOR COUPLING UNILATERAL DEPENDENCE FOUNDATION

WEAK COUPLING SPORADIC DEPENDENCE SPECIALIZATION

Command structures are often centralized for reasons of simple calibration or con-
tention avoidance, for example. Services may be centralized for consistency and for
coherence of integration.

Direct couplings can’t always be easily made redundant, without significant changes
in design, but if we rethink the scaling argument, those singular or ‘centralized’ agents
can instead contain interior redundancy (like biological organs do69)—so centralization

5.13. CENTRALIZED AND MONOLITHIC SYSTEMS 221

is not necessarily the lack of redundancy, but rather the relocation of redundancy to the
interior of a coherent boundary. Any decentralized systems can bind together strongly
by entanglement thus forming locally centralized singular agents. Of course, this makes
them more fragile to shocks internally as the strong coupling transmits influence without
loss, whereas weakly coupled systems maintain a degree of isolation and resilience.

SOURCE
CLIENTREPLICA SERVER

upstream downstream

(+)

(+)

(+) (−)

(−)

(−)

(+)

(−)

(+)

S

R C

Figure 5.23: The aggregation of promised outcomes from multiple sources is another example
of the staged promise scenario.

Definition 115 (Decentralized system). Any system of more than one agent, which is not
centralized.

A decentralized system is not necessarily uncoordinated. It can still make mutual
promises. But what we see is that, if we zoom out to a larger scale, nearly all interacting
systems eventually appear centralized.

It’d equally tempting to define a distributed system as a system which is not mono-
lithic, but this would contravene common usage.

Example 97 (Symbiosis). When agents depend on one another, even partially for mutual
benefit, we speak of symbiosis.

A
X|Y−−−→ A′ (5.184)

A′
Y |X−−−→ A. (5.185)

This is also called entanglement. See also the discussion in section 2.6.

222 CHAPTER 5. SPACETIME CONSIDERATIONS

Example 98 (Scaling of biological organisms). West also showed that energy trans-
port is the limiting factor in the scalability of biological organisms, and space-filling
networks[Wes99]. Bettencourt’s work on cities suggested an analogous role for the trans-
port and communications infrastructure in cities, as non-biological organisms[Bet13].
These data points provide a level of confidence that the principles of a promise network
are correct70.

Example 99 (Centralization may not be easily recognized). Consider a centralized bio-
logical organism, with organs connected by a network, and wrapped in a skin boundary
(figure 5.24). The heart and brain seem centralized, and organs like kidneys and lungs
have independent redundancy, and are therefore decentralized subsystems. Looking at the
definition of centralization, we see the conditional promise of blood is to deliver services
R to client organs C. In the interior scale, the most pervasive singular dependency on
which all the parts depend is the blood. This seems to be the least centralized part of the
body, physically, but its functional role is the most centralized—the blood is the binding
hub on which the body holds together (not brain or nervous system, which may be a close
second).

Example 100 (Centralization of power—authoritarianism?). The centralization of power
is usually characterized as implicitly negative in social discourse. That prejudice doesn’t
stand up to scrutiny. Authoritarianism is likewise usually assumed to be monolithic.
This is also false. Centralization does imply authority as single source, with or without
a mandate from clients that rely on it. However, a central system does not have to be
monolithic. The central agent can discriminate between its clients to maintain a ‘split
brain’ differentiation to whatever end. A centralized source is faster at coordinating a
collective superagent than independent equilibration, and with greater calibration of
purpose. A slime mould, or a flock of birds can’t mount as coordinated response to any
challenge as a single animal—even though the animal is a also superagent of cells. This
is almost certainly why organisms with brains have been so successful in evolutionary
terms.

Example 101 (Teams or individuals?). The economics, speed, and reliability of central-
ization suggest that training a single brain may be more efficient than training a team,
as long as the single agent can offer sufficient capacity. The single agent seems more
vulnerable to failure; however, if the entire team is needed to keep an exterior promise
then the failure of a single member is the failure of the team. This is the nature of strong
coupling. Extroverts often argue that ‘two heads are better than one’, but that is not
necessarily supported the considerations above. The case in which two heads would be
better than one would be if the heads R1 and R2 had not reached equilibrium, and a

5.13. CENTRALIZED AND MONOLITHIC SYSTEMS 223

skin

lungs

sensors

marrow

blood

nervous system

heart

ORGANISM

nutrient

oxygen

water

Figure 5.24: The functional agents on the interior of an organism. There is a hierarchy of
cooperation, unlike a company or command structure. There is a network of mutually dependent
(entangled) services. Each bounded organ may perform a specialized function in the context of
an organism superagent. The system that all subagents depends on would seem to be the blood.
Thus, blood is the unifying hub for the organism superagent (not the brain). This key role of
infrastructure is the main weakness in all shared resource systems. Exterior dependencies on
oxygen and water have a similar role. The dependence on nutrients becomes more interesting as
this starts a new superagent web of food, which includes other organisms.

possible answer in C could still be found by seeking to equilibrate them, at the cost of
the equilibration time.

Although this seems intuitive, Promise Theory shows us that the conventional view
is of centralized and decentralized is an illusion of scale. Scaling will play an important
role in the integrity of system centralization, as we’ll see in chapter 7. Regardless of
scale, a central (super)agent must contain internal resources and structures in promise
its capabilities. The fact that these are localized (or that we choose not to open its black
box), should be neither here nor there. The positioning of the agents in a system, whether
real or virtual, is less relevant than their ability to keep promises, regardless of location.

• Does the relocation of agents, in the absence of other changes, affect the ability of
the system to keep its promises? This might depend on the nature of the agents.
If we put a fish out of water, for instance, it might not perform very well; but,
this would be ‘other changes’. If we assume that all the promises (including

224 CHAPTER 5. SPACETIME CONSIDERATIONS

environment) are equivalent and equally reliable, then there is nothing expressed
in the promises that refers to (or relies on) location at all; thus, location cannot
make any difference. If we outsource a department to India, or

Example 102 (Outsourcing). Human outsourcing does not respect any of these
invariances mentioned here. Taking a local department, interacting regularly face
to face with others in an organization (across functional boundaries) and moving
them to a place of complete isolation, where only phone calls and emails are
possible totally changes the dynamics of the system, so we would not expect it to
behave in the same way.

• If we try to scale the system in such a way that it can promise twice as much
as some baseline, what does this say about how the component agents have to
change their promises?

In order to promise twice as much from a single representative service point,
that agent needs to have twice the capacity, and the sum of its dependencies
needs to generate twice the capacity, to feed it, etc. That is not the same as each
agent promising twice as much, because aggregation may then lead to excess
capacity, which may lead to erroneous local flooding or downstream queueing,
which triggers system failures. Moreover, scaling the promises of each agent
component in a system might not be possible, as agents often have hard interior
limits. Humans cannot work faster than humans can (without becoming something
else), and the same applies to almost any technology. To increase the speed, we
might have to replace a human with a machine, or alter the architecture altogether.

The answers to these questions suggest that shrink-wrapping a collection of components
into an enclosed space, building a fence around it, which is what we mean by a centralized
or monolithic architecture, does not change a system fundamentally. The differences must
lie in the hidden details that are only implicit in calling a system centralized. Conversely,
picking a system apart and scattering it around, without a fence, need not fundamentally
change a system. That said, it is rare that ‘equivalent’ centralized and distributed designs
are in fact equivalent in all the promises they make. The distances between agents
might affect the speed at which promised results can be transmitted from agent to agent.
Conversely, the proximity of agents might result in a bottleneck or resource limit, or an
inability to provide proper dissipation of output (heat, waste, or produce).

As always, there are two dimensions to the equivalence of systems: dynamics and
semantics. Except in the case of mission critical engineering, like aerospace and shipping,
the science of understanding dynamical equivalence is not taken very seriously for human-
information systems. Inequivalences could arise because technologies are not able to

5.14. BLOCKING AND NON-BLOCKING PROMISES 225

scale without replacing an agent for an inequivalent agent. Even without replacement,
agents may not scale linearly in their behaviour: capabilities, costs, performance, and
even semantics typically change as one scales them. All of these issues may introduce
semantic and dynamic differences into a system that need our attention when trying to
rescale an effort to larger or smaller size. Designing a system to be tolerant of scaling
goes beyond mere fault tolerance.

Comment 5. When intent is distributed at multiple locations, there might be differences
in the ability to access the agents, for information to propagate freely, and to gather
knowledge about them and their promises. This can make understanding the system
harder. A central system has a natural point of calibration, by assumption, and thus
a single timeline. A distributed system, being only loosely coupled,is more likely to
have multiple clocks and rates of change in its processes. Knowledge management,
and reasoning about distributed systems is thus one of the major issues in systems we
call distributed. Thus centralization is about the ability to keep collaborative promises
between components, rather than their locations.

Example 103. Technologies that bind agents strongly into rigid clusters, which can
be called logically centralized, are sometimes called consensus systems. Paxos and
Raft are such systems[Lam01, OO14] that maintain correlation across agents in a local
region. Other systems, like single threaded processes with private memory just rely on
the assumption of isolation and change control to claim ‘centralized’ calibration.

5.14 BLOCKING AND NON-BLOCKING PROMISES

Another application of fixed point convergence, or centralized and monotonic behaviour,
is for limiting the observability of states in a system until certain set of desired conditions
are met. This is often called ‘blocking’ behaviour or ‘waiting’ in system parlance. It
involves the use of conditional promises.

Conditional promises promise no outcome until their dependent precondition can
be promised, and therefore they form a locally partial order. By contrast, unconditional
promises are ‘non-blocking’, non-ordered, or potentially concurrent. The process steps
that accomplish the outcome to keep the promise may be called interior time, and the
proper exterior time of the process only advances by a tick once the block has been lifted
and the dependent outcome is delivered.

In a sense, a promise of an advanced convergent state is a ‘blocking algorithm’. The
process exits when the final state has been reached. In this case it is not waiting for input,
as in blocking I/O, but rather for the keeping of an interior promise. It doesn’t refer to
any particular message, because it acts as a quasi-invariant condition. As long as the

226 CHAPTER 5. SPACETIME CONSIDERATIONS

condition is not met, nothing with proceed. If the process drifts in and out of compliance,
due to other subtime processes, then blocking may add exterior latency.

5.14.1 SHARED TIME PROCESSES

It only makes sense to speak of blocking and non-blocking in a shared time environment,
i.e. an agent that has interactions with more than one dependency. Since each agent has
its own process clock, the agent that shares communications with these has to share its
own clock with all its dependencies—violating the ‘shared nothing’ notion. Analogous to
reaching consensus equilibrium, any agent with multiple dependencies does have to wait
for all of them to keep their promises, else it cannot keep its own promise. To summarize:
an agent with multiple dependencies need not wait for dependencies in any order (as they
are symmetrical with respect to the current promise, at scale n), but it must wait for all
of them in total, at scale n+ 1 (see figure 5.25).

hub

1

S
2

S3

Sm

+d1

+d2

+d3

+dm

+ R | d1,d2,d3...dm−d2

−d3

−dm

−d1

dependencies

wait

don’t
wait

shared
dependency

S

Figure 5.25: Any active N : M relationship will result in partitioning of interior time at a hub.
The granularity of that partitioning is an interior policy decision for the agent. Coroutines, threads,
and serial blocking are three common variants of scheduling strategy for sharing the agent’s state
machinery between the neighbouring agents.

Example 104 (Reactive Manifesto). The Reactive Manifesto[BFKT] for software design
principles calls asynchronous message passing and non-blocking processes. This is an
unclear statement of intent, because it refers to non-invariant concepts. Suppose we
decompose an agent into subagents, i.e. partition them as non-ordered dependencies
of larger scale time-ordered dependencies (see figure 5.25). In a single process, there
must be a hub that receives the results of such concurrent partitions (‘threads’), which

5.14. BLOCKING AND NON-BLOCKING PROMISES 227

must block on a larger scale to aggregate the results. A process (super)agent cannot
be non-blocking on a scale of exterior actions—at its exterior scale—without breaking
such a conditional promise. That would alter its causal behaviour. However, the promise
to depend on m mutually independent dependencies should not imply an arbitrarily
imposed order; independent concurrent processes need not be starved of a shared time
resource because of the need to wait for a subset of them.

A program need not suspend parallel threads or co-routines while one of them
is waiting for a result. Waiting is a serial property, not a parallel one. The use of
synchronous or asynchronous about communication implicitly uses the clock of one
process to measure the progress of another, which has no invariant meaning.

The reason for this nitpicking is that it may mislead readers into thinking that
i) waiting is never necessary, and ii) all processes can be made more responsive by
parallelization. Not suspending parallel threads does not make a serial dependent thread
asynchronous as measured according to its proper time. It may or may not be perceived
that way according to some exterior clock time.

These points are certainly pedantic, but we need clarity as an antidote to ‘best
practices’ that are merely advocated on the basis of unclear language without explanation.

Convergence has no dependence on past state, as long as the final outcome (desired
end state) is a system invariant over each extended epoch of the system. It is an effective
counter-strategy to the risk of non-linear divergence. For state that gets reused on
multiple occasions, it is a strategy for maintenance that builds intrinsic stability into
systems[Bur4 a].

State convergence is also the way we render alternatives indistinguishable (by forget-
ting incidental past), and therefore engineer greater stability through the fault tolerance.
The instinct to throw away the may run counter to what many software developers are
trained to do—i.e. to keep every distinct case separate in its own context, but it actually
leads to greater certainty in the future. I’ll go out on a limb and predict that we need a
greater focus on advanced causation for sustainable and scalable computing in the future.

5.14.2 ENTANGLEMENT: SYNCHRONOUS AND ASYNCHRONOUS

SIGNALS

Synchronous means literally simultaneous—at the same time, i.e. measured within the
same clock tick interval. In a distributed world of many clocks this is a meaningless
aspiration[Lam78]. It can only mean ‘observed in the same interval’. Time intervals are
not invariant (they are covariant, i.e. the change with scale and observer reference frame).
Asynchronous implies that an agent may wait for an unspecified interval after receiving a
signal before completing its dependent promise.

228 CHAPTER 5. SPACETIME CONSIDERATIONS

Both of these pertain to conditional promises:

A
Y−→ S (5.186)

S
−Y−−→ A (5.187)

S
X|Y−−−→ R (5.188)

R
−X−−→ S (5.189)

(5.190)

Since we can only measure time differences locally at a single agent’s clock, a syn-
chronous response would imply that the difference in S’s clock time between keeping
promises (5.187) and (5.188) was minimized.

An asynchronously-kept conditional promise would imply an arbitrary delay between
keeping promises (5.187) and (5.188). Thus synchronicity is a policy decision to set
a scale for a ‘timeout’. The semantics of faults also need to be considered in these
promises: a ‘fault’ may also interpreted as a promise outcome in this loose description.

The definition is more complicated when there is a shared channel (figure 5.25).

S1
Y1−→ R (5.191)

S2
Y2−→ R (5.192)

. . . (5.193)

Sm
Ym−−→ R (5.194)

R
−Y−−→ S1, S2, . . . , Sm (5.195)

R
X|Y1,Y2,...,Ym−−−−−−−−−−→ A (5.196)

A
−X−−→ R (5.197)

(5.198)

Event driven systems may be synchronous or asynchronous. This is a timescale issue.

Lemma 25 (Synchronous or asynchronous events). A conditional promise only requires
the arrival of an event, but does not specify a labelled proper time interval for a response to be
given. The latter is limited by other dependencies, e.g. CPU rate, memory speed, scheduling
commitments.

Usually developers think of this from their own current perspective: their viewpoint
is that of an exterior observer (like a monitoring system, not drawn in the figure), which
(by some magic) has instantaneous knowledge of the states of the agents. The promise
(5.186) occurred when the final result was ‘in the bank’ R according to its own clock.
This clock is not usually distinguished from the clocks of the other agents, thus effectively
assuming a single global Newtonian view of time. Alas, in order to observe those agents

5.14. BLOCKING AND NON-BLOCKING PROMISES 229

directly, the same promise relationships in figure (5.196) are needed. Whether these are
given synchronously or asynchronously is scale dependent—a matter of definition, not
an observable fact, because it relies entirely on the definitions of the final observer after it
has sampled arriving signals. This is indeterminate, because to know this promise would
be to ignore or violate the autonomy of the agents.

The implicit goal of the manifestos seems to be to render total systems as close to
causally deterministic as possible—recreating the Newtonian view of global past. This is
possible, but only at the expense of a rate of total interior time the gets slower by at least
N2 for N interior agents—as we know from consensus systems.

Philosophically, the idea of entanglement opens for a discussion of many deep ideas
about relativity and mutual knowledge, and how the concept of ‘consensus’ can even
make sense across a spatial region, limited by the propagation of packets. These questions
are familiar from modern physics, but their information theoretical counterparts are only
just being appreciated.

5.14.3 ENCAPSULATION OF EXTERIOR MESSAGES

How we ‘quantize’, or define the atomicity of outcomes, by limiting their observability,
frames the way in which we interpret the units of transfer in message delivery. Entan-
glement (or irreducibility) of communication allows us to convert non-deterministic
asynchronous message channels into effectively deterministic synchronous message
channels, by restricting or ‘quantizing’ observability. This is a sleight of hand, based on
the voluntary cooperation of the agents involved, but it can be effective.

The property of entanglement has the consequence that, once a message enters a
link, it must either leave it as an indivisible unit, or have no effect whatsoever, and thus
each transferrable unit must be wholly containable in the send and receive registers. No
observer could see a partial state. Everything entering becomes a state of the collective
superagent. In the language of distributed consensus, we can turn these promises into
commitments, kept deterministically for single hops, and then build on the increased
certainty to work towards larger scale consensus[Lam01, GL06, OO14, BB14a].

We packetize messages, as is normal to keep transactions predictable, and thus at
least two layers are needed for packetized message delivery model (see figure 5.26):
a network interface and link layer operates on the level of packets, and an ‘intended
message’ layer, for aggregating packets into larger messages, operates between the cells.
The cells are the intentional agents, originating and consuming messages as part of their
larger plan. Network interface agents have intent only by proxy.

Separate entanglements may be established at each level of information promises: it
is the entanglement of the network interfaces that allows us to make strong statements

230 CHAPTER 5. SPACETIME CONSIDERATIONS

1
P2

PpP

M

Q
R

M

Q
L

+R−intent | ack

+L−intent | ack

−R−intent

−L−intent

+L−intent | ack
−R−intent

+R−intent | ack

−L−intent

+C−entangled | N−entangled

L

L

R

NN R

packets

.

strong entanglement

message in message out

−N−entangled+N−entangled
weak entanglement

M M

space

abstraction layer

w
e
a
k
 e

n
t.

strong entanglement

CL C
R

Figure 5.26: Entanglement is a bottom-up property, where higher level promises depend on
the entanglement of the lower layers. The entanglement makes pairs of agents effectively into a
single irreducible superagent, in the sense of [Bur15a]. By building on such dependencies, we
can trade ad hoc homogeneity for large scale quasi-deterministic fabrics.

about transmission of packet chunks, and the entanglement of the cell queues or applica-
tion buffers, containing the entire messages, which may synchronize complete ordered
messages.

5.14.4 IRREDUCIBLE SUPERAGENT PICTURE

Co-dependent promises, made (and kept) by the endpoints, must be maintained regardless
of what other independent promises cells might make to any other agent. This happens
when both agents are driven by what happens between them rather than coordinating
their independent activities (see figure 4.13). One can explore the use of this property
in order to keep strong promises about message delivery[BBKK18]. Notice that these
co-dependent promises are invariant under L↔ R, and are thus timeless and without
preferred orientation.

Agents that move in lock-step by co-dependence do not have independent clocks as
far as the joint process is concerned. Each agent has its own clock, but the co-dependence
means that they are both constrained by the process of message passing occurring between
them. Thus, the two agents can only move as fast as the slowest agent in the entangled
state, as its sampling rate limits the joint process. The single valued co-time of section

5.15. SPACETIME INVOLVEMENT IN QUANTITATIVE SCALING 231

4.5.3 applies to this joint clock. This is how time scales for interior processes.

Example 105 (Once only delivery). The promise of once-only delivery cannot be trivially
extended to multi-part multi-hop messages, in more complicated topologies, without some
work. We must defer the full discussion for a sequel, and make only a few remarks here.
It is possible for multiple copies of a packet to be observed, duplicated, and transmitted
around a network, if agents fail to keep the necessary promises, no matter whether out of
ignorance or malice. This is not specifically a weakness of our scheme: it is not easy to
promise a negative result.

Nor is it possible to prevent unexpected behaviours: since no agent can make a
promise on behalf of another. There are two pragmatic ways to localize the responsibility
for intended outcomes to the end points, away from intermediate interference:

• One is to used shared secrets or encrypted messaging to make corruption by ‘man
in the middle’ interference detectable. This need not be promised at all layers in
a communication stack: high level encryption would suffice for detection by the
intentional agents.

• Another way is for each packet to make a separate and uniquely labelled promise
(see section 3.12 in [BB14a]) by promising a unique desired state. If each unique
and intentionally different promise has its own label, and then duplication may be
detected, assumed redundant, and ignored idempotently.

Idempotence of promises means that a promise repeated n times is the same as the
promise given once71: (

S
+M−−→ R

)n
= S

+M−−→ R. (5.199)

Idempotence must play a role in promising uniqueness, where we don’t have complete
control over causation.

5.15 SPACETIME INVOLVEMENT IN QUANTITATIVE

SCALING

Networks are discrete, countable structures, but we often use real fractional measures to
estimate their properties at scale, when counting transaction by transaction is impractical
or undefined. Dimensionality then becomes essentially an average property of a network
that may be used to approximate its quantitative characteristics, such as the flux of some
quantity flowing through certain interfaces. To see this, we can look at some examples of
how networks and dimensional spaces interact.

232 CHAPTER 5. SPACETIME CONSIDERATIONS

In a mean field model of systems, network links are counted using a continuum
approximation in terms of volumes, and fractions of volumes. The details of agents and
their promises are all averaged away. This approach has been used by [Bet13] to study
the scaling in cities. It is an unfamiliar approach in engineering, but it plays an important
role in deriving the scaling laws.

5.15.1 LINEAR SCALING OF OUTPUT FROM AGENTS

When a promised output scales in proportion to the number of agents, it’s a sign that
there is a direct causal linkage between the agents and the measure concerned. On a
small scale, the chemistry of their interactions may be based on simple counting. Surely
all outputs stem from agents, so how is this news? The point here is that the measure
does not depend on assistance from other agents. Linear scaling refers to the effectively
autonomous capabilities of the agent. The key must be that, if the agents have any
dependencies, they do not play a role in limiting its output in any way. This may apply to
promises that are requirements for survival.

Every agent more or less deterministically depends on some source infrastructure
agent S, the number of promises is one to one:

Number of consumed =

NI−1∑
i=1

Π
(τ)
iS ' NI − 1. (5.200)

If the source is distributed over several agents, then this is still true:

Number of consumed =

S∑
s=1

NI−1∑
i=1

Π
(τ)
is ' NI − 1. (5.201)

Thus, the number of promises needed to supply this demand is also proportional to NI :

Ninfra ≡ Nτ ' NI . (5.202)

5.15.2 COMPARING CENTRALIZED AND DECENTRALIZED EFFICIENCY

Consider, as an example, the role of scaling in the time and energy usage of a central
system (in a star configuration) versus a decentralized system (in a general mesh). We
can consider two times: i) the response time for a client change to observe a change and
consult a central server for a response, and ii) the equilibration time for all agents in the
system to arrive at an agreed state.

Figure 5.27 shows the key component time scales, as measured by a single exterior
observer:

• ∆tsample is the sampling interval for the client, where a change is observed.

5.15. SPACETIME INVOLVEMENT IN QUANTITATIVE SCALING 233

• ∆tC is the process time internal to the client, at the ‘edge’ of the system, whether
centralized or not.

• ∆tS is the process time internal to the server, at the heart of a centralized system.
In a decentralized (peer to peer) architecture, the server role is performed by each
client, so there is no distinction between ∆tC and ∆tS .

• ∆tCS is the transport time for data from client C to server S, or we can speak of
∆tCC′ between two clients.

t

t

samplet∆

C
∆

∆
CS

S
t∆

SC

Figure 5.27: Timescales associated with system interaction.

.

The response times for different configurations are the total time for a change to be
observed and for a centralized acknowledgment to be returned. Let’s assume that a server
can parallelize the handling of responses, so that there is no serial waiting:

• For a centralized system with a single client C and a single server, which can
reply in parallel:

Rclient-server = ∆tsample + ∆tC + 2∆tCS + ∆tS . (5.203)

• For a decentralized system with a single client C, no server communication is
involved as the client does all the work:

Rautonomous = ∆tsample + ∆tC . (5.204)

• For a centralized system with N clients Ci and a single server, which can reply in
parallel:

Rcentral = max
i

(∆tsample + ∆tCi + 2∆tCiS + ∆tS(N)) . (5.205)

Note that the server response time might depend on the number of clients in
practice, even though there is some parallelism most systems will experience
queueing.

234 CHAPTER 5. SPACETIME CONSIDERATIONS

• For a decentralized system withN clientsCi, no server communication is involved
as the client does all the work:

Rdecentral = max
i

(∆tsample + ∆tCi) . (5.206)

• Finally, for a decentralized system with N clients Ci, and peer communication,

Rp2p = max
i

(
∆tsample + ∆tCi + 2∆tCiCj + ∆tC′(N)

)
, where i 6= j.(5.207)

The response times depend on the dimensionless scaling ratios:

∆tC
∆tS

,
∆tC
∆tCS

,
∆tS
∆CS

,
∆tsample

∆tC
,

∆tsample

∆tS
,

∆tsample

∆tCS
. (5.208)

These are the critical ratios that play a role in changing an existing system. Clearly,
there is a large number of independent timescales that govern the scaling of a distributed
system, whether centralized or not. When the communication is peer to peer, in a mesh,
there is an even greater number of potential timescales to consider if the agents are not
homogeneous.

The equilibration or relaxation
time ∆teq for agreeing about some information (a consistency time) is somewhat

simpler. It’s trivially zero for autonomous agents.

• For a central system:

∆teq = max
i

(∆tCiS + ∆S(N)) (5.209)

• For a decentralized peer system:

∆teq = max
i

(
∆tCiCj + ∆C(N)

)
(5.210)

The alteration of a single system involves fewer dimensionless ratios. If we want to
compare different systems 1 and 2, the ratios can be simplified for the processes:

R1

R2
and

∆teq-1

∆teq-2
(5.211)

Note that, if the server cannot actually cope with parallel connections, then, in the worst
case of a serial queue, the service time ∆tS will depend on the queue length, i.e. it will
be the response time for a queue of length N .

The conventional argument for the cost of centralized and decentralized systems
is that this can span from N for a central configuration to N2 for a peer to peer mesh.
In this case, for time, the processes are not cumulative since they run in parallel, each
according to their own private clocks. So the time is not cumulative, but rather the
maximum of racing parallel processes. The energy cost, on the other hand, is cumulative
since power is a serial dependence, so the N to N2 scaling will apply as the worst case
bounds.

5.15. SPACETIME INVOLVEMENT IN QUANTITATIVE SCALING 235

5.15.3 DERIVING METCALFE’S LAW FROM PROMISE NETWORKS

Metcalfe’s law predicts on general dimensional arguments that the economics output of a
network will be proportional to the square of the number of nodes in the network. We
can examine this assertion in the context of Promise Theory. Promise theory predicts
that links represent value in the following way. Consider then the sum of all impartial
promise valuations by third party C. If we assume that all agents assess the value of
interactions as strictly positive, then:

Mean value =
∑
τ

NI∑
i,j=1

vC(πτij) ≤ c〈αiαj〉NI(NI − 1) (5.212)

where NI = maxτ (dim(τ)) (see appendix B.2 about promise valuations).
Note that, in spite of the quadratic appearance from the result, this is a linear sum, so

it acts automatically as a linear averaging measure. Also, for any given specialization
τ , the filling fraction of the promise network is likely low; thus, a key assumption is
that, when properly documented, agent’s specialized promises in fact depend on many
others conditionally, forming a wide reaching network of progressively weak coupling.
Conditional promises propagate the range of value interaction[Bur16a, BB14a]. This is
the ecosystem effect.

The weakness of coupling is not a problem provided the city is reasonably homoge-
neous in density. If we define an effective density for the network, which describes some
probable average level ρ ∈ [0, 1] of ‘intercourse’ between agents (any kind of sustained
relationship), then it is fair to write the value of a network of promises:

Mean value =
∑
τ

NI∑
i,j=1

vC(πτij) = c ρ NI(NI − 1). (5.213)

provided the total density of promises forms an SCC of order NI members. This value
can be distorted from the quadratic form by significant inhomogeneity. Now, for most
cities, NI � 1 and ρ, αi � 1, so for strictly positive value interactions:

v ' c ρN2
I . (5.214)

This is Metcalfe’s law. It depends on the assumption of strictly positive value (i.e. no
non-profitable interactions), and sufficient density of promises to involve everyone in the
city who belongs to the infrastructure. Why is this plausible, when most specialization
leads to modularity? One reason is that modularity is only a separation of scales, not an
elimination of dependency: dependencies form an ecosystem. Nearest neighbours might
hold the greatest semantic importance to a given function, but this reductionist viewpoint
is not independently sustained without the eigenstability of the entire web[BBCEM10].

236 CHAPTER 5. SPACETIME CONSIDERATIONS

5.15.4 ECONOMIES OF SCALE

Outputs and characteristics of systems, which depend somehow on the scale of a sys-
tem, can be related to its size, or some other dimensionless scale. The dimensionful
parameters are often linked together by a functional equation, like an equation of state in
thermodynamics that describes the macrostate as as relationship between the involved
scales. The result for a single variable, that exhibits scale invariance is a relation of the
form:

V (N) = V0 N
β . (5.215)

This explains how the variable V may be expected to scale as a function of the number
of agents, etc. This is scale invariant because

V (αN)

V (N)
=
V0 (αN)β .

V0 Nβ
= αβ . (5.216)

The relative scaling is independent of the value of N . This is not the case in the Amdahl
and Gunther laws (see sections 8.7.1 and 8.7.2). In other words, this kind of scaling is of
a different nature: intrinsic (or scale free) rather than extrinsic.

The dimension of space cannot appear explicitly in this relation, due to the scale
invariant form. However, it can appear in the vale for β. In fact, it can determine whether
a system becomes squeezed or diluted as it scales: whether resources become burdened
or plentiful. There are three cases for the scaling, as before (see figure 5.28):

• Sublinear scaling, or economies of scale ∝ Nβ<1. It costs proportionally less
in terms of infrastructure investment to keep a system running. For example,
biological organisms use only N0.75 more energy as their size increases, so larger
organisms are more efficient. On the other hand, they also get slower because it
takes longer to transport energy and signals throughout their bodies.

• Linear consumption of resources ∝ N (food and energy consumption). Energy is
conserved so there is no way around the this.

• Superlinear amplification of output ∝ Nβ<1 (economic output of cities, etc.).
When there are ‘smart’ components that can specialize and collaborate, to exploit
the recovery of generally poor efficiencies, size can actually result in a net gain.
This happens in cities, for example.

Example 106. Interesting studies have shown that cities (which are semantic/dynamic
systems somewhat similar to IT systems) exhibit intriguing universal scaling, that is
reminiscent of biology.

5.15. SPACETIME INVOLVEMENT IN QUANTITATIVE SCALING 237

(a) (b) (c)

sublinear linear superlinear

Figure 5.28: Sublinear, linear, and superlinear scaling of a value with respect to a control variable

.

5.15.5 EMBEDDING SPACE VOLUME AS ESTIMATOR

Suppose a system starts out one dimensional, with people queueing at a checkout. As the
crowds get larger, the line breaks up into a two dimensional crowd and people have to
interleave from all directions in two dimensions to pass through the checkout. This is
an example of dimensional multiplexing. Although the agents are discrete, the simplest
way to represent their structure is to imagine them as floating in a multi-dimensional
space. Similarly, when water flows out of your bathtub, water from three dimensions
surrounding the drain get multiplexed into an essentially one dimensional flow.

Normally, one might expect to count input and output by agent or by link. However,
if the number of links converging at a single agent become so great that counting is
impractical, there is no way to liken a process to a simple Poisson arrival queue, and we
resort to flow counting based on density arguments. Let’s now show that this is equivalent
to volume of the infrastructure VI in [Bet13]:

Consider a number of agents Ninfra who provide infrastructure (gas stations, super-
market, etc) for a number of clients Nclient.

πinfra : Ainfra
+infra#V−−−−−→ {Aclient} (5.217)

{Aclient}
−infra−−−→ Ainfra. (5.218)

Suppose that each infrastructure agent Ainfra can promise to service V clients simultane-
ously; then, using a simple valency argument, we have a detailed balance equation for
the interactions at steady state:

α+ Ninfra V ≥ α−Nclient. (5.219)

Thus for simple counting of distinguishable agents, we may estimate the number of

238 CHAPTER 5. SPACETIME CONSIDERATIONS

infrastructure agents needed to support a number of clients:

Ninfra ≥
(
α−
α+

)
1

V︸ ︷︷ ︸
intrinsic

×Nclient. (5.220)

where α−/α+ may be interpreted as the affinity for the service, or the reciprocal com-
pressibility. This scales linearly with the number of clients in the catchment area of
the infrastructure. Moreover, there is no way, in this detailed formulation that we can
count otherwise. The only economy of scale in this arrangement is the standard linear
multiplexing result for the marshalling of V queues into a single queue with V servers,
noted in section 8.7.2.

However, if we now ask how to count the number of clients that can be fed into a
single infrastructure agent as a funnel, from a spatial volume, with traffic multiplexed
equally from all dimensions, then the best estimate is to serialize the counting, as before:

Nclient =

(
Vcatchment

Nusers

) 1
D

C(D)×Nusers, (5.221)

where we imagine a catchment volume Vcatchment, containing any number of agents Nusers

who are interested in the infrastructure service, and we serialize them along a tube of
constant cross section C(D) (see figure 5.29). Although these numbers only apply to a

infrastructure

catchment volume

Figure 5.29: How spacetime involvement compresses serialized agent links into an effective
flow of fixed cross section.

small mesoscopic volume of space, in a homogenous city, this will apply to the entire
city, so we are justified in taking

Nuse ' NI , (5.222)

which, combined with an equation of state for the volume, reproduces the earlier result

Ninfra ' V 1/DN1−1/D. (5.223)

In this argument, it is clear that only the active agents NI play a role in the counting, and
process flow, hence this also justifies why we can assume NI → N in [Bet13].

5.15. SPACETIME INVOLVEMENT IN QUANTITATIVE SCALING 239

5.15.6 EUCLIDEAN APPROXIMATIONS TO A NETWORK

The minimum size of the infrastructure network can be estimated by squeezing the total
sparse volume into a narrow, approximately one dimensional pipeline, with a small cross
section. This is only plausible of the network utilization is really sparse, since then the
total interaction can be compressed into the lower dimensional network, by multiplexing.
The average distance between agents inside the system (in D dimensions) is

d =

(
V

N

) 1
D

. (5.224)

An embedded infrastructure network has structure that pervades space, because it is
embedded in a real world volume, and needs to reach the homogeneously distributed
agents within. This ‘space filling’, or fractal quality, was important in deriving the
biological scaling laws[Wes99].

Example 107 (Scaling of city economics). For cities, this space filling is more like an
embedding than a fractal thickness to paths; however, following [Bet13], we may assume
that the network fills space to some level, so that the interactions around it fill out
an effective (Hausdorff) dimension H < D, and we may write the order of magnitude
estimate for the infrastructure volume:

VI ≥ gI
(
V

N

)H
D

LD−HN, (5.225)

where gI < 1 is a dimensionless constant that indicates the fraction of nodes in N
spanned by the particular infrastructure being considered. L is some fixed scale with the
dimensions of length [L], so that

[V] = [L]D. (5.226)

and LD � VI � V . In other words, the volume is the effective average linear volume
swept out by a fixed cross section L

DH
D , as it feeds into the N nodes connected by the

infrastructure72. This has the schematic form of N queues that are serialized paths of
dimension V 1/D . For H = 0 the nodes are unconnected, for H = 1 roads are serial or
linear, and for D > H > 1, the roads or channels have an effective fractal ‘thickness’,
from a coarse-grain perspective (see fig. 5.30). It turns out that we only need to look at
H = 1, as it is serialization rather than physical dimension that is important.

For cities, the picture is been visualized in terms of physical channels, roads, cables,
and transportation cost etc; however, any serial stream of work could constitute a virtual
path for the infrastructure, coming from a number of agents within the volume V . The
V 1/D scaling represents a serialization of the work from across the homogeneous region.

240 CHAPTER 5. SPACETIME CONSIDERATIONS

So, we’ll show later that this also applies to services provided from spot locations, without
considering the communication channel at all. Transport need not be the cost of the
work, but the argument still applies to the serialization of tasks in as a queue. This means

d

d

L

V
VI

Figure 5.30: The volume of the infrastructure sparse network is negligible compared to the ball
of the city.

we can write the infrastructure volume as approximately (rewriting (5.225)):

VI ≥ gIV
H
D LD−H N1−H

D , (5.227)

representing NI serial queues of supporting services, being fed from a D dimensional
region.

Example 108 (Relevance to Gunther’s Universal Scaling). A rational queueing expres-
sion, in Gunther’s Universal Scaling Law (8.11), can never explain fractional scaling
exponents seen in cities, but it can demonstrate some projected superlinearity with α < 0.
To feed superlinearity, we need something more than parallel serial processes where
the work is done by N point sources. Only if the work is done by N2 interactions can
a partial efficiency make the exponent greater than unity. To get this, we need to feed
higher dimensional volumes into lower dimensional volumes. This is what is going on in
the mean field theory of [Bet13].

Output = Maximum output(N2)× Fraction infrastructure used(N) (5.228)

From a graph theoretical perspective, this is a change in average connectivity of the
infrastructure network (i.e. the average degree of nodes k[Bur04a]). If the fraction is
a fraction of a volume rather than a line or a number, there are dimensional exponents
involved, which represent the contact efficiency by close packing the city population.
With more dimensions, a larger surface area can be used for interaction. If we assume
that the infrastructure network is sufficiently dense that it reaches almost everyone, then

5.15. SPACETIME INVOLVEMENT IN QUANTITATIVE SCALING 241

this continuum approximation is reasonable.

Density of infrastructure users =
NI
VI

= nI N
δ(D). (5.229)

where δ(D) = 1/D(D + 1), for H = 1. Recalling that this volume is really a
continuum approximation of a network of nodes, this translates into an average node
degree utilization (or locally used connectivity) within the infrastructure channel73

k(N) =
NI
VI

= nI N
δ(D). (5.230)

Assuming the infrastructure is pervasive so N ' NI , the equivalent serialized infras-
tructure volume, for a single process, is something like:

VI =

(
V

N

)δ
×NI ' N1−δ × cross section, (5.231)

= capture volume per agent× span of agents× cross section, (5.232)

Using this volume, instead of the total volume of the system (city, community, etc),
recognizes two things. First that cost of the infrastructure is much less than that of
the entire system; and, second, that it is the serialization of the sparse resource over
a standard cross section that we want to use for comparable work output. This is like
fitting the sparse output volume of the city into an idealized serial stream of fixed width
to see how its length scales with the number of inhabitants74. The efficiency comes from
being able to use more of an unexpected fixed cost, sparsely utilized resource along with
other economies of scale. The net result is an amplification of the output by δ:

Interaction related output Y =
const
VI

N2
I ' Y0N

1+δ(D). (5.233)

The numerator is unexpectedly constant, but the infrastructure volume scales sublinearly,
the net output appears superlinear, with these assumptions. The question is how do we
know if these are the same assumptions as the used for the measurements?

Modern datacentres and networks at scale have multiple redundant paths that make
their interconnection networks space filling (e.g. Clos structures[Bur13a], see figure
5.6). This brings higher dimensional scaling issues into the picture. The general picture
is one of close packing of utilization. When dependencies scale more favorably than the
contended processes that rely on them (relatively speaking), each process gets a larger
share of the shared resource, and is accelerated for a while, provided the total utilization
remains low.

5.15.7 CONDITIONAL DEPENDENCY AND OUTPUT SCALING

We can note briefly why certain occupations in the city scale differently. In a specializa-
tion society, singular individuals or agencies rarely have all the prerequisites to complete

242 CHAPTER 5. SPACETIME CONSIDERATIONS

their work. They need to collaborate and depend on others. Thus other agents are
effective infrastructure relative to them. It is the accessibility of this dependency that
throttles output. To drive the long range cohesion of the whole community network,
specialists come to depend on specialized services (e.g. patents depend on lawyers). This
leads to a number of promise configurations.

Consider four cases:

1. Interaction scaling: as proposed in [Bet13], for interactive value creation.

ALab
+patent−−−−→ Aobserver (5.234)

ALab
±interact−−−−→ Aservices (5.235)

Patent agencies are interacting at arbitrary range with a significant fraction the
total promise graph, as a part of the ecosystem.

Y ' Y0

(
v

VI

)
N2 → N1+δ ' N

7
6 = N1.16. (5.236)

The amplified value relies on the interplay between long range mixing, and short
range isolation.

2. Scarce agent scaling: skilled specialist experts’ output is proportional to the
number of skilled agents, since their queue is sparse, and not filled by a wide
volume of demand. However, the same economy of scale applies to their services
when they are depended on, as ‘infrastructure’, by others.

Y ' Y0

(
v

VI

)
N → Nδ ' N

1
6 = N0.16. (5.237)

3. Interaction promises with a scarce dependency: such as in the case of a service
that depends on a source of agents to fulfill a dependency. e.g. patents can only
be produced by labs that depend on the outputs of specialized R&D employees
and lawyers, working in private relationships, or in secrecy. The expression
in (5.248) assumes a promise configuration like that of the assisted promise
law[BB14a], with a main output based on a number of agents that provide input.
The dependencies produce raw output, and the ‘lab’ agency collates and represents
the collaborative mixing, e.g.

ALab
+patent|research,legal−−−−−−−−−−−→ Aobserver (5.238)

ALab
±interact−−−−→ Aservices (5.239)

ALab
−research−−−−−→ Astaff (5.240)

ALab
−legal−−−→ Alawyer (5.241)

Astaff
+research−−−−−→ ALab (5.242)

Alawyer
+legal−−−→ ALab (5.243)

5.15. SPACETIME INVOLVEMENT IN QUANTITATIVE SCALING 243

More generically, with two stages in the process of promise keeping, each experi-
encing scaling (see figure 5.31),

R S D

−d

+d

−Y

AND

+Y|d

Figure 5.31: A two stage (long range) dependency has two economies of scale, when fed by a
spacetime workflow. The probability of promises kept is multiplicative, like the logical ‘AND’ of
the promises.

S
+Y |d−−−→ R (5.244)

R
−Y−−→ S (5.245)

S
−d−−→ D (5.246)

D
+d−−→ S (5.247)

the total process picks up two ‘economies of scale’: the delivery of Y conditionally
AND the delivery of the conditional dependence.

Y ' Y0

(
v

VI

)
N2 ×

(
v

Vdepend

)
N → N1+2δ ' N

4
3 = N1.33. (5.248)

where D = 2 is used for the numerical values. These values accord better with
the cited data in [BLH+07], and tie in with the story about queueing.

What characterizes this interaction is the high level of specialization required to
fulfill the dependencies. If the network is sparse, this is more difficult than if
it is dense and diverse. This is the specialization gamble. With specialization
comes individual efficiency, but also risk of instability by disconnection from key
dependencies[Tai88].

They are a throttle on the process, because their absence could stop it altogether.
Hence, we are justified in using the product ‘AND’ for combining the probably
values in (5.248). This is not a hierarchical system interaction, because the
services are not necessarily hidden from the long range dynamics by internal
components of the superagent ‘lab’ (see figure 5.32 (b)). But in organizational
theory, one normally assumes that all organizations are hierarchically organized
(see figure 5.32 (a)).

244 CHAPTER 5. SPACETIME CONSIDERATIONS

(a) (b)

Figure 5.32: Structural recursion in an ecosystem is not like a branching process of containers
(a), but rather the agents overlap with other regions of the same network to access their virtual
functions. Thus their outputs are not concealed as interior substructure, but exposed as part of the
flat internetwork (b). The result is that a second order recursion picks up a second economy of
scale, in turn increasing the superlinearity of the derived output.

4. Recursive promise dependency. Let’s consider what happens when the ecosys-
tem network is based on a hierarchy of interaction ranges, i.e. promises are made
recursively in fully protected shells. The agency produces a service using full
community infrastructure, but also has some specialist dependency contained
entirely within (see figure 5.32 (a)).

Acompany
+Aspecialist

+solution−−−−−→Aclient−−−−−−−−−−−−−−−→ Aclient (5.249)

would be viewed as a recursive operation on the infrastructure, and the economics
of scale would apply to both times the (different) infrastructures were used.

Ypatent =
N2
I

Vpatent
(5.250)

Vpatent = gR&D

(
VR&D

NR&D

) 1
D

NR&D (5.251)

VR&D =

(
V

NI

) 1
D

(5.252)

Substituting for VR&D/NR&D from the last expression into the former,

Vpatent = gR&D

(
V

NI

) 1
D2

NR&D (5.253)

Inserting this into the output expression

Ypatent ' N
1+ 1

D2−
1

D(D+1) ' N
13
12 ' N1.08. (5.254)

5.16. GEOMETRY AND TOPOLOGY OF SYSTEMS 245

This value is almost linear, which is what we might expect on a self-contained
specialization, since the outside world would not be able to tell the difference
between a single agent and a single superagent.

The value is also smaller than case (1) above, not larger, so short range hierarchical
scaling cannot explain the anomalously large exponents measured in cities. On
the other hand, there are some smaller exponents in this range. It is interesting to
examine these measures from the perspective of the promises represented, and
their range in the embedding space.

There is a simple prediction here: long range dependency seems to increase output
superlinearity, i.e. dependency brings strong long range coupling and activates a larger
amount of the N2 mesh. A similar effect can be obtained in [Bet13], by slightly
increasing the Hausdorff dimension of the infrastructure H > 1. This does would
correspond to a more pervasive generic infrastructure network, which is an opaque
explanation at best. It seems unclear how to justify it.

Short range dependency is basically invisible at larger scales. This observation might
help to explain superlinear seen in technological contexts too, through coordination[GPT15],
but we have to be careful not to mix together effects that come about due to higher dimen-
sionality, with other mechanisms for increasing the utilization of dependent resources.

5.16 GEOMETRY AND TOPOLOGY OF SYSTEMS

The ability to locate, discover, and match with other agents, to form promise bindings,
depends on either physical or virtual mobility of the agents along network routes. Kineti-
cally, agents may follow a random walk, as in ballistic discovery. A second possibility is
that intermediaries perform the discovery by passing on information in a chain75. We can
say that two agents are either

• Physically close.

• Virtually close.

Promise theory also predicts that two agents may be dynamically close or semantically
close, such as when related meanings are grouped. The former depends on the length
scales of the system (e.g. in a city, or in a datacentre) and its structure. The latter can
be assumed approximately independent of these scales, because the carriers are very
light, cheap, or fast (or, in the case of semantic distance, purely cognitive). If the cost of
discovery can be neglected, the cost equation is different: collaboration can be cheaper,
and the value of being in close proximity for a particular specialization is reduced76.

246 CHAPTER 5. SPACETIME CONSIDERATIONS

Architectural assistance to optimize access to agents clearly plays a role. Directories,
maps, and indices[Bur15a] are ways for agents to virtualize discovery of dependencies,
and locate one another at low cost. Telephone directories map coordinate addresses to
names. Yellow pages map coordinates to specializations. Similar specializations are
grouped. Shopping malls and industrial estates are physical directories, where clients
can expect to find services in a small volume. Directories may be discovered themselves,
or formed by voluntary registration. The value of new bindings overcomes the tendency
for similar specializations to repel one another: similar agents may be attracted implicitly
(covalently) by the intermediate attraction to clients.

The scaling estimates of the city are based on infrastructure where physical motion
of the population is based on the cost of traversing some fraction of the length of the city.
We can repeat the output calculation to neglect this cost, as is the case in services that do
not require physical transport.

• Physical interaction (transport/mobility): people move around using transport
infrastructure to experience their environment. There is a promise for people to
observe their surroundings, for something related to subject τ , and this promise is
kept fractionally ατ ∈ [0, 1] during their walk.

Let the linear range of the agent Ai be some dimensionless fraction per unit time
rTexplore of the size of the city V 1/D , where r is the speed in units of city size77.
If the density of impulses per unit length of city region I is assumed constant
relative to the transport rate (because this is the basis of commerce, i.e. what the
city is trying to optimize for people’s finite time), then the number of impulses Iτ
of type τ , experienced on such a walk, may be written:

Iτ ∝ ri Texplore V
1/D I ατ (5.255)

where ατ is the probability that the person or agent will be receptive to impulses
in its environment that are relevant to promises of type τ .

Although there is room for inhomogeneous variations in the city regions, in the
transport rate r, and the density of offerings I, this will not change the average
scaling argument much, as long as N is large. I make the assumption here that the
density of experiences I is constant, even though the density of people is related
to the city size. This is because the size of a city is constrained by the time rather
than the distance (and we are suppressing explicit time).

The range will be some fraction of the size of the city, available by transport
infrastructure V 1/D . The cost of physically fishing for ideas thus takes the form

C ' cYNIV
1
D , (5.256)

5.16. GEOMETRY AND TOPOLOGY OF SYSTEMS 247

in agreement with the work model of [Bet13]. This applies for physical city
interactions, and leads to the same output scaling expression in [Bet13].

Y +
Y ' N

2D+1
D(1+D)N

D2−D
D(D+1)

I , (5.257)

' N
7
6
I

(
1 +

N0

NI

) 5
6

. (5.258)

• Virtual interaction (teleport/messaging): people are immobile and send mes-
sages to one another, watch entertainment, browse, read, talk, etc. These activities
occupy an increasing amount of the time spent by people, not least because it
can easily be interleaved with work time. The rate is no longer related to the size
of the city, nor is there any obvious boundary to what can be discovered online
(since the range of the Internet is even more diverse than a city)78. In this case,
the impulses are more likely to be related to availability of the fountain itself (e.g.
‘bandwidth’ B) multiplied the time spent.

Iτ ∝ B Texplore I ατ (5.259)

Discovery of information is the main issue. Before search engines, there were only
directories such as white pages (by person) and yellow pages (by promise type).
However delivery of what is discovered might still involve spatial constraints, e.g.
locating a new car online does not allow it to be teleported to the buyer’s location.
However, 3d printing technology might change this, for a class of problems, soon.

Here it is not the locations that matter, but the rate at which impulses are absorbed.
Once again, this is constant. When friends, books, or movies are communicating
ideas to us, this happens at a rate that depends only on how quickly we can
get hold of a stream. How users discover locations online, or by telephone is a
separate question. Directories[Bur15a], advertisements, and chance all play a role
here. The cost of fishing for ideas is thus now independent of the city size. For a
community of multiple superagents, the analogous expression is:

C ' cNIBTexplore. (5.260)

If we imagine a community with no other infrastructure except its telecommuni-
cations network, and substitute (5.260) into the detailed balance equation:

gY
(vY
V

)
N2
I ≥ cNIBTexplore. (5.261)

Following through the calculation for the yield estimate identically, we find the
scaling is no longer superlinear (D = 2, H = 1)

Y ' N
H
DN

(1−H
D)

I ' N
1
2
I

(
1 +

N0

NI

)− 1
2

. (5.262)

248 CHAPTER 5. SPACETIME CONSIDERATIONS

This simple result reflects the intuition that, if we neglect the ‘universal cost’ of
telecommunications from the community accounting, then the value generated as a
result of collaborative processes is proportional only to the fraction of participants
who span the diameter of the city or community. This reproduces the well-known
result for mobile ad hoc networking (MANET)[BC04, BC03].

The rate of output based on trawling of ideas and gestation in closed workgroups will be

Iwork
τ = ND

(
cphysI

phys
τ + cvirtI

virt
τ

)
(5.263)

and for the entire city of NW workplaces:

Icity =
∑
τ

Iwork
τ ' NW I

work
. (5.264)

5.17 SPECIALIZATION AND MODULARITY UNDER THE

SPOTLIGHT

Semantics are usually scale dependent, but quantitative dynamics without strong seman-
tics can be scale-free, e.g. output amplification. When we divide a network based on
function, rather than based on timescales, the timescales associated with the different
functions may lead to much weaker bindings between the modules, because unequal
waiting is involved to compose the modules into a system. Redundancy can be used to
mitigate the waiting and the associated fragility—but adding in redundancy tends to cou-
ple the components more tightly again, so some of the perceived benefits of modularity
may be removed by having redundancy.

Some correspondences in the table below show how agents at one scale map into
the role of agents at another scale, with a similar functional relationship, illustrating
scale-free behaviours, provided we ignore detailed semantics. With physical or virtual
scale increasing left to right:

SOFTWARE CLOUD CITIES

MODULES CLUSTERS DISTRICTS

PROCESSES DEPLOYMENTS WORK

APIS APIS OFFERS

FUNCTIONS SERVICES ORGANIZATIONS

USERS TASKS CITIZENS

PEOPLE PEOPLE PEOPLE

MECHANISMS MECHANISMS MECHANISMS

5.17. SPECIALIZATION AND MODULARITY UNDER THE SPOTLIGHT 249

In software of all kinds, plugin modules answer one of the questions about ‘software
bloat’: modules allow size to be limited by placing a natural boundary around a separable
or independent process. Separation cannot deal with the complexity issue however, since
the modules still need to be connected in the same pattern to achieve the same process
functionality.

Dependency of one module on another is a source of fragility in any network. Con-
versely, increased efficiency in dependencies can lead economies of scale, and superlinear
output increases (see section 8.7). Dependency amplifies the effects of modular scaling,
for better and for worse. Redundancy goes hand in hand with dependency to follow the
downstream principle (see 2.4.3).

Modularity does not necessarily ease maintenance, contrary to conventional software
rhetoric, but it may break up the maintenance issues along semantic partitions, which
helps to scale the expertise and investment of time needed for learning. Conversely, it
can lead to narrowing specializations, with attendant lack of systemic understanding and
experience. Modularity of repair is only useful if the different modules are supported
by independent maintainers. Pulling a system apart to be maintained by a single person
is meaningless as there is no scaling efficiency introduced. Modularity may be more
expensive than monoculture unless the utilization of the modules is high. Multiplexing
of resources is the mechanism that leads to efficiencies of scale (see section 8.7).

Example 109 (Modular design). Modular redesign is sometimes used as an argument
for pre-planning a scaled up workforce, assuming that the workload will grow in the
future. It is a gamble, because it relies on the idea that efficiencies of scale come
from specialization. If the workload doesn’t increase, then the cost of modularization
redesign, combined with the extra overhead associated with the management of modular
dependences just leads to higher costs, while the necessary extra workforce mainly sits
idle.

Example 110 (Modular IT services). The same argument applied to the use of separate
machines and containers for encapsulating IT services. the ‘one service per machine’
idea argued that this made management easier. It also increased the workload and the
capital cost of the machinery. If the individual services were not all running with high
utilization, then the independent machines were mostly idle.

We return to look at modularity in section 7.5.

CHAPTER 6

INTERACTIONS AND INFLUENCE

A collaboration between agents is what we mean by a system. This cannot happen without
basic interation. We can’t derive or prove the existence of interactions—interactions are
a semantic primitive. We merely assume it, because without it there would be nothing.
Interaction is an exchange of information. The representation of information is viewed
quite differently in different fields: we might call the information a particle, like a photon
or a gluon, or we might view it as a data packet, a molecule, a signal, and so on. What we
consider to be material—as opposed to merely a signal—is simply a matter of convention
and has no practical distinction. In this chapter, I want to lay out the basic approach to
describing interactions.

Interactions between individual agents are what lead to collective behaviours. In this
chapter, we ask: can we characterize systems in sufficient detail to understand their basic
intentional operations and define the meaning of system failure at the level of keeping
promises? This is plausible using Promise Theory, because:

• It leads to a directed graph of intent, which allows many standard techniques for
the analysis of outcomes.

• Its outcome-oriented approach encodes more information than a classical reliabil-
ity component model can because it makes intent more explicit.

• It can take into account context on many scales, which permits a fine graining
of causal pathways, based on semantics, as well as the discussion of the larger
environment in which a system operates.

Agents are, as always, the atomic building blocks, from which a greater chemistry of
cooperation and functional design emerges. We may use agents to model all kinds of

250

6.1. DISTINGUISHABILITY, AGENT TYPES, AND LABELS 251

components, whether ‘dumb’ or ‘smart’, human or machine. They are distinguished only
by the promises they make.

6.1 DISTINGUISHABILITY, AGENT TYPES, AND LABELS

We may benefit from differentiating types of agents, when applying promise theory to
functional spaces. A priori, agents have no type: they are homogeneous, structureless,
universal elements (analogous to biological ‘stem cells’) that may only be differentiated
via the promises they make. A type may thus be defined either by identification of a
role[BB14a], or by explicitly making a scalar promise.

Consider a universal (typeless) agent A∅, that makes no initial promises, or empty
promises to everyone:

A∅
∅−→ ∗. (6.1)

We may add a scalar promise, with additional scope σ:

A∅
+bla−−−→
σ
∗ (6.2)

Any agent in the scope {∗, σ} may now identify the former agent as being equivalent
to an agent of type b, making no promise. In other words, within the scope, the agent
effectively has a new name:

Abla
+∅−−→
σ
∗, (6.3)

thence

bla
+∅−−→
σ
∗. (6.4)

i.e., we can drop the promiser’s agent symbol ‘A’ and label agents simply by their names.
I’ll use this notion from here on to write agent types implicitly, e.g.

T1
∅−→ A ≡ A1

+T−−→ A (6.5)

R2
∅−→ A ≡ A2

+R−−→ A (6.6)

H3
∅−→ A ≡ A3

+H−−→ A (6.7)

and so on. In this way, we can move scalar labels from the promise body to the agent’s
identifier at will. This is in keeping with the idea that the agent’s name is the basic
promise that identifies it.

252 CHAPTER 6. INTERACTIONS AND INFLUENCE

6.2 PROMISE VALENCY AND SATURATION

To develop Promise Theory as a formal chemistry of intent, we need to clarify how many
agents a promise can support or service. In other words, how many ‘slots’, ‘binding sites’
or occupyable resources does an agent have, to share between promisees?

Declaring a finite number of such slots, explicitly allows for a simple discussion of
resource exclusivity around promises. The concept is basically analogous to the valences
(oxidation numbers) of electrons in physical chemistry. Think also of the binding sites
for receptors, viruses and major histocompatability proteins in biology.

Definition 116 (Valence of an agent promise, and overcommitting). A promise which
provides +b to a number of other agents may specify how many agents n for which the
promise will be kept exclusively. The valency number of an exclusive promise is a positive
integer n, written

A
+b#n−−−−→ {A1, . . . Ap}. (6.8)

A promise body may be called over-promised (or over-committed) if p > n.

Example 111. A reserved parking area promises 10 spaces, to 20 employees. The
parking promise is over-committed, since it cannot keep all of its promises simultaneously.

Over-promising is not a problem unless all of the promisees accept the promise, and
promise to use it. Thus a separate concept of saturation arises by using up all of the
valence slots:

Definition 117 (Use-promise saturation). Suppose we have

A
+b#n−−−−→ {A1, . . . Ap} (6.9)

{A1, . . . Am}
−b#m−−−−→ A (6.10)

is saturated if m ≥ n.

It is useful to define a function whose value is the net valence of a particular type of
promise body.

6.3. THE LANGUAGES OF PROMISED INTERACTIONS 253

Definition 118 (Net valence of a promise graph and utilization). ±b, for a collection of
agents {Ai}:

Valence(b; {Ai}) =
∑
i

Valence(b;Ai) (6.11)

= n−m (6.12)

Hence we may assign an integer value to the level of usage, or a rational fraction m/n
for utilization of the resource. If this fraction exceeds unity, or the net valency is negative,
the keeping of the promise effectively becomes a queue of length |m− n|, requiring the
agent to multiplex its resources in time to keep its promise.

Example 112. Consider the two agents A1, A2:

A1
+b#2−−−→ A2 (6.13)

A2
−b#3−−−−→ A1 (6.14)

A1 offers two possible slots for its promise of +b, while A2 requests three units of it,
leaving a net deficit:

Valence(b;A1, A2) = −1 (6.15)

This notation allows us to simplify the discussion of occupancy and tenancy in later
sections.

Example 113. Consider the following promises made by a network switching device:

switch
+(10Gb)#48−−−−−−−−→ client (6.16)

client
+(1Gb)#1−−−−−−→ switch. (6.17)

The switch makes 48 promises offering 10Gb ‘bandwidth’ to the clients. The client
accepts one valency slot (leaving 47 more), and promises to consume only 1Gb of the
maximum possible 10Gb.

6.3 THE LANGUAGES OF PROMISED INTERACTIONS

In order to even comprehend one another’s promises, agents need a common language,
with which to express body content. The problem of how agents come to develop a
mutually acceptable language for information exchange between independent agents
has been studied in connection with linguistics both of the traditional variety and in the
biology of the genetic code[DEKM98]. It is not a simple problem, and I shall not try to
address it here in full; however, there are some simple things we can say about it.

254 CHAPTER 6. INTERACTIONS AND INFLUENCE

In all cases, what we derive from these studies is that, regardless of whether language
is executed continuously or discretely79, the possible intended meanings form a discrete
alphabet of symbols, representing capabilities, intentions, and so on. Thus, semantics
constrain promise bodies to a set of linguistic atoms (morphemes) which are discrete. In
nature, we see this in everything from gene codons, to cells and organisms, to Chinese
ideograms80.

b
4

b
6

b
5

b
3

b
2

b
1

intA

A
ext

Π
ext

Π
int

Figure 6.1: Body parts or linguistic atoms of intent may be used as a spanning set for the body
of any promise in a region. This is like a coordinate system of intent. For b4 to be promised to
Aext, b4 must be understood by both promiser and promisee agents.

The representation of promises in arbitrary natural language is unlikely to be simple,
since the metaphoric basis of natural languages do not lend themselves to direct mapping.
However, we can imagine formulating a set of restricted Domain Specific Languages,
`(α) = {β(α)

a }, consisting of symbols β(α)
a , whose purpose is the represent specific

intentional behaviours, and which map to a set of concepts that can be represented in a
natural language N (α) of all agencies in a coordinate patch:

`(α) → N (α). (6.18)

Assumption 4 (Discreteness of promise body encodings). The language of promise
bodies is assumed to be a discrete language pattern, of fixed, but unspecified, alphabet β,

6.3. THE LANGUAGES OF PROMISED INTERACTIONS 255

comprising basis symbols βa.

b(Ai) =

C∑
a=1

caβa, (6.19)

for some coefficients ca, and C = dim(β(Ai)) for agent Ai.

Based on this decomposition of intent, we may now consider a local observer view
on the measurement of agent structure, assuming finiteness of information. Consider
the syntax space of alphabetic strings in a set of languages `(α) ∈ L, where α labels
different languages, each of which might have its own alphabet.

In order for agencies with different languages to be able to communicate intent, these
languages must be mutually comprehensible, i.e. we must be able to map parts of them
to one another. The existence of a discrete alphabet of symbolic words allows us to think
of the alphabet of intentions as a matroid or spanning set βa over a vector space. We
may assume that the language of agent Ai has dim(β(Ai)) dimensions or classes of
intention, so that a = 1, . . . , dim(β) (see figure 6.1). This alphabet may or may not
necessarily be shared between all agents, but needs to be partially translatable for agents
to make promises to one another.

Suppose we have two alphabets with symbols β and β′. In order for a promise body
to be encodable in either language, we must have:

b =

dim(β)∑
a=1

caβa =

dim(β′)∑
a′=1

c′aβ
′
a (6.20)

i.e. both languages have to be able to span the promise body, or represent it in their
own spanning sets or words. We need not require a single common spanning set of
body parts to span every message, the language of agents does not have to be a global
symmetry across spacetime, but we do require local continuity in the couplings, in order
for information to be passed on.

6.3.1 TRANSMISSION OF INTENT

A related issue concerns the ability for an observational arbiter to distinguish between
different agents. This depends on the ability of the agent to comprehend the language
being promised. Suppose an observer suspects that an agent is non-atomic, i.e. it contains
internal structure.

• Multiple agencies within a single agent might be identified if:

– If an agent seems to make independent partial-promises to different promisees,
it could be natural to formally resolve it into separate sub-agents for the
independent promises (‘disaggregation’).

256 CHAPTER 6. INTERACTIONS AND INFLUENCE

• A compound promise could be resolved into several simpler promises if:

– The details of the promise body can be expressed as a number of indepen-
dent items that can be made (+) or consumed (-) independently.

– If, by emergent agreement, a set of primitives (like a table of elements) can
be seen to form a spanning set for the promises made by an ensemble of
one or more indistinguishable agents81.

To know this information for sure, it would have to be promised. For this, we can define
the concept of an agent directory (see section 5.8.10).

Definition 119 (Homogeneity of agent languages, and transmission of intent). Agents
A1 and A2 may be said to have distinguishable promises that can be resolved by a
receiverAr iff the measures of the promises, which overlap with the receiver, are unequal.
Suppose A1, A2 each make a promise to an observing receiver Ar:

A1
+b1−−→ Ar (6.21)

A2
+b2−−→ Ar (6.22)

Ar might judge these two agents identical if b1 ∩ b2 = br 6= ∅, i.e. if both promises
contain a common part (the intersection b1 ∩ b2), which the promisee promises to see:

Ar
−(b1 ∩ b2)−−−−−−→ A1, A2. (6.23)

In other words, if the receiver filters its perceptions according to what is common to all
agents, then it is unable to distinguish them.

We can break this into two cases: if sources A1 and A2 share common components
(e.g. share common genes), i.e. b1 ∩ b2 6= ∅, then the receiver can observe a similarity
between the agents. If, further, the receiver only perceives the influence of what is
common between them, i.e. it promises to accept −br , then the agents will perceive an
elementary unit of promise equal to:

b1 ∩ b2 ∩ br 6= ∅. (6.24)

Example 114. In genetics, the body elements correspond to genes. A gene can be passed
on (+) from a parent to a child, but whether or not it is ‘expressed’ or activated depends
on the proteins use the gene (−) during morphogenesis. Thus, simply passing genes
from generation to generation need not result in transmission of attributes (promises
kept). Similarly, environmental conditions can play a role in activating or de-activating
particular gene promises in different circumstances.

6.3. THE LANGUAGES OF PROMISED INTERACTIONS 257

Example 115. For instance, imagine one agent believes it is promising to deliver a letter
to a recipient. The agent receiving what the promiser considers a letter might, in fact,
be promising to evidence in an investigation as a DNA sample on the letter. The rest
of the letter vehicle has no semantic value. A second agent then promises to deliver a
blood sample to the same recipient. This also qualifies as an evidential DNA sample to
the recipient. Since the agent of DNA is encapsulated by both the letter and the blood
sample: DNA ⊂ Letter and DNA ⊂ Blood, an agent that can only measure DNA
would see the letter and the blood sample as being equivalent sources of DNA.

DNA, itself, is a vehicle (agent) for genes that are embedded within it. Exactly the
same argument now applies at the level of DNA as a container. The presence or absence
of an allele (gene flavour) within a strand of DNA indicates a similarity of intent.

The impact of a promise is defined through its binding strength, or effective coupling
constant. In earlier work, I defined the notion of a trajectory for an agent, and the
corresponding notion of a generalized force, obeying Newtonian semantics[BF07a,
BF08]. Intuitively, one expects a force to be something that impacts an agent’s trajectory

F : b→ b+ δb (6.25)

Though, readers should note that promise trajectories are rarely Newtonian. From this,
one may construct a generalized force, which with the help of assessment function α(π)

takes on a familiar form of a field-charge like interaction:

F ' α

S +b−−→ R︸ ︷︷ ︸
Field

, R
−b−−→ S︸ ︷︷ ︸

Charge

 . (6.26)

See [BF07a, BF08] for the details. This gives us a simple notion of a coupling strength
by which to define such a measure of impact. The analogies to physics are attractive, but
we should beware that the trajectories are ‘rough walks’ not smooth curves, in spite of
the analogy to differential notation.

6.3.2 CONTINUITY OR SPATIAL HOMOGENEITY OF SEMANTICS

Promises comprise information transmitted between agents. The effective transmission
of information requires the existence of a common language[SW49, Sha40]. If each
agent is an autonomous entity, how may agents learn a common language, or equilibrate
different languages, in order to understand one anothers’ promises?

Consider the existence of a language operation that transforms a body string b1 by
agent A1 into a body string b2 for agent A2.

b(a) = Lab(b
(b)) (6.27)

b(b) = Lba(b(a)). (6.28)

258 CHAPTER 6. INTERACTIONS AND INFLUENCE

In order for L(·) to be faithful and express transitive properties such as long-range order,
we need piecewise reversibility. Substituting (6.28) into (6.27)

b(b) = Lba(Lab(b
(b))) (6.29)

which implies that

Lab(Lba) = 1 (6.30)

or the inverse relationship is the transpose:

Lab = L−1
ba . (6.31)

In a general matrix representation, this implies that universal representation of the
matrices representing L belong to the unitary group over language space a, b:

L†L = I. (6.32)

The full unitary symmetry (if we take the general solution to this seriously, in the absence
of other constraints) allows for general rotations of symbols. Thus so-called entangled
states are, in principle, allowed for in this observation.

The set of transformations represented by L does not have to be assumed a global
symmetry. The index labels gloss over the piecewise locality of the assumption that
Lij(Ai) is a transformation that takes place at the location Ai, on its way from Aj .
Similarly Lji(Aj) takes place at Aj om its way from Ai

82. The limit of locality is thus
the adjacency length between Ai and Aj

Lab(A
(b)
i) · Lba(A

(a)
j) = 1. (6.33)

If Ai and Aj are nearest neighbours, this is straightforward. However, if we regard the
transmission of a promise through intermediate proxy agents, then comprehension and
message integrity depend on the existence of non-local correlations, somewhat analogous
to entanglement in quantum mechanics.

This symmetry is closely related to the observation that, even with a common
language, in any promise relationship between agents:

U(U(+b)) 6= +b (6.34)

−− b 6= +b (6.35)

(see section 3.10.2 in [BB14a]). Both relations imply a kind of long-range cooperation
between the agents. These are analogous to the global symmetries of particle physics.

On seeing this familiar symmetry of the physical world, it is tempting to look for
a conserved quantity, or a conservation law for the alphabets β, but it cannot be the

6.3. THE LANGUAGES OF PROMISED INTERACTIONS 259

case that the alphabets are preserved. A conservation law would make the transfer of
alphabetic messages into a zero sum game: what was passed on to a neighbour would be
lost by the sender. This is not how evolution works. Instead, the process of equilibration
is more like an epidemic duplication83. The transformations of language a location are
more likely to be non-conserved, in general, and depend on the proper time (evolutionary
change). One expects transmission of symbols in both time and space, but without
conservation. Thus one could imagine dividing the inter-lingual transformations into two
parts:

L = L(A)︸ ︷︷ ︸
Conserved

+ L(A, τ)︸ ︷︷ ︸
Non-conserved

(6.36)

The first part could lead to a zero-sum conserved current of symbols from one agent to
another, allowing migration without preservation, while the latter part allows symbols to
be duplicated and spread. It might be fruitful, in the future, to consider how this process
takes place, and compute Kubo relations for the transmission of promises[For75].

In order to cooperate, agents interacting at a distance need to have a sufficient level
of similarity to local agents in order to be able to make sense of what they are promising
to one another (see figure 6.2). This is true regardless of whether they directly adjacent or
not. This must be a semantic equilibrium, mediated by a dynamic exchange process, in
order to this cooperative behaviour to emerge. Unlike elementary physics, where locality
is more obvious, cooperation between agencies could be long range, as long as there is
adjacency over a long range. Semantics tend to follow humans, companies, organizations,
races, countries, etc, and humans form multiple outposts with geographic separation.

6.3.3 INTER-AGENT LANGUAGE TRANSLATIONS

It is possible, in principle, to construct a linear transformation of one language into
another:

β′a = La′a(βa). (6.37)

Then, from the linearity, we may use the distributive law to say that a body b

b =

dim(β)∑
a=1

caβa =

dim(β)∑
a=1

caLaa′(β
′
a) (6.38)

Thus, as long as the matric L exists, the languages will be translatable. If the dimensions
of the languages are not the same, only a subset of meanings will be translatable from one
to the other. This might be asymmetric, allowing one agent to understand another, but not

260 CHAPTER 6. INTERACTIONS AND INFLUENCE

v
s

s

s

v

s

s

A

A’

+

−

Figure 6.2: Agents need to have similar structure to make promises across agent boundaries,
referring to internals of the other. The promise bodies do not have to be identical as long as each
agent recognizes its own version of the other’s promise.

vice versa. At the level of atomic intentions, we can introduce coding transformations a
transition matrix for mapping

`(α)(Ai) ∈ Lαβ(`(β)(Aj)) (6.39)

for some invertible matrix-set of maps Lαβ .

Example 116 (Protocol language). Consider a body language with alphabet

β = {SEND,RECEIV E, SEEK,FORWARD,BACK},

and β′ = {PUT,GET,APPEND}, then we can translate these:

c′1β
′
1 = PUT = c1β1 = SEND (6.40)

c′2β
′
2 = GET = c2β2 = RECEIV E (6.41)

c′3β
′
3 = APPEND = c′2β

′
2 + c′4β

′
4 + c′1β

′
1 = SEEK + FORWARD + SEND

(6.42)

Hence there is a translation matrix:

La′a =

 1 0 0 0 0

0 1 0 0 0

1 0 1 1 0

 (6.43)

which, in this case, is not invertible. Hence the language is translatable in one direction only.

6.4. PROPAGATION OF INFLUENCE (CAUSATION) 261

In principle, however, it should be possible to restrict `(α), such that translation
may be performed faithfully as a bijection, by postulating a ‘table of elements’ for the
chemistry of all promises in a semantic spacetime:

`(a) ↔ `(b) ∀ a, b ∈ L. (6.44)

L
L

1

2L

L

4

3

Figure 6.3: Overlapping patches of language require all agents in a patch to use a compatible
language, and for (at least some) agents in each patch to comprehend a faithful translation of a
neighbouring language, in order to bring long range order.

From here, the requirement for transmission of intent is that there be a piecewise
continuity by partial overlap between neighbouring languages (see figure 6.3) becomes:

`(a) ∩La,a±1(`(a+1)) 6= ∅ ∀ a (6.45)

so that for a ± 1 a neighbouring language of `(a)(Ai), i.e. Πext
ij (Ai) = 1, a promise

binding, of the following kind, may be mutually and equivalently comprehended:{
A

(a)
i

+b−−→ A
(a)
j

A
(a)
j

(−b)−−−→ A
(a)
i

a→b
=

 A
(a)
j

Lab(+b)−−−−−→ A
(b)
i

A
(b)
i

Lba(−b(b))−−−−−−−→ A
(a)
j

(6.46)

This assumes that both Lab and Lba exist over the relevant bodies. The solution of the
continuity relation (6.45) would then take the form:

`(a) = {β(a)} ∪ {La,a±1(β(a±1))} ∀ α (6.47)

i.e. the language of an agent in a coordinate patch α should consist of all interior body
symbols, together with native translations of neighbouring languages.

6.4 PROPAGATION OF INFLUENCE (CAUSATION)

When promises are conditionally chained together in space or time, they can lead
to cooperative processes that span multiple agents. Processes may therefore also be

262 CHAPTER 6. INTERACTIONS AND INFLUENCE

described and documented using the language of promises. Transmission of intent leads
to the propagation of influence, both good and bad. This can lead to sudden cascade
failure modes, whereby systems breach catastrophically and beyond repair—an indication
that the stability influence propagation needs careful attention, and prevention of failure
by fault tolerance is an important strategy. This propagation of influence is what we call
‘causality’ in the physical sciences84.

6.4.1 DYNAMICAL AND SEMANTIC INFLUENCES

Influence can be measured both dynamically (as changes to the quantitative behaviour of a
system), and semantically (as conditional dependence on remote promises or ‘services’).
The semantics of such propagation are subtle, and semantics and dynamics interact
inescapably. This is often a surprise to engineers who tend to separate semantics of
outcomes from dynamical behaviours in their minds. It is important to recognize that
semantics and dynamics a intrinsically linked in a functional system (see figure 6.4).

performance
anomaly

crash failure

semantic
anomaly

serial queue

parallel aggregation

resource limit

contention

Figure 6.4: Although dynamical behaviours are the prerequisite basis for semantic relevance,
the arrows of causation can go in both directions because unexpected or inappropriate semantics
can effectively halt or constrain the ability for a system to continue its dynamical behaviour. An
actual system crash is the extreme outcome, but incorrect dynamics can lead to unkept semantic
promises, and semantic errors can lead to incorrect dynamical coupling.

In figure 6.4, the diagram shows three states of an agent that may lead to non-
promise-keeping influence propagating. The assessment of these states is assumed to
have undesirable influence, in the sense that some promise is not being kept. There are
channels of influence in all the directions of three assessments. Let’s consider these:

6.4. PROPAGATION OF INFLUENCE (CAUSATION) 263

• A performance anomaly is what engineers know best. The best tools are available
for monitoring performance, because these have the longest history. A process
that is not fast enough for another agent to accept could mean a missed dead-
line, or an inability to accept the result. Information might come too quickly
(because aggregate input rate floods the promise to receive), or it might come too
slowly (because the receiver gives up listening before the answer arrives). Thus
performance anomalies can lead to semantic side effects.

• A semantic anomaly can lead to a performance anomaly too. An incorrectly
labelled output may lead to all outputs going to the same handler, instead of being
routed separately, leading to a flood. Or output might go missing and be discarded
because it is not recognized or falls below some critical threshold for acceptable
quality.

• A performance anomaly can lead to an actual failure or crash because it leads
to a positive feedback, such as a queue growing out of control, with subsequent
thrashing and a cascade breakdown of promises within a fragile system.

• A semantic anomaly can lead to an actual failure or crash because it leads to a
state that was not considered or planned for. A system might choose to fail in a
controlled way, or might try to pursue a non-promised course of behaviour that
once again leads to a cascade of changes from which normal behaviour cannot be
recovered.

• A crash has obvious implications for semantics and dynamics. Both cease
altogether at the location of the crash, which must have some influence on the
remainder of agents in a collaborative state.

It is important to realize that, even if a system has been designed with redundancy and
resilience aforethought, anomalous or even fatal behaviours in other agents will lead to
an influence being propagated: this could necessitate actions by a remote agent, such as
switching to a backup service, or delaying some followup action, etc.

Influence through dependency is different for processes based on promises and
processes based on impositions (corresponding roughly to pull and push methods).

• Promise dependence (pull): if S promises R, and R accepts the promise, then R
depends on A and thus a change in S may propagate to R, depending on whether
R has promised precautions against being influenced. In this case influence by S
is a ‘choice’ of R. To the extent that R has autonomous intent, it can (in principle)
choose to block any change by seeking alternative source of the promise it relies
on.

264 CHAPTER 6. INTERACTIONS AND INFLUENCE

• Imposition dependence (push): if S imposes on R, then for R everything is
the same as for the promise case, since R retains its ability to accept or reject.
However, S may now be affected by the ‘back reaction’ of its imposition not being
accepted. If S relies on the outcome of its imposition onto R, it is now vulnerable
to the ‘failure’ of R to deliver the imposed outcome. If R does to voluntarily,
S can expect to rely on a result. If R ignores the request, then S experiences a
failure of expectations, and thus R influences S.

We see that imposition actually reverses the direction of influence of so-called ‘fault
propagation’, in the view of an imposer. This is a particularly relevant issue in service
relationships.

Example 117. A client of a bank imposes a payment of an amount of money on its bank
account (server). This bank account agent may refuse to accept and promise to carry out
this transaction, for whatever reason. In this case, the affected party is the client rather
than the bank (server).

6.4.2 THE IMPORTANCE OF SCALE ON CAUSATION

When a change in one part of a system precedes a change in another, with a high level of
probability, we use the term causation85.

From a promise theoretical perspective, causation is a promise by a recipient R to
use and promise to act A, based on information I from another agent S. We represent
this by a conditional promise:

S
+I−−→ R (6.48)

R
−I−−→ S (6.49)

R
A|I−−→ T (6.50)

Our understanding of causation is intrinsically linked to approximation into symbol
categories, as information. If we aggregate all changes into a binary signal ‘something
happened’, then causation becomes increasingly vague. If we trace very precise channels
of information from atomic and isolated parts, we can pinpoint channels of causation
with much greater plausibility. The dependence of causation on approximation and
aggregation means that it is scale dependent. If we look at a coarse scale, it might be
impossible to distinguish the order of prior events from final evidence. This is a fault of
the methodology, not a proof that causation is non-existent.

If we can reduce a system to a network of low level atomic parts, then each point to
point interaction may lead to transmission of influence, and thus propagation of causality.
However, even this might not be quite what we expect. Isolation of neat linear stories

6.4. PROPAGATION OF INFLUENCE (CAUSATION) 265

is not possible in general, especially in non-linear, strongly coupled systems. Thus
causation can become circular.

6.4.3 SYSTEM STATE AND CAUSATION AS A CLOCK

Implicit in the notion of causality is the measurement of time. Time is also what clocks
measure, and thereby define. A clock is nothing more than a Finite State Machine with its
own limited resolution. When a clock changes state, we regard that as a clock tick. Thus
system measured time advances when a system changes. If the state of a system does not
change (i.e. it is in a steady state) then time does not pass in the system. Causation can
only move through a system as fast as its slowest clock.

Our ability to detect change clearly plays a role here. If we are unable to observe
interior changes, we may be unaware of the passage of time within an agent. Only exterior
changes can be detected. The ability for an observer to detect change at all, requires
changes in the observer too. Indeed, systems are coupled when they are observed.

Example 118. For the duration of a measurement, two initially separate systems are
coupled, and both may influence each other:

S
+measure−−−−−→ R (6.51)

R
−measure−−−−−→ S. (6.52)

In this example, the fact that S promises the observability of a measure may influence
its interior resources (a cost). When R accepts the offer, this might cause work to be
done by S and R. What is the chain of causation? The promise of observability by S is
prerequisite, but the initiation of acceptance by R is what causes a measurement to be
made. If S fails to deliver the promised measure, then the failure originates at S. Notice
how the semantics affect causal roles, in line with promise theory’s (+) and (-) promises.

According to Nyquist’s theorem, the observer has to experience changes twice as
fast as the changes it is trying to observe in order to capture them with an acceptable
level of approximation. Thus, an observer needs to poll changes twice as fast as what it
is hoping to measure. If we are trying to detect faults, of trace causation, we must expect
two cases:

• If the signals happen faster than the observer’s clock, the observer can miss clues
that happen too quickly relative to some fast reference time source.

• Alternatively, if the signals are persistent, but arrive quickly, relative to a fast
reference clock, a slow observer might perceive time-ordered measurements as
occurring within the same tick of its own clock.

266 CHAPTER 6. INTERACTIONS AND INFLUENCE

Observing causality is a problem in time relativity. Any system, for which we can
measure change, may also be regarded as a clock, whose changes are ticks, regardless of
what other semantics we might attribute to its states.

Example 119. Biological organisms have many cyclic changes that measure equivalence
classes in time: daily rhythms or sleep and wakefulness, monthly menstruation, yearly
mating, migration, and seasonal patterns. They are clearly influenced by environmental
factors. Thus on an evolutionary timescale, one could speak of a causal influence. That
influence is cached in local genetic mechanisms that operate on much shorter timescales.
Thus causation is also operating on a biochemical level.

Definition 120 (Simultaneity). Events are simultaneous as long as they occur with the
same clock tick of a system’s state clock.

Example 120. If we are trying to develop a model for fault diagnosis in computer
systems, one might imagine looking for changes in the behaviours of the software, then
reasoning that these lead to performance changes. Thus one might be able to infer the
source of the software fault from the observation of performance anomalies (see figure
6.5). There are several problems with this.

• The server, by aggregating multiple processes, all of which share the same re-
sources, generates entropy by stripping away the source of its load from the
measurements it promises. The observer has no way of knowing which process,
whether client driven or interior, led to the

• Process isolation (containerization, also called kernel namespaces, zone, and
cgroups) are one possible answer to retaining some channel specificity, but this
incomplete, since there is not full separation of resources. Even singular unikernel
systems share memory subsystems, and therefore interact covalently through third
party resource managers.

• Increased stress from distributed client impositions might provoke change in
process, such as contention for kernel resources. Aggregation of workloads, by
timesharing, or finite resource partitioning, generates entropy: the information
about the circumstances is lost, because all the clients experience is a change in
behaviour, but no cause except the ‘demand’ of faceless clients can be determined.
Was there one particular client that broke the camel’s back? Was it random or
something particular about that client? Aggregation of processes couples the
client promises together invisibly, and wipes out causal information.

• We are assuming that the stress on the server was caused by the clients somehow,
but what if stress began due to a slow disk. This would have the same effect and

6.4. PROPAGATION OF INFLUENCE (CAUSATION) 267

client
client client

server

intent intent intent

dynamical resource stress

slow dynamic response

causal response
queue contention

simultaneous requests

anomaly in expected dynamics

semantic process failure

timeout

Figure 6.5: Causal feedback. The left arrow cycle shows the intended causality loop. The right
arrow cycle shows how dynamics and semantics get mixed. We could regard the original intent to
query a server as the root cause of a response. The aggregate distributed intent is the cause of a
performance failure leading to a slow response, a timing promise not kept, and the timeout where
the client gives up waiting is the cause of the process failure. Thus both sender and receiver are
actively complicit in intentional behaviours that bring about faults.

be indistinguishable from anomalous processing due to heavy load, because over
time the reduced service rate would lead to a queue build up. If we can only
measure queue length (load average) we cannot distinguish heavy load from slow
service.

Finally, we should ask: on what timescales are we observing these events? Fast enough
to observe the detailed interactions, or only slowly able to cumulative failures and
successes?

6.4.4 THE NOTION OF A ROOT CAUSE

Because of the scale aggregation problem, and the loss of information to entropy of
indistinguishability, tracing the cause from evidence of its outcomes is very difficult, and
can only be achieved within the limits of the coarse grain approximations used to gather

268 CHAPTER 6. INTERACTIONS AND INFLUENCE

evidence. In the chain of promises below,

S
+I−−→ R (6.53)

R
−I−−→ S (6.54)

R
A|I−−→ T (6.55)

we can say that there is a clear sense in which S causes I , and I causes R to do A, when
all promises are kept. Even if S fails to keep its promise of I , the intention is intact,
and we can say that S causes the failure of A. Thus causation is not only about action.
Inaction also propagates when there is intentional coupling.

Even if we have an intentional model for causation, there might be no single root
cause. Agents act as causal ‘switches’, channing information by combination. In this
example, there are two sources to a propagated effect:

S1
+I1−−→ R (6.56)

S2
+I2−−→ R (6.57)

R
−I1−−→ S1 (6.58)

R
−I2−−→ S2 (6.59)

R
A|I1,I2−−−−−→ T, (6.60)

thus there is no root cause for A. However, in the case of failure, one of the influences,
say I1 might change leading to a change in A, and (at least over this network) we can
infer that S1 was the source or cause of the transmitted fault.

When statistical methods are used, aggregation over samples is inevitable, and this
leads some authors to issue blunt denials of the existence of causation, within the confines
of their limited methodology. Clearly, there is a meaningful interpretation of causation,
however it might not be possible to infer it backwards, because of choices that eliminate
the information, e.g. averaging, clustering, grouping. This is a failure of information
rather than an absence of causation.

6.4.5 DISTRIBUTED INTENT AND CENTRAL CALIBRATION

When intent is distributed it makes the challenge of inferring collective intent harder.
We defer a full discussion of this until chapter 7. When agents collaborate, promising
consistently requires a centralized calibration of intent. Calibration makes promises seem
more deterministic, or at least more coordinated.

Once again, it is worth reminding readers that centralized promises do not necessarily
imply a centralized network model, with a single computer server, or a single service
location through which all traffic must pass.

6.4. PROPAGATION OF INFLUENCE (CAUSATION) 269

Calibration of promises might be quite informal, based on trust. However, sometimes
promises that are coordinated flow across agent. e.g. institutional, boundaries where
there could be a loss of trust. Loss of trust is mitigated by constraining the freedoms one
has for variations, e.g. restaurants may offer a single set menu instead of an à la carte
selection, or the possibility to ask for a custom meal.

Example 121. Internet of Things architectures. Many IT cloud companies have pro-
posed an actual literal centralization of computing resources, uploading all data to a
single central location. This is not necessary[BW15], and will scale infeasibly. Rather,
standards of behaviour and formatting can be determined by promising to align with a
central calibration standard, and data can then be accessed on demand.

In a similar way, other standards, like electrical outlets do not require us to run
cables all the way to a central organization. By standardizing the plugs and connectors
and voltage standards, intent can be distributed and coordinated at the same time.

The difference between a centralized system and a decentralized one is less relevant
than most system engineers think. We tend to rely on agents that are inside a trusted
boundary, local, or otherwise seemingly close at hand, but there is no real difference
between an agent failing to keep its promise when far away or failing to keep its promise
when local. In section 5.13 we show that there is no principle difference between a system
than is centralized or decentralized, other than trust in the reliability of the promises
made. The same standards of promise keeping may be upheld regardless of the physical
location of agent, provided the promises they make are equivalent. Thus Promise Theory
expresses the invariances of a system, e.g. with respect to symmetries of relocation or
repetition, and so on.

Example 122. If one server goes down in a local datacentre, is it better or worse than if
a server goes down in a remote cloud service provider?

Example 123. Suppose we keep a private electrical generator for emergencies, because
we don’t fully trust the power company to keep their promise to deliver power in all
cases. The generator seems safer than trusting in the power company, because it is close
by, but actually it makes its own promises to function correctly on demand. Its ability
to work in case of a failure of the power company depends on the reliability of its own
promises. There is nothing to say that the generator is more reliable than the power
company just because it is within the trust boundary of our own home.

Example 124. Discussions of privacy and sovereignty of law often lead businesses
and governments to require data to be stored on servers within their own jurisdictions.
However, this is no guarantee that data are secure. Whether privacy is lost does not
depend on whether data are stored close by or far away, it depends on the promises the
data are able to keep, e.g. encryption, physical accessibility, etc.

270 CHAPTER 6. INTERACTIONS AND INFLUENCE

6.4.6 RATE OF FAULT PROPAGATION

To understand the rate of propagation of faults, we need to understand the promise
bindings that lead to propagation. A promise binding has two parts:

S
+b−−→ R (6.61)

R
−b−−→ S (6.62)

There are several relevant timescales to consider:

• The rate at which a + promise is kept, i.e. changes in promise status take place.
(MTTR)

• The rate at which changes happen to affect promise keeping (MTBF)

• The rate at which a - promise samples the results of the + promise.

In a steady state behaviour promise bindings are equilibria, but during transient activity,
the initial behaviour is sensitive to these timescales. The result is called a race condi-
tion, and the outcome can depend quite sensitively and unpredictably on the particular
circumstances.

• A + promise might be kept too late to be useful to the agent that relies upon it
with its - promise samples the outcome before it has had time to keep its promise.

• A broken promise or fault might lie in wait for an extended time before it is
relied upon and triggers a consequence that causes an observable effect. Thus
the propagation rate might be significantly slower than the MTBF at the ‘root
cause site’. Similarly, once a critical collapse has been triggered, the catastrophe
failure mode will travel at its own rate.

Example 125 (Ferry distaster). In the Estonia ferry disaster of 1994, the door to the
car deck was not closed properly. Water did not start to enter the ferry destabilizing
it until hours later when the sea conditions passed some critical threshold. Had the
promise to keep the door closed been kept the cumulative failure threshold would have
been immunized.

6.4.7 SEPARATION OF DYNAMICAL AND SEMANTIC OUTCOMES

There are two kinds of networks:

• Adjacency of agents (spacetime), resource transport networks (Markov)

• Cooperative processes (with valued outcomes) (Prerequisite)

6.4. PROPAGATION OF INFLUENCE (CAUSATION) 271

A semantic outcome may happen on a different timescale to the underlying processes
that lead to it.

Misinterpretation of the semantics of a failure. If we don’t have an extensive causal
understanding of the pathways of influence, we could miss possible predictions.

6.4.8 PROMISE TRAJECTORIES

When a promise π = 〈S,R, b(τ, χτ)〉 is kept, the constraint χτ , belonging to the promise
body, expresses a restriction on the state qτ . To elaborate on this matter, more rigorously,
we need a more detailed model of agent state, by imagining sets of microstates qτ that
refer to the variables inside agents that pertain to promises of type τ . There are various
possible representations of this using functions, and using matrices that we need not go
into here (see [BF07a, BF08], for instance). The key features of such a representation
can be described as follows.

Given a promise π = 〈S,R, b(τ, χτ)〉, and a set of states that may be associated with
the promise qτ , we associate, with the enforcement of the promise, a set of operations
Ôτ (χτ) such that the action of the operator on a general state propagates the agent from
the old to new state qτ → q0 that complies with the restriction χτ , whose orbit is the set
of promised states:

χτ : qτ ∈ {qχ} (6.63)

Ôτ (χτ) : Ôτ (χτ){qχ} = {qχ}, ∀qχ. (6.64)

Ôτ (χτ) : Ôτ (χτ)qτ = q0 ∈ qχ. (6.65)

Thus, another way to represent this, is to say that the operation Ô(χτ) effectively
generates a function fπ that is absorbing for all its arguments to a fixed domain: fπ(q)→
{qχ}. This is called a convergent operation.

The introduction of a promise, or a change to an existing promise, can alter the
trajectory of the state qχ(t), i.e. the sequence of states the agent moves through, which,
in general, is an orbit or function of time. The relationship between promises and
agent trajectories was described in [BF07a, BF08]. For differential changes the resulting
properties of motion closely resemble Newton’s laws for particles, as they must, where an
effective force F̂ can be related to a complete promise binding δÔ. The time-development
of the trajectory leads to one kind of propagation of influence. The change of the promise
that guides the trajectory leads to another, known as the response function (see section
6.4.13). For the purpose of these notes, all we need to know is that:

• Promises are kept by associating convergent operations, that are convergent and
idempotent, when acting on local agent states86.

272 CHAPTER 6. INTERACTIONS AND INFLUENCE

• The repeated verification and implementation of a promise’s constraint may be
carried out by repeated application of the operator or function on the subset of
states, within the agent, that refer to the promise.

• The resulting state, or sequence in time, is the promised τ -trajectory of the agent.
This represents its observable behaviour.

• A change in the promise that selects this trajectory can only be made by the
agent itself, or by the agent promising to accept changes from an external source
(another agent). Such a change may be regarded as the propagation of influence
over the agent’s trajectory by the source, in the form of a conditional promise that
depends on the source.

6.4.9 BASICS OF PROPAGATION OF INFLUENCE

If we assume that two agents are able to communicate for the purpose, the flow or
propagation of intent from a point of origin to other agencies in a system involves
cooperation between its component agencies.

Let’s look at examples of transmission from Sources S through intermediary agents
M to Receivers R, with graphical nomenclature:

S →M → R (6.66)

We assume that the services promised by these nodes are refreshed on a continuous
basis, or with some fixed time scale, so that we can speak of time to repair a promise not
kept. We cannot take it for granted that influence propagates. For example, suppose we
consider the promises:

S
+I am sad−−−−−→M

+I am happy−−−−−−→ R (6.67)

There are two promises between three agents. For propagation to occur we would have to
be able to say that the promise from S influenced the promise from M . But, as written,
there is nothing to indicate that the cause of M ’s asserted happiness has anything to do
with S’s asserted sadness. In fact, M has not even promised to care whether S is sad or
not.

To encode that, we would have to introduce conditionals, or a functional dependence,
and acceptance promises:

S

−You are sad←−−−−−−
+I am sad−−−−−→ M

−You are happy←−−−−−−−−
+I am happy|You are sad−−−−−−−−−−−−→ R (6.68)

6.4. PROPAGATION OF INFLUENCE (CAUSATION) 273

The shorthand for this is the notation

S
+I am sad−−−−−→M

−You are happy←−−−−−−−−
+I am happy(you are sad)−−−−−−−−−−−−−→ R. (6.69)

Now we can say that the reason why M is happy is in response to S’s sadness. The state
of S has influenced the state of M . R is influenced by M ’s happiness in promising to
accept it, but the influence goes no further.

Example 126. A less frivolous example helps to underline the point:

Outlet
+power−−−−→ Light

−light←−−−
+light(power)−−−−−−−→ Person. (6.70)

Here we have an agent promising power (a power outlet), and a light bulb accepting
this (by plugging into it), and the result is a promise of light, which is accepted (perhaps
by switching it on). Unlike models of electricity, a promise model does not assume an
inevitable flow of current, or an inevitable flow of influence.

The model of pre-conditions encodes what we mean by causation, or propagation of
influence. Causation is a special case of propagation, because it is purely dynamical. It
requires a chain of dependencies:

S
+a−−→M1

+b|a−−−→M2
+c|b−−−→ (6.71)

To complete this, we have to use the conditional promise law to quench the requirements
and complete the cooperation[BB14a].

Comment 6 (Conditional promise quenching). Recapping, from basic promise theory:
a local conditional promise, is equivalent to a non-conditional promise, if the condition
+b is also promised to be ‘true’, i.e. satisfied:

A1
T (+b),S|b−−−−−−→ A2 ≡ A1

S−→ A2 (6.72)

If the condition is only promised independently (possibly true or satisfied), then

A1
+b,S|b−−−−→ A2 ' A1

S−→ A2. (6.73)

A non-local conditional promise, is equivalent to a non-conditional promise, if a promise
to acquire the dependency −b is given:

A1
−b,S|b−−−−→ A2 ≡ A1

S(b)−−−→ A2 ' A1
S−→ A2 (6.74)

Since the latter is the usual case, we give it the special quasi-functional notation in the
promise body to reduce two promises to one.

274 CHAPTER 6. INTERACTIONS AND INFLUENCE

Using the result in the box above, it is straightforward to show that, in order for
a chain of conditional promises to propagate some property τ , the chain must stack
up dependencies, accumulating points of failure along the way. Relaying through
‘middlemen’ makes a system more fragile. Starting from a non-conditional edge or
boundary node A0:

A0
b0−→ A1

b1(b0)−−−−→ A2
b2(b1(b0))−−−−−−→ A3

b3(b2(b1(b0)))−−−−−−−−−→, . . . (6.75)

And, the bindings are completed by

A0
−b0←−− A1

−b1←−− A2
−b2←−− A3

−b3←−−, . . . (6.76)

For causal linkage, only the final link in the chain has to be keep a promise of τ ; but,
if we want to speak of propagation of τ , e.g. propagation of consistent information,
the it has to be the same information. The pre-conditional chain is sufficient to claim a
causal pathway no matter what the previous promise types. Note that, because there is no
identical equivalence between non-deterministic outcomes, we cannot say that a promise
to propagate influence necessarily reduces to a produce of the propagation over the links.

6.4.10 TRAJECTORIES AND PROCESS PROPAGATION

Recall the definitions of trajectories and processes in section 1.16. When an agent makes
promises, the promises become analogous to what we might think of as the ‘laws of
motion’ for the process in physics. These ‘laws’ embody patterns, which unfold into
trajectories that depend on the initial states of agent variables87. As always, in Promise
Theory, we have to deal with what was promised, what was accepted, and what was
assessed. Promises that are kept most of the time lead to behaviours that are regular and
characterizable as trajectories through some set of states.

A propagator is a structure that describes the change in a single agent’s trajectory. It
takes the form of a matrix, operator, or distribution.

6.4. PROPAGATION OF INFLUENCE (CAUSATION) 275

Definition 121 (Scalar promise trajectory propagator). For a single agent A, we may
define the propagation function, transition function, or matrix T , to be the matrix that
carries one set-valued state variable q to a subsequent value q′, referring to interior
states of A. The operation implies an acceptance transfer of state between any interior
subagents. Notice that the transition implies a tick of the implicit process clock, so we
may attach arbitrary interior time labels to these events.

q′(t′) = Tπ,q(t, t
′)q(t), (6.77)

transforming a local promise

πq(A)→ πq′(A), and t→ t′. (6.78)

and

πq(A) : A
+q−−→ A?. (6.79)

Similarly, we can consider the succession of transformations of a vector promise
binding

Definition 122 (Exterior trajectory propagator). Consider a promise binding between
two agents S and R:

π+ : S
+bS−−−→ R (6.80)

π− : R
−bR−−−→ S (6.81)

The binding between these is:

bS→R = bS ∩ bR, (6.82)

where the arrow on the left denotes to polarity of the promise direction. We define a
binary propagation function T (2) to evolve the trajectory of this binding’s overlap, for
set-valued variables bS and bR, indicating an acceptance transfer of state:(

π′b′
S

(S)⊕ π′b′
R

(R)
)

= T (2)(t′, t) (πbS (S)⊕ πbR(R)) . (6.83)

and t, t′ now refer to the common or entangled time for the combined superagent formed
from the interior shared clock for S⊕R. Reversible changes are represented by invertible
operators. Desired state changes are non-invertible operators[BC11].

A propagator for cooperative influence across non-local aggregate paths and chains
(from agent to agent) is:

276 CHAPTER 6. INTERACTIONS AND INFLUENCE

Definition 123 (Process chain propagator). Consider again a promise binding between
three agents S, M , and R:

π+ : S
+bS−−−→ M (6.84)

M
−bM−−−→ S (6.85)

πM : M
+bM |bS−−−−−→ R (6.86)

π− : R
−bR−−−→ M. (6.87)

There are now two bindings to propagate:

(S ⊕M) and (M ⊕R), (6.88)

leading to an effective propagator for

(S ⊕M ⊕R). (6.89)

Propagation functions or matrices have implicit polar boundary conditions, that indicate
the orientable causal direction in which they operate. At each scale, there are irreducible
propagators that are independently assessable, e.g. the propagators with retarded
(causal) boundary conditions:

∆>(S,R) = ∆(R|S)

= S
+b0−−→ R (6.90)

= R
−b0−−→ S (6.91)

= ∆<(R,S) (6.92)

∆>(S,M1, R) = ∆(R|M1S)

= ∆>(∆>(S,M1), R) (6.93)

= ∆<(R,∆<(M1, S)) (6.94)

= S
±b0←−→M1

±b1(b0)←−−−−→R (6.95)

∆>(S,M1,M2, R) = ∆(R|M2M1S)

= S
±b1←−→M1

±b1(b0)←−−−−→M2
±b2(b1(b0))←−−−−−−→R (6.96)

6.4.11 PROMISE TYPES THAT PROPAGATE INTENT TRANSITIVELY

There are more examples of propagation, relating to semantics, or transmission of
meaning, by what we call the transitive property. The rules of semantic transitivity were
discovered by A. Couch[CB09], in relation to semantic inference.

6.4. PROPAGATION OF INFLUENCE (CAUSATION) 277

• If C is affected by B and B is affected by A, then C might be affected by A.

The latter expresses both potential ‘tolerance’ and potential uncertainty.

• If C carries B and B carries A, then C carries A.

• If C encapsulates B and B encapsulates A, then C encapsulates A.

Note that, in this case, there is no sense in which and agent carrying another agent
depends on the being carried by another, so we cannot require it as a precondition. This
is a different kind of propagation. Note also the subtlety of meaning. It might not be true
that if C contains B and B contains A then C contains. That depends on what you mean
by contains. From whose perspective?

This underlines how making influence travel from one agent to the next is straight-
forward by mutual agreement; but, making it travel through multiple agents, without
changing character altogether is far less certain. So there are two independent issues that
we can separate:

1. How to define propagation of independent channels of influence between directly
differential (adjacent) agents.

2. How to sum up the semantics of influence over longer paths (the integral problem).

In both cases, promises help to define the problem.
Note that, when we talk about promise agents, it is assumed that they try (continu-

ously, by repetition) to maintain the state of promise compliance, not merely in a single
event. In other words promises are timeless, unless bounded in duration relative to other
promises. They do not assume that a promise that was kept in the past is still kept in the
present.

6.4.12 CONDITIONS FOR EXTENDED PROPAGATION (CHAINS AND

PROCESSES)

The transmission of intent (and loss of intended behaviour or faults), through a system,
is a network problem. The presence of a fault in a localized agent can be transmitted
onwards through the system, to dependencies, with widespread semantic and dynamic
repercussions.

1. On each link, the ± promise types need to match

2. On each link, the bodies +b and −b need to have non-zero overlap.

The propagated effect is proportional to the overlap, if and only if the forward and reverse
types are the same. These properties can be be encapsulated into a generalized response
function for neighbouring agents, that takes into account parallel scaling.

278 CHAPTER 6. INTERACTIONS AND INFLUENCE

6.4.13 THE INSTANTANEOUS RESPONSE FUNCTION

Consider now a function that is at the heart of propagation of influence between agents.
It explains how promised behaviours can spread, how agents influence one another,
and change one another’s promises and trajectories. This is the generalization of the
well-known linear response function from hydrodynamics or electrodynamics, in which
we add the labelled semantics of the promises. It measures broadly the impact of a
promise made at source, in a set of agents that rely on it ‘downstream’.

Let π(±)
ij be the ± promise matrices, and Π

(±)
ij be the promise adjacency matrices

[Bur15a] for the full promise interaction (see figures 6.9, 6.6, 6.7). It helps to define a
few derivate parts of a promise, since a promise is a tuple, and we often only need parts
of it. The set valued components of a promise bundle[BB14a]:

π = {S} b−→ {R} (6.97)

b = 〈τ, χ〉 (6.98)

may be written:

b(π) = b (6.99)

S(π) = {S} (6.100)

R(π) = {R} (6.101)

τ(π) = τ(b(π)) = τ (6.102)

sgn(π) = sgn(b) = sgn(τ) ∈ {+,−} (6.103)

χ(π) = χ(b) = χ. (6.104)

With these definitions, we may now measure the number of agents affected by neutral
promise bindings of any particular type of promise τ , according to what proportion of
what is promised to them they choose to accept.

6.4. PROPAGATION OF INFLUENCE (CAUSATION) 279

Definition 124 (Response function). Consider two sets of agents: Si (the sender set)
where i = 1, . . . , s, and Rj (the receiver set) where j = 1, . . . , r, and let there be
non-square promise matrices π+

ij for promises from S to R, and π−ji for promises from R

to S. Then we may defined the response function for transfer of intent from {S} to {R}
by

R
(
S,R, π+, π−

)
=

1

S

S+R∑
i=1

R+S∑
j=1

Π+
ij(S,R)Π−ji(R,S)

×

∣∣∣∣∣τ(π+
ij)∩ − τ(π−ji)

sgn(τ(π+))τ(π+)

∣∣∣∣∣
×
(
χ(π+

ij)∩ τ(χ−ji)
)

(6.105)

where |x| is the cardinality of the set x. The dimensions of R() are the dimensions of χ.

The notation of the definition looks intimidating, but it is straightforward. The promise
matrices Π± describe the graph of ± promises, in a neutral binding, from the sender
set to the receiver set (see figure 6.9). These need not be balanced. The product of the
forward matrix, with the matrix of promises in the backwards direction, selects only
those combinations of agents that have promises in both directions. Roughly speaking,
this has the form:

Response ∝ channel width× type-binding× agreed transfer (6.106)

The term involving the promise type τ is always positive and dimensionless, and non-zero
only if the reverse promise type is −τ when the forward promise type is τ , required
to form an acceptance binding. Finally, the term involving the body constraint χ has
the magnitude of the overlap of constraints between what was sent (+) and what was
received (-). In other words, this is magnitude of the accepted transmission, analogous to
the mutual information[CT91].

280 CHAPTER 6. INTERACTIONS AND INFLUENCE

Sender set |S|=1 Receiver set |R|

Figure 6.6: (Amplifying) gain in transferring promise bindings from one superagent set
S = 1 to another receiver set R = 3 is proportional to the number of complete bindings
and their overlap strength. In this case, if we assume the bindings are equal, the gain
would be 3 times the strength of each binding.

Comment 7 (Complicated response function?). The apparent intricacy of the definition
of response exposes the fragility of response in a system where both dynamics and
semantics play a role. There are three major failure modes:

• Missing or incomplete binding ±.

• Mismatched promise type (input validation).

• Insufficient overlap between provider and user (input validation).

• Insufficient redundancy or channel capacity.

• Accidental positive gain, or misconfiguration leading to unintended amplification.

The response function as designed applies for a static snapshot of a system configu-
ration, and does not allow for the fast that the agents and promises might be in a state of
flux. Thus we call it the instantaneous response. If we define a system real time t, then it
could be added to the promise quantities R

(
S(t), R(t), π+(t), π−(t)

)
to account for

time-varying dynamics. Although a single snapshot has a linear form, the effect might
be non-linear due to the non-deterministic nature of promise keeping, and effectively
changing topology.

6.4.14 PROPAGATION OF UNCERTAINTY

Uncertainty in these bindings can occur from both ends. It is also useful to refer to the
error function, for characterizing the degree of variability in the behaviour of the agents.

6.4. PROPAGATION OF INFLUENCE (CAUSATION) 281

The error function combines the resulting ‘error’ or variation from a number of sources
a, b, c, . . .:

err(a, b, c . . .) (6.107)

In the case of independent random errors, this reduces to the normal Gaussian Pythagorean
expression:

errG(a, b, c . . .) =
√
a2 + b2 + c2 + . . . (6.108)

By using continuous variability in the keeping of promises, we may choose the threshold
at which the failure to meet tolerance expectations is exceeded, and a variation becomes
a fault.

If an agent is fault tolerant, then it can, in principle, absorb faults and propagate
a non-faulty response forward. If not, then a fault will propagate by omission of an
accepted promise kept.

Lemma 26 (Quantitative response). The propagated effect of a promise π from S to R
may be written ∆π(R|S), written in a pre-conditional notation:

π+ : S
+bS±δS−−−−−→ R (6.109)

π− : R
−bR±δR−−−−−−→ S (6.110)

∆π±(R|S) = S
(bS ∩ bR)±

(√
δ2
S

+δ2
R
∩ bR

)
←−−−−−−−−−−−−−−−−→−→ R (6.111)

The recipient is the ultimate arbiter of what is propagated, hence the final expression is
limited by bR

Thus, instead of the component probability:

P (S AND R) = P (S)P (R|S), (6.112)

the reliability of this promised propagation is the probability that there is propagation

P (∆(R|S)) = P (π+)P (π−|π+) (6.113)

where P (π+) is the reliability of keeping the promise π+. This is a more complicated
matter, now involving the join probability distributions for the agents’ promises. The
basic result is:

P (y− ≤ Y ≤ y+|X) =

∫ y+

y−

f(x, α)

fX(x)
dα (6.114)

282 CHAPTER 6. INTERACTIONS AND INFLUENCE

6.4.15 SPEED OF RESPONSE PROPAGATION

The rate at which influence travels is a distributed quantity, and thus it is subjective .
From a god’s eye view perspective we note that each promise π(±)(Ai), made at agent
Ai takes time ∆T (π(±)(Ai)), so that total path time of A1, . . . , AP is:

∆Tpath =

P∑
i=1

(
∆T (π(+)(Ai6=P)) + ∆T (π(−)(Ai6=1))

)
(6.115)

which in a broadly homogeneous system is approximately proportional to the path length,
or the total number of promises to be kept. In the broader scheme of time, the local time
taken might vary too, so one can allow some random variation. An initial implementation
of state might take longer than the time needed to maintain it.

Some agents experiencing faults may prevent propagation of influence altogether,
in which case the total path time tends to infinity, and the local speed of propagation
becomes zero. The time perceived to have passed by any agent in the system depends on
the agent’s own clock. Each agent will, in principle, measure time differently.

6.4.16 THE INSTANTANEOUS INTENTIONAL GAIN

Definition 125 (Intentional gain per agent). The intentional gain, per agent, in going
from a sender set of agents {S} to a receiver set {R}, with a compatible promise binding,
may be defined as the number of agents making promises from a sender set. The gain
Gτ (S,R) may be written as the dimensionless normalized value of the response function
applied to promise bundle matrices of a type set {τ}:

G(S,R, π±) =
1

S

S+R∑
i=1

R+S∑
j=1

Π+
ijΠ
−
ji

∣∣∣∣∣τ(π+
ij)∩ − τ(π−ji)

sgn(τ(π+))τ(π+)

∣∣∣∣∣
(
χ(π+

ij)∩ τ(χ−ji)

χ(π+
ij)

)
(6.116)

Lemma 27 (The maximum gain of any superagent interaction). The instantaneous gain
of any intentional response is limited to

G(S,R, π±) ≤ |R|, (6.117)

i.e. the number of receiver agents.

The proof is follows from the fact that:(
χ(π+

ij)∩ τ(χ−ji)

χ(π+
ij)

)
≤ 1,

1

S

S+R∑
i=1

R+S∑
j=1

Π+
ijΠ
−
ji ≤

SR

S
→ R, (6.118)

6.4. PROPAGATION OF INFLUENCE (CAUSATION) 283

and ∣∣∣∣∣τ(π+
ij)∩ − τ(π−ji)

sgn(τ(π+))τ(π+)

∣∣∣∣∣ ∈ {1, 0}. (6.119)

Consider the implications of the lemma. Gain is blind to success or failure. It
assumes only that the promise made by the sender is made and kept to some degree. If
the promise could not be honoured, and became a bottleneck, e.g. if too many receivers
tried to make use of its promise, then the gain would simply amplify the failure to keep
the promise by th source. Thus, a failure is not only about whether or not this binding
configuration is reliable: if the binding is completely reliable, there is still the possibility
of an error, fault or flaw at source being transmitted perfectly to a larger number of agents,
with the same gain.

Sender set |S| Receiver set |R|=1

Figure 6.7: A load sharing system is one with unit gain, i.e. the response is exactly the
strength of the promise binding.

Definition 126 (Intrinsically amplifying system). If every agent in a causal dependency
process has intentional gain G > 1.

6.4.17 IMPEDIMENTS TO PROPAGATION

The category of issues involving reliance on intermediaries or proxies is a large topic.
We rely on intermediaries all the time, often without thinking. Indeed, we are so used
to ignoring intermediaries for our intent that it becomes a basic source of design flaws:
to ignore the promises made by intermediaries. This goes back to our predilection for
thinking of the world as an extension of ourselves.

Example 127 (Climbing rope). If you are promising to hold on to a mountain, using a
rope, you are trusting the rope.

284 CHAPTER 6. INTERACTIONS AND INFLUENCE

A chain:

A
+c−−→ B

+b|c−−−→ C (6.120)

Satellites of agent C:

A
−b−−→ C

−b←−− B. (6.121)

Same, just no conditional. Both are influenced by C. E.g. C could be a share resource,
such as tenancy host. Two tenants are competing for resources. If keeping the promise to
one affects C’s ability to keep its promise to the other, then there is an undocumented
influence between A and B, through this third party. This is called a second order effect.

Example 128 (Containment as a modular process strategy). A container is a form of
isolation kernel for processes or partial processes. Containment is a popular strategy
linked to modularity, especially in computing. It is also used in human organizations in
the form of departments, teams, etc. Popular technologies for containers in computing
include Docker and Kubernetes to name just a couple for the Linux operating system.
Containers in Linux use a feature of the Linux kernel, in which partial kernel isolation is
provided by process groups or ‘cgroups’ . Containers are processes that have private,
but not guaranteed resources. For example, a process running in a container cannot
write to shared workspace, it must attach its own private space. However, that shifts
responsibility for isolation to the process itself, and opens for the possibility of covert
shared channels, e.g. a shared database. Indeed, without resource sharing, containment
would be of little use. Linux containers may still interact by resource interference.

Docker containers offer a useful packaging mechanism for software modules, when
expressed as services, through which one may bundle related services according to
documented promise dependencies. This enforces some kind of access control rigour
between agents that potentially make similar promises. Thus is helps to modularize
development and increase predictability of version management.

Since containers can be restarted, based on a fixed interior image, they are sometimes
used to reset the runtime state of a service which has run into trouble. This is the
reset approach to repair. When restarted, such modules lose their runtime state, so a

‘stateless’ interior strategy is advocated—i.e. runtime state is pushed to the exterior of a
process. This leads to a proliferation of dependencies, which may in turn have adverse
consequences, including increased software complexity. By pushing dependencies
outside of modules, one introduces a new layer of management and potential inefficiency.

The allusion between containers and boundaries means that containers are some-
times thought to form fault domains, and even security boundaries, limiting the propaga-
tion of faults and promises. That is not strictly accurate, as there is no complete isolation

6.4. PROPAGATION OF INFLUENCE (CAUSATION) 285

as long as a module is connected by input and output to others. Containers do nothing to
assure fault tolerance. Moreover, the absence of a promise is not a promise of absence,
so the fact that promises don’t explicitly reach through a boundary is no assurance that
an assessment will not lead to effective or implicit propagation—and negative promises
are hard to keep.

6.4.18 PROPAGATION OF INFORMATION (AWARENESS)

Awareness of the state of a system is the key to being able to respond quickly to faults,
and potentially repairing them before the Nyquist sampling interval expires and the fault
has assessed consequences.

The reliability of information, concerning the keeping of promises, moves through a
system may be considered a measure of system self-awareness. The information may be
destined for a the assessment of a human operator, or for direct assessment and reliance
by other component agents. The conundrum for agent networks is that information
travelling from one location to another can be distorted by passing through intermediate
agents along an information path. In some cases, it might be possible to detect the loss
of integrity, but it cannot necessarily be repaired.

6.4.19 IMPLICIT AND EXPLICIT AWARENESS BY REPETITIVE

PROMISE KEEPING

Regular periodic sampling (Nyquist Fourier method) allows us effectively continuous
insight into system state of up to half the frequency of the sampling.

State awareness can be basically redundant close to stability, with low frequency
random faults, since repeatedly maintaining a convergent state is a stable equilibrium. If
we repeat this fast enough, like a heartbeat, we simulate continuity of operational state.

Then we are in some kind of Zen state of knowing without needing to know(!)

6.4.20 DISTORTED PROPAGATION - ‘CHINESE WHISPERS’

The children’s game of Chinese Whispers illustrates how intermediate agents can distort
influence, when propagated in a chain. The same scenario was studied with mutual
promises rather than impositions, in [BB14a], as the Consistent Knowledge Theorem.
Let S and R be any two agent nodes, and let π : k be a promise body that implies

286 CHAPTER 6. INTERACTIONS AND INFLUENCE

communicating knowledge k. Nodes S and R have consistent knowledge k iff

S
+ks−−→ R (6.122)

R
−ks−−−→ S (6.123)

R
+kr−−−→ S (6.124)

S
−kr−−−→ R (6.125)

S
(ks=f(kr,ks))−−−−−−−−−→ R (6.126)

R
(kr=f(kr,ks))−−−−−−−−−→ S (6.127)

where f(a, b) is some function of the original values that must be agreed upon. The
proof is given in [BB14a].

R

M1

S

Any intermediary

can distort info between

agents

Figure 6.8: Man in the middle and loss of integrity. Shown with impositions.

Knowledge def can be passed on from agent to agent with integrity, but we must
distinguish between agents that end up with a different picture of the information as a
result of their local policies for receiving and relaying their knowledge.

1. Accepted from a source, ignored and passed on to a third party intact.

S
+def1−−−−→ M

M
−def1−−−−→ S

M
def1−−−→ R (6.128)

Note that the agent M does not assimilate the knowledge here by making its own
version def2 equals to def1, it merely passes on the value as hearsay.

6.4. PROPAGATION OF INFLUENCE (CAUSATION) 287

2. Accepted from a source, ignored and local knowledge is then passed on to a third
party instead.

S
def1−−−→ M

M
U(def1)−−−−−→ S

M
def2−−−→ R (6.129)

Here the agent M accepts the information but instead of passing it on, passes on
its own version. The source does not know that M has not relayed its data with
integrity.

3. Accepted and assimilated by an agent before being passed on to a third party with
assurances of integrity.

S
+def1−−−−→ M

M
−def1−−−−→ S

M
def2=def1−−−−−−−→ S

M
def2=def1−−−−−−−→ R

M
def2|def1−−−−−−→ R (6.130)

M uses the data from S, assimilates it (def2 = def1) and promises to pass it on
(conditionally def2|def1) if it receives def1. It also promises to both involved
parties to assimilate the knowledge. Only in this case does the knowledge def

become common knowledge if one continues this chain.

The first two situations are indistinguishable by the receiving agents. In the final case the
promises to make def1 = def2 provide the information that guarantees consistency of
knowledge throughout the scope of this pattern. We can now define scope.

Definition 127 (Scope of common knowledge). Let S be a set of source agents with
consistent knowledge def , and let the set A(X,def) mean the set of nodes that have
assimilated knowledge from a set of agents X . The scope S(def) of def is the union of
S with all agents that have assimilated knowledge originating from S, i.e.

S(def) = S ∪ A(S ∪ S(def),def) (6.131)

288 CHAPTER 6. INTERACTIONS AND INFLUENCE

Comment 8 (Consistency). The simplest way to achieve common knowledge is to have
all agents assimilate the knowledge directly from a single (centralized) source agent. This
minimizes the potential uncertainties, and the source itself can be the judge of whether
the appropriate promises have been given by all agents mediating in the interaction.
This is the common understanding of how a network directory service works. Although
simplest, the centralized source model is not better than one in which data are passed on
epidemically from peer to peer. The problem then is simply in knowing the boundaries of
scope. Agents may thus have consistent knowledge from an authoritative source, either
with or without centralization.

6.5 PROPAGATION WITH BRANCHING

Processes often need to specialize into segregated narratives. They do so by branching.
Each branch point becomes a gateway of scale transducer for the subordinate process.

6.5.1 BRANCHING WITH INSTANTANEOUS SERIAL AMPLIFICATION

The ability to amplify effect is both a useful function and an essential fragility. Amplifi-
cation of input can also mean amplification of error or fault88. A fault at source could at
best mean a loss of gain, depending on the promise structure..

Receiver set |R|Sender set |S|

1

2

3 4

5

6

Figure 6.9: Gain in transferring promise bindings from one superagent set S = 3 to another
receiver set R = 3 is proportional to the number of complete bindings and their overlap strength.
In this case, if we assume the bindings are equal, the gain would still be 3 times the strength of
each binding, since the gain is per agent of the sender set.

Looking at figure 6.9, we see that the the number of source agents |S| = 4, and the
receiver set has |R| = 2 agents.

Definition 128 (Promise valency of an agent). The number of promises of given type
made by an agent, measured in bindings per agent.

6.5. PROPAGATION WITH BRANCHING 289

The valency of the agents in the source and receiver sets may be written s = 2 and
r = 4. Because promises of the same type are idempotent[BB14a], the binding valency
of source agents can never exceed the number of agents in the receiver set, and vice versa,
thus:

r ≤ |S|

s ≤ |R| (6.132)

The valencies, representing unbound promises, can at best combine in the promise graph
to give the product, if each agent binds maximally:

Tr
(
π+(S)π−(R)

)
= Tr


0 0

+ + + + 0

+ + + +





− −
− −

0 − −
− −

0 0



= Tr



0

0

0

0

r

r


= rs (6.133)

So, we can say that

Tr
(
π+(S)π−(R)

)
≤ rs ≤ |R||S|, (6.134)

So

1

|S|Tr
(
π+(S)π−(R)

)
≤ |R| bindings per source agent. (6.135)

This is the upper bound for propagation of response. The interesting conclusion here is
that amplification doesn’t depend on |S| but only on |R|. This is slightly counterintuitive,
but arises from the spreading of S into R, which is maximized if there are plenty of
possible destinations for the source, and we have already measured this relative to the
size of the source pool. It is, of course, possible that some agents do not make or keep the
full battery of promises in this kind of redundant arrangement, but it’s useful to assume
some homogeneity and list a few examples of the amplification.

290 CHAPTER 6. INTERACTIONS AND INFLUENCE

Example 129 (Gain for some binding configurations). Assume a cooperative binding
between two super-agent clusters (source and receiver) of different sizes, and assume
that each agent in these promises to fixed numbers of agents s, r in the other.

Config (+) (-) Response Gain Comment
S ↔ R 1 1 ≤ χ+ ≤ 1 Pass through

S ↔ RRR 1 r ≤ rχ ≤ r r-linear ampl. (multicast)
SSSS ↔ RRR s r ≤ rs

|S|χ
sR
|S| ≤ R Redundant proxy

SSSS ↔ RRR s r = 1 ≤ χ ≤ 1 Redundant load sharing
SSSS ↔ R s 1 ≤ χ ≤ 1 Aggregation

In each case, we can interpret the gain factors as both an amplification of intent and a
potential dependency leading to amplification of faults, errors, and flaws in design. Any
promise not kept near the source will be amplified by the same functional arrangement.

In multi-stage or multi-tiered cooperative structures, like directed acyclic graphs
(DAG) forming branching processes, we can look specifically at the branching of tree-
like structures as amplifiers. Staging adds a further dependence on the previous stage,
thus some amplification is compounded, which each tier introduces new possibility for
failure. The branch points in a tree are called ‘single points of failure’ (see definition
129), meaning that a fault at one of these has consequences for a fault in the total system.
If we add fault-tolerance, the branching simply leads to amplification of the inaccuracy
or staleness of the promises, but the system can continue.

(b)(a)

Figure 6.10: Trees are fragile from the root down, as errors are amplified by branching
with dependence.

6.5. PROPAGATION WITH BRANCHING 291

Comment 9 (Human reasoning). Human reasoning is a branching process that leads to
multi-stage instability. Each train of reasoning is non-unique, and multiple viewpoints
abound. To assure stability (e.g. through semantic averaging, or selection) one must
evaluate all possible trains of thought. This is a time consuming process, hence placing
humans in the position of critical decision-making is recipe for instability. The aim must
be to decouple reasoning from rapid action, by pre-consideration (modelling). Taxonomy
is a model that attempts to exploit branching to avoid inconsistency, unfortunately many
properties along which a taxonomy is categorized are shared and non-unique. This often
causes anomalies and leads to places where agents should be associated, in a way that
contradicts the assumptions of the model.

6.5.2 CUMULATIVE AMPLIFICATION OF RESPONSE

Since the instantaneous response function determines the gain only at a time t, the
maximum impact is

Impact =

∫ t2

t1

G(t)dt (6.136)

This applies to fault amplification as well as intentional effect. Thus during faults,
minimizing the impact can mean minimizing the gain, or minimizing the time over which
the fault exists. As usual, there are two ways for the continuity of a response to be
maintained over a trajectory:

• Redundancy of components enabling failover to a redundant component in case
of interruption or delay.

• Rapid repair, with MTTR faster than the sampling time of the downstream depen-
dent process.

6.5.3 BRANCHING PROCESSES WITH UNCERTAINTY

A branching process is, by its very nature, unstable. To prevent an uncontrolled ‘ex-
plosion’ of effect, we have to contain it to a finite number of agents. Errors may be
transmitted or become compounded in series (see fig 6.11).

Definition 129 (Single point of failure). An agent that one or more other agents rely on
to fulfill a conditional promise.

This definition goes beyond a simple physical structure definition of a classical approach
to reliability, to include logical promise relationships. A single point of failure is a node
that can amplify a fault from a single point to a cascade of derivative promises.

292 CHAPTER 6. INTERACTIONS AND INFLUENCE

S

R 1

R
2

−

−

±∆

±δ

±δ

M

+X’|X

+X

−X±δ

+X’|X

Figure 6.11: An error at the head of a chain of dependences cannot later be mitigated without
consequences.

1. S promises service X , within its accuracy tolerance X ±∆.

2. Intermediary/relay M , promises to accept the value in the range X ± δ, where
max(δ) < max(∆).

3. If ∆ happens to be small enough to be within the range ±δ, it can be accepted
and the intermediate agent is able to promise X ′ to R, within the limits of its own
accuracy err(∆, δ).

4. If ∆ > δ, I is not able to accept the service from X , and cannot promise X ′ to
R, hence there is a complete failure.

If intermediate agents are sufficiently tolerant of inaccurate promise keeping, they can
transmit dependent promises within the limits of their own fidelity. However, if the
source feeds in a service that is out of the range of tolerance of the intermediary, it must
fail to keep its promise, as the condition S ± δ is not satisfied

Because of the branching in the latter stage, the error will be amplified by the number
of branches, i.e. it will be passed on along each of the causal branches.

6.5.4 DEPENDENCY CHAINS, WORKFLOW PIPELINES, AGENT

REDUCIBILITY, AND PROMISE PROPAGATION

When a system forms a causal chain, or a workflow pipeline, its output may depend
on a number of stages, each of which plays a role in the detailed causal structure. The
structure of a pipeline system is an end-to-end delivery problem, with intermediate agents
(see section 11.3-11.4 in [BB14a]). Each link in the delivery chain may be a scaled
version of the transducer pattern (described in section 4.4.7 of [BB14a]).

6.5. PROPAGATION WITH BRANCHING 293

causes

super

agent
preceding chain

story thread result

outcome

conclusion

method tools readiness

Figure 6.12: The result promised by one or more preceding chains is transmuted into one or
more outcomes. The transmuting agent has its own dependencies that partially determine when it
needs to redo work in order to keep its latest promise. The output depends not only on previous
stages, but on the methods, tools, and state of readiness of each stage of the pipeline. So a change
in method would require the agent to rework its promises and cache the result making it available
at all times to the next stage.

The pipeline is a collaboration in which each previous agent promises an output
conditional on its input. An important question is: what happens when the inputs are
themselves aggregate quantities, like big data or assorted components, with possibly
different processes involved in computing the promised output, how does the next link
in the chain know when the previous agent has finished its transformation? We need to
limit the promise of observability of the intermediate states, to make changes atomic.
In computer science, such a transformation is sometimes called a critical section, a
monitored change, or a mutex.

Example 130 (Change observability semantics). In Unix file semantics, if an agent has
a file open, it should see that same file until it is closed. It will also see changes to the
same file. However, if a new file is created and renamed to the first file, any open files
will see the old version, and only new agents will see the changed version, which is why
it is normal to make changes by making changes to a copy:

copy file.ready to file.new

transform file.new

rename file.new to file.ready

securing the ‘immutability’ of the data, like a privately scoped variable.

Indeterminate, intermediate states should not normally be visible to the next agent in
a chain, else this might result in a fault. The agent is therefore responsible for making a
clear promise to inform when it is safe to exchange data.

294 CHAPTER 6. INTERACTIONS AND INFLUENCE

Example 131 (Unsafe observability). Suppose that the agent being passed through the
work chain were a letter. One agent provides the paper, the next agent types the letter, and
the final agent puts it into an envelope and sends it. Without a proper promise about what
constitutes a finished letter, then as soon as the second agent typed a single character of
the letter, the final agent would see a change and grab the letter and send it, possibly
leading to an error or fault down the line. Agents therefore need to have control over
what changes they permit downstream agents to see. This is the essence of permitted
observability or state locking.

Consider what happens when we chain together a number of agents to transform
inputs into outputs, along an end to end process (figure 6.12). The input agents (data,
raw materials, etc) are transformed into various output agents (produce, processed data,
etc) by each stage in the chain. The simplest case is that there is a linear chain, but a
more realistic case might include branching of outputs and aggregation of several inputs
from different sources. In any scaled system this would be expected at a detailed level,
because each stage in a chain would already be a redundant superagent set of agents, as
we shall discuss in the next chapter. In the simplest case, at least, each pathway from a
chain which may look something like the example in figure 10.1, provided we disregard
the semantics of components as in classical reliability theory; in the semantic world of
modern systems each stage takes on a form more like figure 6.12.

The signalling of a causal change in the status of a dependency binding, in figure
6.12, will depend on various criteria, which must be explicitly promised, because each
promise is assessed by the receiving (super)agent as the trigger on a conditional promise
of its own. To makes assessments, protected from observability of intermediate states, we
might need to reduce the superagent to its component parts in order to fully understand
how this causation is restricted (as in figure 6.13).

The idea of outcome propagation is that a change in the state of what is promised
upstream triggers activation of the next conditional promise downstream. So there is
a question about how a change is detected or assessed by the downstream agent. For
instance, agents might look at:

• A change in the upstream promise definition (like a new version of its software).

• A change in the output of the same promise (the data output changes).

• A change in the downstream agent’s criteria for assessment (software update
downstream).

• A change in the method or assumptions or other dependencies by which any
chained promise is kept.

6.5. PROPAGATION WITH BRANCHING 295

+csv output

+json output

−personal data

−preference data

−account data

+csv output

+json output

−personal data

−preference data

−account data transducer

Figure 6.13: When agents in a pipeline need to aggregate outcomes into several subsets of
inputs, in order to keep their outgoing promises, they may be reducible, i.e. reveal internal logical
structure. Understanding reducibility and irreducibility of outcomes may be critical to promising
accurate signalling during cooperation.

Clearly, there are all kinds of changes we might choose to respond to, or simply ignore.
The distinguishability of the states of the system are a matter for design, which is why
these promises need to be known precisely.

Example 132 (Software building pipelines: from ‘make’ to ‘CFEngine’). The well
known Unix software utility make, used to build desired end state targets used a text file
to represent a dependency graph for a build process:

target: dependency list

actions if dependencies newer than target

Promise theoretically, make is a hybrid tool, which promises actions rather than out-
comes in response to certain prerequisite states. Its criteria for promise keeping only
looks at the timestamps of the data objects involved. So if the content changed, or a
transducer tool changed this would not necessarily result in updated versions being built.

CFEngine later extended this idea to introduce ‘smart sensors’ based on object types,
and models for all the possible promises different kinds of object could keep, including
time stamps, sizes, content patterns, permissions, etc. Moreover, the actions to be taken
were designed to be convergent so that no change would ever break a promise made by
an object. By being more specific, CFEngine could trigger repairs to broken promises,

296 CHAPTER 6. INTERACTIONS AND INFLUENCE

moving only in the direction of compliance with a promised end state, somewhat like an
immune system.

Programming pipelines can be arranged, promise theoretically, to keep any number
of promises, in chains of dependency, provided downstream agents observe what is
promised to them from upstream, with detailed attention to semantics.

Example 133 (Programming type safety). Intermediate states of processing may arise
from incomplete promise-keeping, flouting expectations. Data type ‘safety’ in program-
ming is an expression that has become widely used. There is a (slightly naive) implication
that as long as data are transmitted in accordance with type range rules the outcome
of a program must be correct, or ‘unsafe’ things cannot happen. Promise theoretically,
one is asking: does the data keep a set of promises, according to the intended recipient’s
expectations? This presumes that the necessary cooperation to agree on these expecta-
tions has been carried out. Ultimately, however, the concept of type safety carries the
unspoken assumption that programming is a series of impositions, not a series of agreed
promises. Promise theoretically, it is clear that downstream agents have to be ready to
deal with the situation in which their use-promises are not quenched by what is offered
from upstream, and so it is the recipient’s responsibility to promise its behaviour under
all conditions, i.e. to ensure type safety, regardless of what the provider promises.

Agent reducibility becomes an issue in connection with the observability of trigger
states in the following way. A superagent boundary, defined according to one criterion,
might not be an accurate description of indivisibility in all for all criteria. If a partic-
ular agent handles certain promises differently, then it is reducible to sub-agents that
effectively handle those differences.

Definition 130. Agent reducibility A super agent, which makes independent and distin-
guishable promises, may be reduced to its independent parts, if exterior agents rely on
these distinctions.

For instance, looking at figure 6.13: if two inputs are aggregated, separately from the
third, before being observed to trigger a downstream change, then components (within
the superagent) need to make different promises to react to changes for the aggregated
channels and the independent channel. In a promise chain, transducers responsible for
processing work may appear as atomic stages, but may in fact contain reducible elements.
Unless downstream agents are aware of these constraints, their dependent promises may
not be kept as intended.

6.5. PROPAGATION WITH BRANCHING 297

6.5.5 ‘PULL’ VERSUS ‘PUSH’ IN A CHAIN

In the pipeline example of section 6.5.4, we did not mention how a chain of promises
arranged its communication. Communication implicitly decides the level of determinism
in the outcome: the two main ways are by imposition (’catch!’) and by persistent promise
(’ready when you are’). (see figure 9.5). If we want to make pipelines predictable under
all circumstances this needs to be determined.

Although push is essentially an illusory mechanism, built from the illusion of rapid
polling, it is a useful one. When updates are rare push can provide a quick notification
of a change, where constant polling might be deemed a waste of time: a little non-local
state management can provide implicit propagation of readiness to send information.
On the other hand, when arrivals are frequent, push leads to queueing instabilities, and
polling offers safe buffering (readiness to receive), and localized management of state.

A push based methodology, thinking entirely in terms of events is stateless in the
sense that the intermediate stages of the pipeline are ephemeral, not cached. If they are
not caught immediately by the next stage immediately, they may be dropped, like packets
on a network. Impositional queues work in this way. However, this does not allow for
self-healing characteristics, and may lead to unpredictable behaviour, especially close to
the queueing instability. The alternative, like the ‘make’ pipeline is that all intermediate
stages are retained, in their current best state of repair, ready to be used by the next stage
if needed.

As pointed out in figure 6.12, a pipeline does not only depend on the promises of
previous stages, but on the properties of the transmuting agent. If a change occurs in
its local promises (with no change in its inputs) the it may want to redo its own work
according to a new standard.

Example 134 (Dependencies and Makefiles). Make bases its rebuilding of cached state,
along its pipeline, only on the timestamps of dependencies. Usually one should always
make the Makefile itself a dependency of every object, because a change in the tooling or
optional characteristics, e.g. compiler flags, optimization levels, new software versions,
etc, are intended to affect the next stage of the pipeline, but those changes would not
be seen until the pipeline received a new longitudinal change, from its source, unless
promises were also dependent on lateral changes like agent characteristics.

A pull strategy works well to maintain a state of readiness, because each autonomous
agent in the chain is responsible for updating its product outputs in accordance with all
its dependent promises. The next stage can pull this at any time (for example, even if
there is a loss of data and the pipeline needs to be reconstructed). It is not desirable to
have to work through an entire pipeline from the beginning just to repair one detail.

298 CHAPTER 6. INTERACTIONS AND INFLUENCE

Example 135 (Automotive pipeline). Suppose a car, emerging from a production line is
discovered to have fault brake settings. The car can be returned to a particular stage of
the build process for repairs. There is no need to dump the entire car and rebuild a new
one from the beginning.

We expect pipelines that promise definite outcomes to converge towards their
promised states.

6.5.6 PROPAGATION WITH CONVERGENCE

Whether a process involves forward or backward branching of causal pathways or not,
the state space of outcomes may branch out or converge. Aggregation, composition,
and convergence of the state space of a system may or may not map onto its physical
representation. If states are aggregated internally to an agent, we may not be able to see
formally independent agents. The agents are then said to be reducible.

The opposite of a divergent amplifying process is a funnel, or convergence from
a larger number of agents or states towards a smaller number of agents or states. Ag-
gregation over multiple alternatives may mean redundancy, but not if the aggregated
promises are all distinct. In the worst case, aggregation is merely composition, affording
no improvement in stability. We have to pay attention to the promise bodies, i.e. the
types and constraints, to determine the nature of the aggregation.

6.5.7 INTRINSICALLY CONVERGING SYSTEMS

Systems that strive to operate within a stable region, e.g. to achieve a fixed point or
drift towards an attractor basin are converging. See also related notes about closures and
monads.

Definition 131 (Intrinsically converging system). If every agent in a causal dependency
process has intentional gain G ≤ 1, it may be convergent i.e. it is not amplifying.

Lemma 28 (Intrinsically converging system with high fidelity). A strictly converging
system with has G = 1 and |R| ≤ |S|

A system is amplifying if G > 1, and may therefore converge If G < 1, then either the
receiver is throttling the or filtering for partial acceptance of the source, or there are faults
in propagation of intent. In either case, there is a reduction in effect, whether intentional
or unintentional.

6.6. CAN WE DEFINE RESPONSIBILITY FOR KEEPING A PROMISE? 299

6.6 CAN WE DEFINE RESPONSIBILITY FOR KEEPING A

PROMISE?

Responsibility is an emotionally charged term in system forensics. It can be associated
with liability, blame, and reprimand. There is a tendency to want to assign ‘blame’ a
person when faults lead to loss. This is a punitive interpretation of responsibility, and one
that does not often make sense, unless willful malice or negligence were demonstrably
at work. One also sees attempts to find simplistic root causes (provenance), and quick
fixes for future prevention. These tendencies are understandable emotional reactions to
loss, but we need a more rational understanding of responsibility, based on the science of
causation, to actually stand a chance of making a difference.

Responsibility, in an ‘atomic’ promise viewpoint, has an interesting simplicity about
it. If we can step back from the idea of attributing blame, there is something to be learned
from asking the question: which agency or agencies are in a position to be able to keep a
promise, and hence could be considered responsible?

6.6.1 SUBJECTIVITY IN ASSESSMENT OF FAULTS AND ERRORS

The idea of responsibility is diffuse, but it relates to the ability of an agent to respond to
a situation in order to keep a promise. A responsible agent (literally a responder) might
be one that has decision-making ability, or even full control over whether a promise
can be kept (for a stakeholder). In order to be able to make a decision, there have
to be alternatives. An agent telling a lie, or exaggerating its claims might be called
irresponsible. There is thus an ethical/moral dimension to responsibility too.

The assessment that a promise has not been kept is a subjective one: different players
in the system might assess it differently. Their assessments can depend on context or
circumstances; so how can we easily attribute a unique source to the perceived failure?
This is the challenge of a distributed system with multiple stakeholders.

Example 136. In a restaurant, a meal is ordered from the menu. One person enjoys the
meal, the other doesn’t. The latter (dependent agent) assesses the meal to not be what
was promised. The former (fault tolerant agent) assesses the meal as acceptable.

• The agent that rejects the meal might be considered discerning of quality, but goes
hungry and cannot work.

• The agent that accepts the meal eats and continues its work.

Can a cause be attributed to the waiter, the head chef, the sous chef, the butcher?

300 CHAPTER 6. INTERACTIONS AND INFLUENCE

Whether or not a promise has been kept depends on the kind of promise binding. As
we know about promise bindings, the receiver or promisee has to make its own promise
to accept what is offered; thus it shares responsibility in outcomes. Indeed, refusing to
accept what is offered is the ultimate control decision of autonomous agents.

Example 137. A doctor promises a patient: if you take these pills you will be cured. If
the patient does not keep a promise to take them, then it will not be cured, and thus the
responsibility for being cured lies ultimately with the patient, not the doctor.

6.6.2 SMART AND DUMB AGENT RESPONSES

A complicating factor in systems is the existence of smart and dumb agents.

Definition 132 (Dumb agent). A dumb agent keeps its promises but does not adapt to
external circumstances.

Definition 133 (Smart agent). A smart agent may try to adapt to external circumstances
in order to try to keep its perception of responsibility, rather than sticking to the scripted
promises.

When dumb agents fail, they may simply stop or keep trying, but a smart agent might
try to adapt. Humans often act as smart agents, but are also asked to forego smart
behaviours to remain in a predictable regime. Smart behaviours effectively change the set
of promises in real time, in response to external events. This means that the predictability
of the promises may be compromised, leading to new behaviours outcomes that were not
promised, or expected by others. In this sense, smart behaviours are often frowned upon,
because they violate initial expectations. Without criteria for limiting smart behaviours,
one must consider intelligent adaptation to be ‘out of control’.

6.7 ‘PUSH VERSUS PULL’ CAUSAL INFLUENCE

‘Push versus pull’ is one of the choices systems designers have in designing cooperation89.
In a push method, the source is favoured as the deciding agency (like a brain model).
In pull methods, the receivers are favoured as the deciding agencies (like a cooperative
society model). The law of agent autonomy would thus seem to favour pull methods
over push: push must be imposed, with the intent to violate a receiver’s autonomy. We
shall explore whether this is indeed the case in detail. This is not a moral issue, but one
that affects our ability to make a consistent interpretation of the transmission.

6.7. ‘PUSH VERSUS PULL’ CAUSAL INFLUENCE 301

6.7.1 DEFINITIONS OF PUSH AND PULL

The terminology pulling and pushing data are often used about attitudes to causal intent
in communications. These lead to some confusion, so it’s worth mentioning them. I
define these in accordance with the same information channel principles.

Definition 134 (Push). A method of communication in which a source agent S imposes
its messages onto a recipient R without invitation.

S
+M−−−−−→ R. (6.137)

In data signalling, packets may be carried over a wire, enter a network interface and
be queued up for sampling by a receiver, before the receiving process is ready to accept
them. This is imposition. The receiver may then promise to sample (-) the messages from
the shared queue. The channel flow is thus controlled by the sender.

Definition 135 (Pull). A method of communication (sometimes called publish-subscribe)
in which a receiver invites a source to provide a certain quota of messages for sampling
via an agreed channel.

R
−M−−→ S (6.138)

which is then promised by the source, voluntarily subscribing to it,

S
+M−−→ R (6.139)

The flow along the channel is thus controlled by the receiver.

Pull is always the fundamental ‘last mile’ stage of a sampling operation; it may involve
active polling of the queue to match timescales that satisfy the rigours of Nyquist’s
theorem. It optimizes message transfer according to the downstream capabilities. Push
driven systems are sometimes associated with reactive or event driven systems—though
this can be misleading. Push and pull are effective on different timescales. Push
(notification) is useful in connection with small signals when source data are sparse and
a receiver needs a short wake up message to collect a package from the source, enabling
it to conserved resources. Push therefore provides non-redundant information when
arrivals are sparse or infrequent, on the timescale of the receiver’s sampling[BB08]. Pull
systems make more efficient use of queue processing, by utilizing the information about
autonomous capacity to balance load.

The definitions of push and pull do not refer to complete methods for communication
or influence; rather, they characterize aspects of complete descriptions. Both push and

302 CHAPTER 6. INTERACTIONS AND INFLUENCE

pull methods for cooperation can be analyzed using promises and impositions (see fig.
6.14). Neither construction is a complete description of a system, so the properties of
these approaches depend on what other promises are made around them.

6.7.2 PROPERTIES OF PUSH AND PULL

If we draw a super-agent boundary around agents that are transmitting influence either
by push or pull, what can be say about the components’ reliabilities, i.e. the fidelity of
that particular constellation of agents?
• Speed of response (agility) The speed of response depends only on the path length and
processing time of the agents, which is independent of push and pull.

In a push model, a message from source can be imposed immediately without delay,
but the recipient might not be awake, or have time to pay attention to it straightaway.

R
−b−−→ S (6.140)

S
−b−−−−→ R (6.141)

R
+rsvp|b−−−−−→ S (6.142)

∗S −rsvp−−−−→ R (6.143)

The star shows the point at which the sender may claim awareness of the outcome. This
has one prerequisite. Because the outcome happens at a location R that is inaccessible
to the source of the intent S, for confirmation of success, the recipient R must promise
a confirmation of receipt service ‘RSVP’. Only when this notification of a response is
accepted does the sender know the outcome of the imposed push.

In a pull model, the rate at which an recipient polls the source for updates might be
fast or slow, but it happens at its own behest, so it is ready to the update by definition.

S
+b−−→ R (6.144)

∗R −b−−→ S (6.145)

The star shows the point at which the sender may claim awareness of the outcome. This
time, there are no prerequisites for this to happen, and the outcome is immediate on
initiating the pull. Not the provider does not know about the state of the recipient (it
may not need to, since it has no stake in the intent to acquire the service), so one could
make the same kind of monitoring promise from recipient to server, but this is no longer
a necessity.

Given the uncertainties in both cases, it is impossible to say whether push or pull
might be faster than the other. This depends on the circumstances. What we can say is
that the push case is not guaranteed to affect the recipient (if it is not awake or willing to

6.7. ‘PUSH VERSUS PULL’ CAUSAL INFLUENCE 303

accept the push). In the pull case, the acceptance of a message is implicit in the attempt
to subscribe to it, but the source might not be available when the recipient wants to pull.

Lemma 29 (The speed of response for pull vs push). The speed of responding to an
intended outcome is strictly indeterminate for both push and pull. Either could be faster
under particular circumstances.

The proof follows from the autonomy of the agents, and the fact that a promise binding
depends on both (+) and (-) promises, each of which may fail to keep its promises. There
is thus insufficient information to determine the weak link in a chain.
• Is the initiator (source of intent) able to know the outcome (success/failure) of the
cooperation? In the case of the push, the initiator is the source, and the result is the
recipient, thus intent and result are at opposite ends of the operation to obtain the result.
In the absence of further promises to feedback the result, the initiator cannot know the
outcome of the operation. This is sometimes called a ‘shot in the dark’ or ‘throwing it
over the wall’.

The initiator may promise to monitor the result, if the recipient promises to allow it as
a service. Thus we may add two additional promises (with corresponding uncertainties)
to determine whether the push succeeded. The recipient can, of course, lie. The source’s
distance from the point of compliance is a fundamental problem for verification. Indeed,
if the receiver intentionally did not accept the push in the first place, it is unlikely to
report back truthfully either. Thus, a push scenario is inherently unknowable.

In the case of pull, the initiator is the recipient, and it is the affected party. Thus
there is immediate confirmation of success or failure. This represents maximum possible
certainty. It is impossible to lie about the success of the promise.

Lemma 30 (The uncertainty of pull vs push). The uncertainty that a promise will be
kept, leading to an intended outcome is strictly less for pull than for push.

The uncertainty experienced by an agent when imposing or pushing (+) is never less than
the uncertainty of a single push. In case of a failure to keep a promise, the agent can
retry serially, which adds to the time to outcome. In case of disseminating to multiple
recipients, the time is never less than the time for each single promise to be kept. The
uncertainty experience by an agent when accepting of pulling (-) from a service is the
same as for a push imposition when aggregating results from serial or parallel agents
without redundancy. If we add redundancy, the time for failover or pre-fetching of results
may be less than a serial wait. Thus pull-based systems offer more avenues for scaling
the reduction of response times than push-based systems.
• Can conflicts be resolved if multiple sources have different intended outcomes for
a single recipient target? If several agents try to push to a single recipient, the result

304 CHAPTER 6. INTERACTIONS AND INFLUENCE

is inconclusive, and potentially order dependent. This is the multithreading contention
problem. Serialization may be provided by locking, or the requests could be separated
into independent non-shared contexts, if the recipient promises to support that. The
context for each push is computed by the source agents, and is unknown to the recipient,
and hence cannot be reproduced later for adaptation or recall by the recipient.

If an agent tries to pull from multiple sources, the result can be intentionally serialized
by the recipient, and either integrated into a single context, or separated into reproducible,
independent contexts. The contexts are computed by the instigating, pulling recipient
and thus may be reproduced later for adaptation.

This problem is considered further in section 6.7.5.

Lemma 31 (Conflict resolution in pull vs push). Pull based systems can resolve conflicts,
but push systems cannot resolve conflicts.

All information to resolve conflicts in a pull scenario is local to a single receiver agent,
hence the agent in control knows both intent and outcome immediately. Information in
the push scenario is delocalized: the initiator is not the affected agent, and the outcome
is not automatically known to the initiator. The receiver may be unable or unwilling to
accept the imposition.
• Can failures be repaired? A pull agent has full information about what resources it is
missing to keep a promise, so it can attempt to acquire this from any agent that can keep
such a promise. A push agent does not know what is missing from the recipient agent, so
it can only shoot resources blindly90.

6.7.3 SITUATION AWARENESS IN PULL AND PUSH

The question we seek to ask here is: to what extent are we are able to claim reliability of
a push or pull method, within a system? We see that pull-based approaches have several
advantage over push based methods. In section 6.7.5 we will also see how pull resolves
consistency conflicts, or so-called split brain problems.

There is a fundamental motivational conundrum for push-based (imposition) con-
trols: how does one motivate an external intervention in a system without prior reliable
information? A random imposition could be a shot in the dark. Remote control thus has
a bootstrap problem for the awareness of state.

In a local scenario, where information about system state is both available and trusted,
the motivation for an intervention or repair is always present; but, in a remote control
scenario, information is not close at hand. This means:

• We have to trust the source of information about remote state.

• Information has to travel quickly enough to be current.

6.7. ‘PUSH VERSUS PULL’ CAUSAL INFLUENCE 305

• Information has to be separable from other remote effects in order for the remote
agent to understand the possible consequences of an imposition (shot in the dark).

Thus the problem of motivating remote interventions is risky, the father away from the
point of action one initiates intent.

Lemma 32 (Locality and the completeness of information). All information in a pull
scenario is local to the recipient agent. Information in the push scenario is delocalized.

This is self-evident as pull increases an agent’s knowledge, whereas push reduces it by
introducing new information that is unknowable without delayed cooperation.

6.7.4 THE RELATIVE STABILITY OF PUSH AND PULL

Consider the representation of a single atomic agent making promises to push and
pull influence (e.g. data, material, etc) in figure 6.14. The characteristics of these

packaged atom

tool versions

data version

temp
aggregate

A
n

Figure 6.14: Push and pull methods in relation to a single agent. The geometry of a push, from
sender S, suggests dissemination, amplification and delocalization of influence. The geometry
of pull, to receiver R, suggests localization and resolution by selection from alternatives. Note
the direction of intent is marked by the promise arrows, while the direction of service flow is
indicated by the downward arrow.

arrangements seem to have properties that are a natural fit for their topologies. The
topology of a push, from sender S, suggests dissemination, amplification from one to
many and delocalization of influence. The topology of pull, to receiver R, suggests
localization and the ability to resolve multiple influences by personal selection from
many alternatives to one result. The opposite scenarios also warrant attention (see section
6.7.5). Pushing from many to one would result in conflict at a point, but pulling from
one to many is a common form of dissemination sometimes called publish-subscribe91.

306 CHAPTER 6. INTERACTIONS AND INFLUENCE

Comparing the left and right hand characteristics, a number of things is immediately
apparent. The left hand side shows a push method, in which the service source S pushes
out by imposing b onto some number of recipients. The dotted promise lines indicate
the alternative promise approach. The right hand side shows upward promises from the
recipient to pull −b from one or more sources. In both cases the diagrams are shown
from a single autonomous agent, in other words, what we are comparing in the diagram
with what a single agent can accomplish without cooperation.

Some more characteristics are summarized in table 6.1.

POLARITY NOTES / CHARACTERISTICS / ASSOCIATIONS

PUSH BRAIN MODEL, FLOODING, BROADCASTING

SINGLE SOURCE (VERTICAL SCALING)
SPONTANEOUS IMPOSITION (SURPRISE), FLOW-DRIVING,
AMPLIFYING, ASSUME SUCCESS, NO FEEDBACK, DIVERGENT

NON-LOCAL OUTCOME—UNOBSERVED BY INITIATOR

(DECALIBRATION)
PULL SOCIETY OR CONSUMER MODEL, SUBSCRIBE (FROM PUBLISHED)

MULTIPLE REDUNDANT SOURCES (HORIZONTAL SCALING)
PLANNED PROMISES (PREDICTED), COUNTER-FLOW, AGGREGATES,
SELF-CONFIRMING OUTCOME, IMMEDIATE FEEDBACK,
CONVERGENT, LOCAL OUTCOME—OBSERVED BY INITIATOR

(CALIBRATION)

TABLE 6.1: COMPARING GENERIC ATTRIBUTES OF PUSH AND PULL.

Comment 10 (Confirmation of outcome). When agents provide a confirmation of out-
come as a service, e.g. return codes from software functions, they do so as an additional
promise, that may or may not be kept. Confirmation does not necessarily improve our
knowledge, because we have to trust the information. If an agent is unreliable in keeping
a promise, why would we expect it to be any more reliable in reporting the outcome?

6.7.5 RESOLVING CONFLICTING DEPENDENCIES

(SPLIT BRAIN PROBLEM)

Let’s return to the issue of conflict resolution, or how to assimilate redundant promises
consistently. In imposition systems and push systems, a major source of problems is
inconsistency, as there is contention over shared resources (see figure 6.15). One way to
avoid the problem of contention with impositions is to ensure that impositions only cause

6.7. ‘PUSH VERSUS PULL’ CAUSAL INFLUENCE 307

S
2

S
1

S
1

S
2

R R

−b −b

−b −b

contend/conflict select/converge

left if you like right if you likego left!! go right!!

Figure 6.15: In the imposition case, one of the agents has to be at odds with its intent. In other
words, expectations cannot be met, and the outcome must fail unintentionally. In the promise
case, all expectations can be met and all agents have complete information about the expected
outcome. Any deviation is now due to non-intended issues.

divergent outcomes. If each imposition lives entirely independently, within a private
context, there is no problem (see figure 6.16).

Example 138 (Private world consistency). In information technology, client-server
systems, where resources are pushed to a single queue, or which potentially in conflict
with shared resources, often ‘fork’ their processes into privately segmented workspaces.
These erect separate agencies where there is no contention. If the segmented threads
still need to work with a shared resource, locks requests are used to force the imposition
processes into a requesting ‘pull’ mode of operation.

In the example above, a principle is used to escape from contention, which is well
known as a resource lock in IT systems. Think also of the lock on toilet stalls which
serializes access to the shared resource by multiple users. We make sense of contention in
shared resources by having a single agent select a result from a collection of alternatives.
This is the transition from the lefthand side to the righthand side in figure 6.14. Agents
can avoid many of the problems associated with push or impositions by reversing their
thinking to a service oriented subscription access approach.

308 CHAPTER 6. INTERACTIONS AND INFLUENCE

S

RR

M1
M2

1 2

make sense of these?

multiple separate "worlds"store store

push
push

Figure 6.16: If influence is pushed redundantly into completely separate spaces, there
can be no conflict or doubt within each separate instance of these ‘many worlds’.

Comment 11 (From push-commit to publish-subscribe). For essentially cultural reasons,
the push method is ubiquitous in all forms of technology, as well as in society. We like
to treat the world as if it were an extension of our bodies. However, publish-subscribe
methods (otherwise called ‘pull’) are becoming increasingly popular, as they resolve
many issues (especially for web scale), such as allowing tolerance of inconsistency, or
so-called ‘eventual consistency’. It is often argued that we must have consistency, but
often this is overstated, and the regions over which consistency is needed are much
smaller than systems generally try to apply them over. Pull methods allow consistency
on a need-to-know basis.

6.7.6 SCALING DIFFERENCES BETWEEN PUSH AND PULL

As we have seen, many of the differences commonly used to characterize system archi-
tectures are only figments of scale. This should tell us that a single design will not scale a
priori with all promises and expectations intact. A system design might need to undergo
a phase transition in its mode of operation to cope with scaling effects. Consider these
two possibilities.

• Clients push all work to a serial load balancing service, which dispatches the work
to a horizontally scaled battery of discrete servers. This approach is convenient

6.7. ‘PUSH VERSUS PULL’ CAUSAL INFLUENCE 309

R

M1 M2

S

store store

push push

collapse "worlds"

Figure 6.17: Conflict and inconsistency can result when we collapse independent worlds
into a single picture. We do this when we average data in statistics. The arithmetic mean
is an algorithm for resolving the inconsistencies of independent measurements. Voting
or quora are another approach for odd-numbered collections of outcomes. In each case,
resolution is obtained when the observer chooses (pulls or accepts with a (-) promise) a
representative value from the values offered.

when traffic levels are sparse and unpredictably distributed.

• A server polls all known clients for possible work, and pulls the workload at its
own behest, thus managing its internal resources optimally. This approach is mea-
surably superior when traffic levels are high and are predictably distributed[BB08].

• Hybrid approach: clients publish their promise of work to a centralized dispatching
directory service (acting in the role of indirection pointer), that promises clients
availability as a list of appropriate discrete server queues with available capacity.
None of the workload load is sent through the dispatcher bottleneck, only the
notification of a promise. The actual server agents now pull work directly from
the clients at their own behest.

Why do these different approaches exist? The first approach is a classic event driven ‘give
me what I want now’ deterministic approach (push the problem onto the server, abdicate
responsibility, and hope for the best). The second approach is a nicely cooperative and
tastefully respectful approach when all the clients have promised their predictable work
schedules up front, but it is inefficient when there are many clients with only sparse
stochastic workloads, because the poller wastes a lot of time finding nothing to do instead

310 CHAPTER 6. INTERACTIONS AND INFLUENCE

of going directly to the work. Clearly the ability to handle workloads is different for
sparse events and predictably scheduled workloads. Why should this be? The answer is
that locality of information leads to predictability, but that localization of workload leads
to traffic intensity instabilities. So we need to ask where the relevant information and
work are located and make sure the flows respect the capabilities and capacities of the
agents in the system.

A promise theory perspective is helpful, as it reminds us that a client-server rela-
tionship has two sides, a client and a server, both of whom make promises essential to
the completion of a cooperative transaction. Nothing happens without a promise from a
server agent:

SERVER
ready to accept work−−−−−−−−−−→ CLIENT (6.146)

This promise invokes the opportunity to provide clients with information about what
kind of capacity it has, and how much spare capacity it has currently. Along side the
server promise are the clients’ choices: to either promise a predictable workload or to
impose without prior warning:

CLIENT
take this work!−−−−−−−−−→ SERVER (6.147)

CLIENT
please consider my work−−−−−−−−−−−→ SERVER (6.148)

The server clearly has more relevant information when the clients promise what is coming
up. A smart server can use this information to optimize its resources, cost effectively,
in space and over time. In simplistic terms with boils down to the appropriate usage of
‘push’ and ‘pull’ techniques, or promise and imposition.

Polling a set of incoming queues for work is a reliable way of controlling input.
Random sparse events can be noticed more quickly when the initial receiver can notify a
handling agent of their location. This is the approach behind ‘push notifications’. We can
ask, when are promise and imposition approaches best suited to an expedient handling
of the work? The answer to scaling issues, of course, depends on the dimensionless
ratios of the problem: the traffic intensity, filling fraction, or utilization of the queues
involved (see figure 6.18). When traffic is sparse, the cost of searching, for activity to
pull, exceeds the inconvenience of dealing with impositions from exterior agents. When
the volume of requests is high, no searching is needed, provided all work is equivalent,
and the server can expect to find work by simple polling. This also allows it to promise
its own fair weighting policy to the clients, independently of what the clients attempt to
impose. Thus imposition is helpful when traffic is low, and becomes problematic for the
recipient at high traffic levels. Anyone who has received too much email at some time
will have experienced this for themselves.

The classical approach of impositional queues, backed up by a load balancer (see
figure 8.5) combines multiple message queues into a single server queue, and leads

6.7. ‘PUSH VERSUS PULL’ CAUSAL INFLUENCE 311

Figure 6.18: When traffic is sparse, the cost of searching for activity to pull exceeds the
inconvenience of dealing with impositions from exterior agents. When the volume of requests is
high, no searching is needed, and the server knows it can expect to find work by simple polling.
Thus imposition works best when traffic is low, and becomes problematic for the recipient at high
traffic levels.

to an imposed bottleneck that is beyond the control of the server. It compromises the
server’s autonomy, and becomes problematic when the server’s queue approaches its
instability threshold. On the other hand, keeping a lot of spare capacity around, on the off
chance that it might be needed for peak traffic, is wasteful and motivates the search for an
approach that exploits economies of scale92. The key question for the scaling of a system,
which preserves stable semantics (the principal usability criterion), is thus the avoidance
of a sudden first order phase transition in the performance of the agents comprising it.

The hybrid method mentioned above leads to an adaptive compromise to this
dilemma. Without a change from push to pull for the bulk of workload, a serious
queueing instability lies latent and immune to horizontal scaling at the dispatcher. On the
other hand, without the ability to give notification hints of workload at times of sparse
traffic, much time and effort can be wasted in searching for clients. This is also the
thinking behind self-service models (see section 6.8.2).

Example 139 (DNS based load balancing). DNS based load balancing approximates

312 CHAPTER 6. INTERACTIONS AND INFLUENCE

the hybrid approach described above. It uses its knowledge of servers to perform a
simple round robin or distance based allocation of addresses when a client attempts to
look up a server. Clients don’t push their entire workload to DNS, as they do to a serial
load balancer, so bottlenecks can be avoided by smart point to point routing. This is a
common approach in horizontal scaling of content delivery networks (CDN).

Example 140 (File system change notification). File system change notifications were
introduced into Linux systems to allow clients dealing in large amounts of data to notice
the location of updates, without having to scan an entire filesystem for changes. This is a
key strategy for speeding up data synchronization.

If customers need deliveries every week, predictably, there is no need to send im-
positional orders that flood the delivery service: the service can serve the clients by
predictable polling. On the other hand, if one is in the mode of searching for sparse
business, it helps to have a service portal where impositional clients can present their
needs quickly.

Small notifications can be pushed to accelerate the routing of the bulk work channel
to a suitable server. This methods becomes ineffective as the traffic level of notifications
rises to the queueing threshold of the recipient.

Example 141. In a service oriented model, as compared to a vertically integrated
monolithic or centralized model, scaling patterns of push and pull get translated very
visibly into costs, because the vertically integrated single server model is the VLSI93

equivalent of an easily replicable packaged commodity. The separated model of a
collection of weakly coupled service is a free-market approach. The work of connecting
the services together and securing cooperation between them grows

However, it is worth pointing out again that the scaling of different semantic resource
attributes may be multi-dimensional and involve conflicts of interest, in the manner of
multi-strategy game optimization.

6.8 SERVICES

A design paradigm that has become quite popular over the past 25 years is that of services.
How is this different from any other? It is quite promise oriented.

6.8.1 SERVICES DEFINED

See sections 3.10 and 4.4 of [BB14a]. The difference between promises are impositions
is important. It describes whether an agent is expecting some influence from an outside

6.8. SERVICES 313

agent, or if it arrives unannounced. In this document, we can label agents in the roles
of client and server. Clients and servers are roles that are defined as agents who make
certain collections of promises.

Definition 136 (Opportunistic Client). An agent who requests rX a service X by impo-
sition (without having promised).

C
rX−−−−→ S (6.149)

S
+X−−→ C (6.150)

(6.151)

The server S may or may not promise to accept an imposition from C.

Definition 137 (Expected Client). An agent which has promised in advance that it will
send requests rX (perhaps as part of an agreement), given the existence of a promise of
service X:

C
rX |X−−−→ S (6.152)

S
+X−−→ C (6.153)

Definition 138 (Open or opportunistic service). A promise made by a server agent S to
provide a service to clients, who may request rX by promise or imposition,

S
+X|rX−−−−−→ C (6.154)

This is meant to be a take it or leave it service, open for any client impositions without
prior agreement. There is unrestricted access, attempting to please everyone, in a very
trusting way. In a closed service, trust is held more closely to prior promise relationships:

Definition 139 (Closed or expected service). A closed collection of promises to accept
requests rX and deliver X in response, made by a server agent S, describing a steady
state, in which no impositions are accepted.

C
rX |X−−−→ S (6.155)

S
−rX−−−→ C (6.156)

S
+X|rX−−−−−→ C (6.157)

(6.158)

314 CHAPTER 6. INTERACTIONS AND INFLUENCE

Note that the notion of a service requires us to know about the client’s behaviour, so a
service is not really separable from the promises of both parties (client and server).

Comment 12 (Services and time). Service is a relationship which accumulates over
time.

The timescales for completion:

Tuser ' Tclient ' T (rX)� Tserver ' T (X) (6.159)

6.8.2 SELF-SERVICE VS SERVE-TO-ORDER

It is implicit in the idea of a service that service is performed by one agent for another.
So what do we mean by self-service? We usually mean that the completion of the service
is driven by the client, at the imposed tempo of the client, facilitated by the server but not
driven or apparently ‘triggered’ by it i.e. the server is decoupled from the client somehow
(‘help yourself’). This is not as clear a concept as it seems. If there were complete
decoupling, it would not be a service interaction at all. Self-service still involves two
parties.

As a starting point, we can contrast self-service with simply autonomous behaviour:

Definition 140 (Self-driven (autonomous) behaviour). An promise or imposition made
by a single agent A without reference to any other agent’s promises.

A

{
X−−−→ ?
X−−−−−→ ?

(6.160)

Lemma: It is simple to prove, from these definitions, that autonomous behaviour is not
a service, because the agent A has all of the capabilities it needs internally. It does not
refer to any other agent.

By saying ‘self-service’, we expect there to be an external agent, which provides
something that an agent can opportunistically help itself to, but where the client drives
the process completely, with total autonomy, and no obstacles or hindrances94. Thus,
self-services presumes the existence of a promise to serve the client in advance, with no
special negotiation.

In other words, the server plays no role in the ability to keep the service promise,
other than providing perfect service on demand (a kind of guarantee). This is not a
promise that can be kept in reality, so it can only be an approximation. This is a shift
towards commoditization:

Definition 141 (Self-service (heuristic)). The selection of pre-arranged, prefabricated,
or commodity outcomes, by a client from a service that merely caches outcomes.

6.8. SERVICES 315

self−servicepre−arranged

pre−fabrication

manufacturing

on demand

asynchronous synchronous

fastslow

commodities

identify

"warehousing"/cache

Figure 6.19: The evolution of bespoke service to self-service is a transition to commodi-
tized synchronous delivery.

This is a shift from bespoke functionality, e.g. manufacturing on demand, to user-
selection from a menu of commoditized, pre-arranged offerings. It is a decoupling of
intent from process, by contrast with ‘serve to order’.

We can explore the implications of this for promises:

Definition 142 (Self-service (technical)—low latency synchronous selection). Behaviour
that approximates self-driven autonomous behaviour. The request rX by a client agent
C is now dependent on a menu of pre-promised outcomes of a service X made by an
external agent S without further agreement:

C
rX |X−−−−−−→ S (6.161)

S
X−→ C (6.162)

The server promise is effectively unconditional, implying no delay in delivery. The time to
complete the service T (X)� T (rX) is much less than the time to complete the client’s
task, making it essentially instantaneous. This preserves the illusion that the client is
entirely responsible for causing the outcome rX . This is often interpreted to mean a
low-latency synchronous service X .

Example 142 (Shopping at a commodity store). A client goes to a supermarket, where
goods are promised +X . The goods are pre-ordered and available, open to browsing
on trust, and buying them takes a negligible amount of time compared to ordering them
remotely by an agreed transaction. The client experiences a self-service environment.

Example 143 (Web and cloud computing). Cloud service providers offer a simple ‘self-
service’ interface for rentable computers. The availability of the computers is promised
in advance, allowing the client to accept the promise and make use of it. Similarly, web
pages are pre-fabricated and users consume them on demand at their leisure.

316 CHAPTER 6. INTERACTIONS AND INFLUENCE

Example 144 (Tenancy, e.g. shared parking). Any rentable entity may be offered as
self-service promise. If, unoccupied, parking spaces (with meter) may be empty. On a lot
of rentable vehicles, a client could swipe a card and rent the vehicle immediately, rather
than having to pre-order with a delivery time.

Comment 13 (Self-service is an illusion maintained by speed (separation of timescales)).
Self-service is an illusion, because the service is being provided approximately contin-
uously, by virtue of the condition T (X) � T (rX). Imagine going to a supermarket
and ‘helping yourself to the goods’. The goods do not come from within yourself, so the
service is provided by the supermarket. If they close the shop, you cannot help yourself
anymore. So the whole illusions rests on the availability of the service, represented by
the time scale condition. The promised ‘goods’ have to be there ‘just in time’, else it
doesn’t work.

What Promise Theory reveals is that self-service is not a realizable guaranteeable
thing, unless it refers to autonomy, i.e an agent has everything it needs internally without
requiring the assistance of another agent.

A service to order reverses the order of prerequisites. No service is prearranged
until a request for service has been made, by promise of imposition. The client is no
longer in control of the waiting time for service delivery—the service provider is now
the bottleneck.

Definition 143 (Service to order). A request for service, by a client C, precedes a
promise of service delivery by the service agent S:

C
+rX−−−→ S (6.163)

S
−rX−−−→ C (6.164)

S
+X|rX−−−−−→ C. (6.165)

Since there is no pre-fabrication of the outcome, this typically takes longer than a self-
service, commodity promise. A client may promise its request (by advertising it like a
publish-subscribe system, shared to a number of potential service providers to bid or
supply) or it may impose a request on a specific agent ‘out of the blue’—or any level of
invitation in between these possibilities.

Example 145 (Built to order). When ordering a car or a new suit from the factory,
with bespoke options and measurements, the service interaction is a longer series of
interactions in which the user has to wait for the service provider to keep its promise.

6.8. SERVICES 317

Example 146 (Just In Time delivery). This blurs the distinction between self-service and
service to order. Nothing is pre-fabricated, but the timescale for delivery is minimized to
be virtually synchronous. This is sometimes called lazy evaluation.

6.8.3 MASTER AND SLAVE ROLES

The terms master and slave are promise roles, often used to characterize agents in a
service relationship.

Definition 144 (Master agent). An agent considered authoritative with respect to a
service: a single point of calibration that defines a notion of correctness. A mater agent
is at the top of a hierarchy of dependence. A master agent does not depend on any other
to define the outcome of its promise.

It is more correct to refer to a master role in relation to a particular promise, because an
agent with several roles could be be a master for one service and a slave in another.

Definition 145 (Slave agent). A slave agent is one that acts as a proxy for the intent of a
master agent. In other words, it depends on the promised advice of a master agent to
define the outcome of a promise.

If an agent’s sole purpose is defined by its dependencies, it is a slave, because it has no
independent purpose. It has essentially one and only one life story, and it lives or dies by
these dependencies.

Example 147. A memory cache is a slave.

6.8.4 WORKFLOW LOGISTICS: PIPELINES VERSUS SERVICES

Workflows and pipelines form the basis of the modern manufacturing ethos. A workflow
forms a Directed Acyclic Graph (DAG). We send commodity components into one end of
a process, described by a promise graph, and some product emerges at a pickup location
on ‘the other end’. Logistics, end-to-end delivery and data processing all follow this
basic pattern[BB14a, Bur18].

We understand a workflow, or processing pipeline, to be a collection of agents that
form several stages of a larger outcome, and where each stage depends on the outcome
of a previous stage. The outcome is cumulative in some sense, and each outcome
is ultimately parameterized by a history, log, or journal of what promises were kept
throughout (see figure 6.20). .

A service, on the other hand, is a transactional singleton, operating in a steady state
(though its promises may not be stateless), in which responses are simple functions of
queries (the intent is supplied by the conditional query).

318 CHAPTER 6. INTERACTIONS AND INFLUENCE

job

input

output

narrative

flow

service

query narrative

flow

pipeline service

structurestructure

Figure 6.20: The topology of workflow or pipeline is implicitly a set of interior interactions,
subordinate to a single task, which is represented by a superagent. A service, on the other and,
stands independently with mainly exterior interactions.

A service performs a function continuously in response to exterior interactions. A
job may be shared and coordinated between several agents, but it is unified semantically
by having a singular outcome of its own rather being defined by its conditional input (see
figure 6.20).

• A service accepts input and returns an outcome to the initiator of its input.

• A pipeline accepts input and returns an outcome to different agents.

The distinction between these is subtle: a pipeline can perform a service, and a service
may involve pipeline processing. For example, a compilation service involves a pipeline
of dependent promises whose outcome is fixed in relation to the types and conditions of
inputs rather than the specific inputs.

We can define a pipeline by its agent structure. The entire job is a superagent, that
may encapsulate various stages in the structure of a DAG (see figure 2.4).

Definition 146 (Workflow pipeline). A cooperative process, encapsulated as a sin-
gle superagent, composed of interior sub-agents that form a directed acyclic graph.
Each interior agent that forms part of the path from input to output has a transducer
role[BB14a].

The single exterior promise of the pipeline superagent is to produce an output whose
final target state is a transformation of the input. The interior structure of a job is usually
partially ordered, and entirely subordinate to keeping of this single exterior promise.

6.9. COMMUNICATION NETWORKS 319

6.9 COMMUNICATION NETWORKS

As a straightforward but extended example of the promise method, we can examine
network communication. This discussion is based on the paper originally written for
[BBCD14]. Networks are countable systems that pass discrete packets of information.
They may not may not be deterministic or conservative, as networks do drop and duplicate
packets at interaction nodes. In the worst case, errors may lead to packets being corrupted
or echoed, so we have to expect networking to be non-deterministic.

6.9.1 PROTOCOLS AS PROMISE RECURSION

Protocols are promises about processes or communications. Processes or messages are
assembled from building blocks that combine to build standard structures.

Definition 147 (Protocol). A convention or pattern describing non-atomic interactions,
that classifies them into families by similar structure or intent.

The structure of a message or process may therefore be thought of as a promise, but
made by what agent? There are in fact several kinds of agents of different roles at
work in message transmission. There are, of course, the sender and the receiver of the
message. These are two agents that promise the message as an entity. However, the
message itself may also be considered a stream of agents that are embedded within the
‘agency of the message’ in full, each promising a certain kind of content, and each acting
quite independently of the transmission of the promise. The message components thus
have independent agency, and meaning, within the context of a message communicated
between another kind of agent.

In Promise Theory, each independent part of a message may itself be represented
as an agent that makes promises, embedded within the larger agency of a total message.
This is sometimes call layering of protocols. The promise to send and deliver a message
is a separate promise from message format and content.

Protocols can be very fragile structures, as with any rigid pattern. At the highest
level, an error can be made by the sender in breaching the protocol’s promised pattern
(+), or by the recipient in failing to parse it correctly (-). At lower levels, there is also
scope for mode detailed error:

• Content error: size type and content mismatch.

• Order of prerequisites breaches the standard.

• Misalignment of component boundaries leads to confusion. subagents within the
message should be within promised bounds.

320 CHAPTER 6. INTERACTIONS AND INFLUENCE

Error correction, or fault tolerance, methods may be applied to avoid transmission
problems. There might be a significant number of promises at work in a protocol that
need to be addressed:

• Recursive agency95 or context referring to the protocol’s alphabet and dictionary.

• Data type assumptions, subagent encodings, size and alignment.

• Compound clusters and groupings (recursion of grammar).

• Interpretation of data as a ‘relative delta’ or ‘desired end state’ representation.

• Sequence number or conditional element in an on-going conversation.

• Attribute advertisement (the + promises).

• Attribute matching (the - promises).

• Missing or corrupt constraint (promise not kept).

• Version of the pattern, if the pattern is evolving

Any one of these promises broken could lead to a fault in the system at the scale of the
communicating end-points.

6.9.2 ETHERNET

The agents that keep promises to send and receive data are the network interfaces. For
example, in the Ethernet protocol, interfaces Ei promise to label transmissions with a
unique MAC addresses or string of digits.

Ei
+MACi|MACi 6=MACj−−−−−−−−−−−−−−→ Ej ∀i, j

When data are transmitted by an interface, the interface keeps its promises to use messages
that have (destination MAC address, data). Note: the message is not a promise, the
promise governs how the message is handled.

Ei
(+MACj ,+data)
−−−−−−−−−−−−−→ Ej

Messages are sent ‘fire and forget’ as impositions on to a remote receiver. While all
interfaces generally promise to accept any MAC address, (unless they block with MAC
access control) only the interface whose MAC address matches the destination in the
message doublet actually promises to accept the message voluntarily. Note, there is

6.9. COMMUNICATION NETWORKS 321

nothing other than convention to prevent all agents from accepting the data too; this
‘promiscuous mode’ is used for network monitoring, for example.

Ej
−MACj−−−−−→ Ei ∀i, j

Ei
(−MACk,−data) iff (i=k)−−−−−−−−−−−−−−−−→ Ej

Since the channel is unprotected, agents effectively promise the data to all others in scope.
Moreover, all agents promise to decode the address and the data, but many will discard
the results.

While this set of promises is scale independent, the assumption that every agent
has to be in scope of every transmission does not scale, since it requires messages to
be flooded or broadcast to every node (agent), in principle. The primary issue with raw
Ethernet is that there are no ways to selectively limit the size of these broadcast domains.
This makes the ‘everyone please take a look at this’ approach impractical.

Figure 6.21: An Ethernet switching function.

In Fig. 6.21 we see two interfaces that promise MAC address 00:00:11:11:11:AA
(shortened to AA) and 00:00:11:11:11:BB (shortened to BB). Suppose we wish to send
data from AA to BB, then, since the Ethernet is a push-based imposition protocol, only
half a contract is needed for emergent delivery, and we leave the rest to trust.

EAA
+MACBB−−−−−−−−−→ Eswitch

Eswitch
−MACi−−−−−→ Ei ∀i

Eswitch
+forward MAC BB−−−−−−−−−−−−−→ EBB

In each point-to-point interaction, the agent has to formally promise to use (-) the
delivery service promised by the agent giving (+). This is the algebra of binding. There is
no notion of a permanent virtual circuit, as say in ATM. However, if we add handshaking,
a similar story can be told about ATM, Frame Relay, MPLS and other systems.

322 CHAPTER 6. INTERACTIONS AND INFLUENCE

6.9.3 INTERNET PROTOCOL

IP provides Wide Area Networking by issuing two part addressing to cope with transmis-
sion scalability. IP addresses still promise to be globally unique, but are interpreted as
doublets.

(network prefix, local address)

Only addresses with the same prefix are considered in mutual scope for broadcasting,
and messages addressed from one prefix to another promise to be forwarded deliberately
rather than by ‘flooding’. IP is thus a cooperative effort that builds on promises rather
than impositions alone.

To make this work, IP needs two kinds of agent, which fall into different promise
roles (see figure 6.22): interfaces (terminating connections), which only transmit and
receive data intended for them, and forwarders (called routers or switches) that cooperate
with multiple interfaces, and promise to selectively forward data from one interface to
another between protected broadcast domain. This acts as a flood-barrier or firewall to
packets promised to different prefixed networks.

To model routers, without giving up the interface abstraction, we introduce the
concept of a route service (or link service), whose job it is to establish cooperative
forwarding between the interfaces.

Interface

Interface

Interface

InterfaceInterface

Router

128.39.78.128.39.78. 4

prefix local

1 177.16.1.1

src dest?

Figure 6.22: Internet promises. An end-node or leaf and its single interface promises to relay
through a ‘router’ which is surrounded by multiple interfaces, thus connecting multiple network
branches.

Consider Fig. 6.22. The source node has an address, normally written 128.39.78.4/24.
As a doublet, the promises see it in two parts as i = (prefix=128.39.78, local=4). We’ll
call this the source prefix, or, j = (prefix=128.39.78, local=1) for the router interface.
When a message is sent to an address with a different destination prefix, data are sent

6.9. COMMUNICATION NETWORKS 323

by imposition to the interface on the router with the source network prefix (usually the
‘default route’):

Isourcei
+(destination,local),+data−−−−−−−−−−−−−−−−−−−→ Irouterj

Each router interface j promises the connected source interfaces i to use all such packets,
a priori, and to present them to the router (kernel) which keeps the following promises.

Irouterj

−(∗,∗),−data−−−−−−−−→ Isourcei

Irouterj

+prefix,+data−−−−−−−−−→ Router

Similarly, other interfaces connected to the router’s interfaces promise to accept messages
from the router that have their prefix:

Isourcei

−(prefix,source),+data−−−−−−−−−−−−−−→ Routerj

Crucially for messages to escape from a local region, the router promises all IP interfaces
to forward messages it receives on one if its own interfaces according to a set of promises
which we denote ‘forward’. The router interfaces, in turn, bind to this promise by
accepting it.

Router
+forward−−−−−−→ Irouterj

Irouterj

−forward−−−−−−→ Router

The forward promise has the following logic:

(1) If the prefix of the destination interface is the same as the prefix of one of the
router’s interfaces, forward the message onto that interface.

The remainder of the promise requires configuration with knowledge of the wider world.

(2) If the prefix of the destination interface is known to an internal database of
external knowledge, i.e. the Routing Information Base (RIB), forward the message
to the interface known to lead to the desired destination.

(3) Send all other message destinations to a pre-decided default interface, where
we expect to reach some other router with greater knowledge of how to find the
prefixed network.

Note that, like the Ethernet, this algorithm has only emergent behaviour that matches
its design goal. It cannot, by direct imposition, assure a successful delivery of messages,
because that requires the cooperation of potentially many intermediate interfaces and
routing agents. In spite of this apparent lack of control, the Internet works demonstrably
well. Trust plays a major role in operations.

324 CHAPTER 6. INTERACTIONS AND INFLUENCE

6.9.4 VLAN: L2 CHANNEL CONTAINMENT

The concept of doublet addressing in IP enabled improved scalability, by black-boxing
local networks, but added the cost of routing. How expensive routing is, in relative terms,
is a constantly changing overhead that depends on many current technological factors.
Fear of this cost tends to make datacenter traffic favor L2 solutions.

Routers were optimized for WAN delivery, so the obvious question for LAN man-
agers was: could routing be simplified for smaller local regions without the paraphernalia
needed for global routing? When packets don’t have to be routed through multiple hops,
i.e. when parts (2) and (3) of the forwarding promise can be ignored, a simpler form of
prefixing can be used. This is the concept of the VLAN overlay. Interfaces can simply be
classified, or tagged with short integer labels:

(prefix, local address)→ (VLAN-id, MAC-address)

Then we have multiplet address components again (but now with a short VLAN tag
instead of a large integer prefix), for boxing off local regions. A VLAN tag signifies
membership in a private logical container. As with Frame Relay, these tags have to be
configured manually, so routing is a human-centric process.

The concept of a Level 2 overlay has become quite popular for its perceived simplicity
in small isolated networks. It’s limitations have to do with scaling of the manual
configuration and broadcast domains. VLAN is a brute force routing mechanism that
scales linearly with the number of addresses in a container. Containers are not localized
in physical space, only in logical channel space (unlike the assumed distribution of
prefixes in IP). Thus this does not address the issues of physical scaling. However, we
need something that scales like logN or better (like IP).

6.9.5 VIRTUAL CIRCUITS

Virtualization of networks is a common approach to making better use of resources. In the
same way we create multi-user sharing (multi-tenancy) for services, using timesharing
kernels, a network operating system can perform the same sharing for internetwork
communication. Virtual users need the same quasi-static promises to function as physical
users: they need to have a stable identity and a stable approach to reachability. Indirection
(pointer tables) allow virtual agents to maintain a fixed identity for distinguishability and
reachability.

Address lookup is the basic service that enables unique semantic identities, i.e. names,
to be mapped to unique metric identities (addresses), and distributed service processes
(routing) allow context-dependent paths to be computed to route communications along
virtual circuits.

6.9. COMMUNICATION NETWORKS 325

Some virtual circuits formally create a persistent or even static path associated with
a connection (like a client-server ‘session’) (MPLS, ATM, Frame relay). Others set
up virtual circuits at a higher layer of abstraction (like TCP). In the case of TCP, the
computation of paths from one address to another can be automated as long as addresses
have global significance and are fixed. In the same of purely local addressing (e.g.
Frame Relay, Ethernet, etc), circuits that span broadcast domains have to be wired based
on external information by imposition of a topology—there is insufficient information
promised by the agents in the network to compute paths without additional ‘godlike’
intervention.

In cloud computing, agents are ephemeral, often with short lifetimes from seconds
to minutes. Network addresses, which are usually IP based at all layers, can only bind
to agents for a short time, making traditional routing impossible. One needs separate
address lookups and name-address directory rewriting in real time. This is a potentially
unstable situation. The promises are thus short-lived, leading to a gaseous state for the
agents.

There are several weaknesses to current approaches: many pragmatic ‘quick and
dirty’ tie clusters to geographical regions or physical constructs like datacentres or even
racks of computers. As a rule, network technologies have been designed with physical
rather than virtual localization in mind, so more layers of virtualization are needed to
sew together physical networks and overlay them.

Example 148 (Cluster broadcast networking). Some approaches to network virtualiza-
tion create local private addresses, which cannot be routed. This includes use of the IPv4
address ranges 192.168.xxx.yyy and 10.xxx.yyy.zzz, which standard routers promise to
treat as private and non-routable. In this case, name-address binding discovery can be
performed by broadcasting (as in Ethernet and ARP) or by registration (as in IP and
DNS).

6.9.6 TUNNELLING ADDRESSES AND TRANSDUCER PATTERN

Embedding protocols inside one another is not the only approach to containment. One
can also strip off and repackage data on different legs of a journey. To do this, one makes
a transducer that converts one kind of addressing into another (see [BB14b]).

ARP is one such service that maps between Ethernet MAC addresses and IP addresses.
Instead of a physical forwarding table, a logical rewriting table is maintained. When a
direct ARP conversion is not possible, data are sent to the default route, which is the
address of the router interface Iprefix to the default interface. DNS is another transducer,
that maps from symbolic addresses to IP addresses.

The same principle has been applied to isolated networks, such as the reserved names-

326 CHAPTER 6. INTERACTIONS AND INFLUENCE

paces 10.0.0.0 and the example.com addresses 192.1.168.0/24. IP Network Address
Translation (NAT) is now been promoted from crude workaround to viable technology,
extending the local IP addressing component with additional internal addressing numbers,
the rewriting outgoing addresses to point to the standard IP address range. End to end
addressability is not normally promised in this scheme however, so it has limited value,
(however see TRIAD[CG00]) for a viable scheme for extending IPv4 in this manner.

More recently, a tunnelling approach is also being used to artificially extend Layer
2 VLAN as a stop-gap measure for a technology users who are familiar with VLAN.
VxLAN, and NVGRE are encapsulations of Ethernet L2 Frames, with tunnelling over
IP to enable the physical reach across multiple gateways. Addresses add a multiplet
component: a Tenant Network Identifier (TNI) or Virtual Tunnel End Point (VTEP)
identifier embedded parallel channels.

These schemes perform two functions: i) they increase the number of possible
VLAN-like channel addresses, patching a limitation in the VLAN implementation, and ii)
they allow teleportation of broadcast domains across an IP scale network, transparently
of routing concerns. Thus they do not eliminate the cost of IP routing, but offer a
comfortable user interface for local network administrators.

6.9.7 ADDRESSABILITY WITH SCOPE OR NAMESPACES

By introducing multiplet addressing, we draw a logical (and perhaps physical) container
around a network region which hides its internals with some kind of identifier or prefix,
which acts as a namespace identifier. Everything inside the namespace is local and
protected. There are two principles that explain these cases.

Principle 1: Container multiplet addressing: Any system that promises to
support n-tuple addressability of parts, for n > 1, enables logical or physical con-
tainment of information, as well as log-scalable routability between the containers.
4

To transmit data across multiple (possibly embedded) containers, we typically need
an address component for each logical container. Thus interfaces ai must promise to
recognize one of the components ai and pass on all others as passenger data:

Interfacei
±(a1,a2,ai,...,an),±data−−−−−−−−−−−−−−−−→ Router

e.g. the ai address components might include MAC address, IP address, VLAN number
and VxLAN IDs. This set of addresses need to be configured and managed, either
manually or by some mapping service. Some of these addresses overlap (like IP-LAN
and MAC addresses).

6.9. COMMUNICATION NETWORKS 327

Principle 2: Forwarding by multiplet address: Forwarding of multiplet
addressed data requires an infrastructure of forwarding promises by each members
of each container for each address component in which all other components are
ignored by other containers as payload data. 4

An interfaces ai in a given container of level i would promise to accept other
components addresses components as data only to be forwarded, not interpreted, i.e. as
payload with no assumed semantics. In practice some of the address components might
be removed or even rewritten, depending on the encoding as data traverse container
boundaries, but that is not a requirement of the principle. All of the components have a
continuing logical existence. It would be enough to ignore them. Note also that intrusion
detection/prevention systems sometimes break the semantics of ignoring payload.

Example 149 (Addressable scalability). The scaling of multiplet addressing is a straight-
forward idea. It prevents a local namespace from becoming too large for flooding or
broadcasting. The size of the namespace is limited either by a fixed number of nodes
accessible in one multiplet address (e.g. VLAN tag, OSPF areas, BGP AS, etc), or
equivalently, by the size of a prefix in a binary encoding of the multiplet (as in IP). In
the first case, there is no defined limit to how many MAC addresses can occupy the same
VLAN. Scaling is throttled by physical limitations. In the latter case there is an explicit
quota tradeoff between local and global from a fixed number of addresses.

If an n bit address has a prefix of length p, this improves scaling through black-
boxification of local regions. It transforms the addressing of N = 2n things into the
addressing of merely NC = 2p, things globally and nC = 2(n−p) things inside each of
the C containers. That is lognC rather than nC scaling.

There is also no particular reason why IP addressing has to be limited to prefix
quotas. IP Network Address Translation is an attempt to extend the range of local
addressing, independently of the prefix quota space to alleviate IPv4 address depletion.

Example 150 (Two networking types). Networking supports two main use-cases:

• Content delivery or pull requesting (asynchronous retrieval promises of the form Node
X−→ Node).

• Signalling or push notification (synchronous impositions of the form Node X−−−−→ Node).

The former is a many-to-one association, for which we can employ versioning, replication
(data-model de-normalization), re-direction, and delocalization (e.g. Content Delivery
Networks). Point to point addressing is less important; caching is highly meaningful.
The concept of Name Based Routing has been proposed to abstract away endpoint
addresses[BCA+12].

328 CHAPTER 6. INTERACTIONS AND INFLUENCE

For the signalling, we still need endpoint-resolution addressability, as signals cannot
be cached, though they might need to be flooded. Service delivery generally involved
a mixture of these two cases, which depends on the nature of the application being
supported. Applications typically want to make certain promises about connectivity,
security, e.g. load balancing and firewall filtering options

Application-oriented delivery suggests other forms of containment based on the
logic of the service interaction. Current networking management abstractions make
application specific requirements painful to configure because of lack of a consistent
model for abstracting them. This brings us to the present day.

Example 151 (End-to-end service promises via proxy). To see how this could be done,
we return to Promise Theory. The ‘proxy’ or intermediate agent pattern was described in
[BB14b] abstracts the end-to-end delivery promise of a service S through some promise
to handle the delivery details by proxy P to a client. Both client and server may be guests
running inside various containers.

The abstraction we would like to expose to the user is for logical services and
consumers to simply make promises directly to one another (Fig.6.23), without worrying
about all the intermediate agents in between. The proxy pattern shows how this can be
achieved. We refer readers to [BB14b] (section 11.3) for a discussion.

Examples of the service S could be: to provide connectivity over a secure channel,
to grant or deny access to data, to commit to or retrieve from storage, to provide web
transport. It is important to note that a go-between might create a superficial similarity
of function, but it also adds four promises and hence four possible points of failure to the
equation.

Guest

Policy−based

Proxy

Guest
Virtual

Actual

Figure 6.23: A generic proxy model that promises to mediate communication, with no internal
details exposed..

6.9. COMMUNICATION NETWORKS 329

In terms of the cell membrane analogy described above, we would say that the
outer-membrane promises identify how others can communicate to that service, what
they can communicate about, and what happens to the traffic when they communicate.
Today, one would have to separate it into VLANS, Firewall rules, Load Balancing rules
etc. These are details we would prefer to leave to a proxy on imposing on it a minimum
of application specific requirements.

By providing this as a service, one is able to reason about applications, and how they
interact with other applications rather than with the physical underlay. The membrane
thus provides a level of abstraction that hides the details of the cell composition. This is
how the Insieme architecture works.

By isolating promises as containers that promise to play certain roles in an appli-
cation design, one can think about the datacenter as an organism. Then an organism
comprises of many boxes containing multiple functions that manage their own resources
based on a policy declaration.

6.9.8 MESSAGE QUANTIZATION AND JOB SIZE

In work batches, the size of a task matters. Frame or packet size plays a role in the
dynamics of communication, by the interaction of timescales for the different agents’
internal processes. Queueing theory suggests that short packets are preferable for agility
and ‘last-mile’ distribution, in order to expedite packets quickly. It keep queues short and
adaptable. But that could be a false economy if you need many more packets to finish the
job. For mass transportation, there are economies of scale to be found by transporting
in larger containers. A simple analogy can be to think about trains versus cars. Cars
transport small packets of people in an agile and ad hoc manner. Their virtue lies in
adaptability. Planes and trains, on the other hand, can transport numbers packets much
faster, because they do not need the agility to take flexible routes. They are optimized
for mass transport, and larger sizes are preferred to keep costs low. The data length
of the protocol overhead is a significant cost. Efficiency of the process is improved by
maximizing the payload per transaction, making the transaction longer96.

CHAPTER 7

SCALING OF AGENTS AND THEIR

PROMISES

So far, we’ve looked at small constellations of agents with only a few promises at a time.
If agents are thought of like atoms, then we could call small clusters of them ‘molecular
systems’: clusters of atoms that bring about new functional behaviour. In many cases,
this is helpful already for deriving some insight into the workings of systems. However,
the real benefits of formalization come when we look at greater scales.

Scaling of structures and influences is one of the techniques that physicists have
used to address the generic patterns and broad economics of systems, both measured
with energy and with money. The general rule, in a wide class of systems, is that the
more you scale up, the more universal (and hence less specific) the results become.
Sometimes one can characterize ‘efficiencies of scale’, in which costs scale more slowly
than outputs. This chapter considers some of the ways in which scale plays a role in
interacting agents—it’s a theme that is ingrained throughout this volume, but I want to
draw special attention to it here.

7.1 SCALE AND SCALING

A scale is an arbitrary approach to counting change, in space or time: the observable
characteristics promised by an agent may change as we continue to resample the same
agent (time) or as we move from agent to agent (space). The smallest discernable change
denotes an atomic difference. A scale is a particular aggregation of that atomic difference.
The more steps we aggregate, the large the scale. Aggregations of agents often effectively

330

7.2. LESSONS FROM EFFECTIVE COARSE DESCRIPTIONS 331

make promises of their own at each distinctly separable scale—this is the lesson of
complex systems and the subject of renormalization in physics.

Information science does not usually think of scaling in this way. Rather, it talk
about ‘scalability’, or the use of parallelism to increase flow by increasing the size of a
supporting system infrastructure. In other words, it concerns itself mainly with increasing
dynamical throughput. This is is purely dynamical consideration; but, information rich
systems, including but not limited to software, are dominated by the semantics of
their interactions, so there is a pressing need to understand the scaling of semantics
too[Bur14, Bur15a]. There are thus two meanings of scaling:

1. Workload scaling of workload (parallel support).

Scaling up a system refers to the intended increase in size or load bearing char-
acteristics by increasing the number of agents, or by altering their promises. We
compare systems based on whether they can keep a promise independently of the
physical dimensions of the system, or the magnitude of the load.

2. Universal scaling of agency (spacetime bulk).

This scaling refers to a change in the way we probe or interact with a system, either
in detail (small scale, short wavelength) or in bulk (large scale, long wavelength),
and the effect that it has on what bulk promises are kept. This is sometimes used
to make scaled models.

In 1. we are asking whether a promise can be kept for a larger load of interacting agents
that still interact with the parts at the same scale according to 2. In 2. we are asking how
big are the effective agents we are examining, on an absolute level, while keeping the
relative sizes or dimensionless ratios the same.

Definition 148 (Functional scalability). A system possesses this property if it can change
its size (number of agents) without altering its function, or changing its ability to keep
promises (as observed by an external agent).

When an architect or designer makes a scaled model, he or she is using the idea that
by magnifying all of the dimensions of a building or device in proportion, there will
be a predictable correspondence between the behaviour of the model and the full-size
result. This is not a trivial matter; it presupposes a notion of dynamical similarity[Bur13a,
Bar96, Bar03].

7.2 LESSONS FROM EFFECTIVE COARSE DESCRIPTIONS

The more we understand how systems work, the more chance we have of forming the
right expectations about them, and using them successfully for their semantics as tools.

332 CHAPTER 7. SCALING OF AGENTS AND THEIR PROMISES

Scales thus play a unique role in understanding how systems behave.
When we are unable to separate the characteristics of a system at different scales, we

fail to understand the semantics of the system, and see only the interactions of its parts.
The phrase ‘can’t see the wood for the trees’ expresses this: if all you see is trees, you
can’t perceive a forest or wood as an identifiable, aggregate entity, or know what role it
plays in climate interactions, or global biodiversity, etc.

At each level of aggregate description, there are typically new patterns and emergent
characteristics that cannot be understood from the individual parts, in the absence of their
interactions. There can be new semantics associated with these (such as when a collection
of components becomes a computer). In promise theory, we call these aggregations
superagents. At coarser scale, dynamics become more ‘universal’ in their characters, i.e.
we see what is common to all forests rather than what is special about one.

7.2.1 ENSEMBLE SCALING AND UNIVERSALITY OF CHARACTERS

System characteristics can be assessed statistically over ‘ensembles’ or collections of
comparable systems. This is particularly useful when faced with real-world indeter-
minism. Sometimes we form ensembles over time, to discuss trends of change; other
times, ensembles may be picked from different locations and circumstances to compare
locations at the same time97.

Some of these characteristics are famous, like Moore’s law, which characterizes the
development of a state by saying that the number of transistors on chips doubles every
two years. This is dynamical law of scale, often interpreted semantically to mean that
computing power or performance doubles every two years, which is really a different
question. Similarly, there is Wirth’s law[Wik17] which suggests that software is actually
getting slower more rapidly than hardware becomes faster. The semantic association here
is one of increasing bloat and complexity in software. Another example is how we tend
to be rosy eyed about places and things we don’t know very well. If you live in a place
for a long time, you probe it in greater detail, and experience more of its problems. This
could be formalized into a law: the longer you live somewhere, the more you complain
about it.

Formal scaling relations are rarely found in information technology, because they are
the more familiar tool of physicists: the physics of information systems is a relatively new
area of study, motivated partly by the growth of systems to respectable scales. Recently
studies exposing universal scaling in cities were carried out[Bet13, BLH+07], revealing
how key performance indicators like wages, disease, services, etc., grow according to
universal patterns. Cities are semantically rich information systems, as diverse as any
technology. This suggests that high level patterns are universal, as we would expect on
general scaling principles, and that they are likely to exist in other functional systems.

7.2. LESSONS FROM EFFECTIVE COARSE DESCRIPTIONS 333

Some scaling relations expose patterns across ensembles of systems that are parame-
terized by size, weight, length, or some measurable dimension. Scaling is connected with
dimensionless variables, such as numerical counts N . When control parameters have
dimensions (mass, length, time, etc.) the control parameters are dimensionless ratios:
t/T , m/µ, and so on.

Scaling relations can be compared with great generality across many systems, and
correspondingly lead to only general observations that don’t necessarily describe any of
the samples in an ensemble well. So, while this is scientifically interesting, does any of it
help us to design and build systems, or predict faults, flaws or even errors? How might
the semantics at aggregate scales, and even universal scaling relations, be disrupted in a
way that became anomalous?

7.2.2 DIMENSIONLESS RATIOS AND SIMILARITY IN CONTINUUM

SYSTEMS

The subject of scaling in continuum models is known as dimensional analysis[Bar96,
Bar03]. Our entire knowledge of classical mechanics or the physics of rigid bodies and
fluids is essentially based on the understanding of scaling ratios. Could this also play
a role in systems at a more general level of description? The concept of dynamical
similitude, going back to Newton’s time, expresses the idea that a real-valued continuum
system can be scaled by multiplying by a scale factor. Such a scale factor applied equally
to all measures of the same type cancels out of ratios with the same dimension, and thus
leaves dimensionless ratios invariant. The basic observation is that, as long as we can
use real numbers to characterize scales, and topologies are simple, then we can use the
argument that:

8/4 = 4/2 = 2/1 = 2x/x (for any x) (7.1)

to claim the similarity of objects (see figure 7.1).

Example 152 (Scaling food). Suppose we make a meal for two, doubling everything
could make a meal for four. But, what about the cooking time? Should we double that
too? Luckily there is a methodology for working it out.

They key insight in physics of scales is that it is dimensionless ratios of scales that
determine important behaviours in the world, not lengths and times directly. This seems
reasonable, as only dimensionless ratios are (manifestly) independent of the units used
to measure things. It cannot be the case that a phenomenon depends on whether it is
measured in centimetres or inches.

The Buckingham Pi Theorem formalizes the notion that only dimensionless scales
are useful for characterizing and extrapolating behaviour (for instance, to make a scale

334 CHAPTER 7. SCALING OF AGENTS AND THEIR PROMISES

model). Any variable that cannot be directly compared to another in the same system
of measurements is potentially a fiction of the measurement itself. The Buckingham
method allows us to write behavioural relationships (like flow equations) in a form which
depends on on dimensionless combinations of variables. Although this is just a rewriting
exercise, it casts relationships in a form that is manifestly free of assumptions about scale.
We can only say how big something is relative to a calibration reference; anything else is
subjective and subject to ad hoc interpretation.

From any set of parameters, one begins by putting together all the possible dimen-
sionless combinations. For example, in the case of an aspect ratio, a rectangle has width
W and height H , both of which have the dimensions of length. So W/H is the only
combination. If we add the third dimension, there is distance from the observer to the
screen D, so now we can also make W/D, H/D, W/H . See figure 7.1.

W/D H/D W/H

D

H

W

2

1

Figure 7.1: Dimensionless scaling ratios capture the qualitative measurable properties of a
system as it scales, for continuous systems. For discrete systems the ratios may not exist.

7.2.3 DISCRETE AGENT SYSTEMS AND BREAKDOWN OF SCALE

INVARIANCE

In a discrete system, like a graph with variable topology, the assumption of

8/4 = 4/2 = 2/1 = 2x/x (for any x) (7.2)

no longer holds in a simple way (see figure 7.2). Simply doubling the number of agents
does not preserve the similarity of topology.

7.2. LESSONS FROM EFFECTIVE COARSE DESCRIPTIONS 335

=/
4 / 2 2 / 1

Figure 7.2: Discrete agent systems are not necessarily similar in their semantics or structure just
by scaling simple ratios.

7.2.4 SCALING SEMANTICS: SYSTEM FUNCTION

Addressing semantics on the level of atomic and molecular combinations of agents is
straightforward, if not intricate enough, but how could we describe systems of such great
size and intricacy that it is impractical to look at every promise individually? This has
been studied using promise theory in [Bur14, Bur15a].

We can learn from material science, i.e. how to describe systems without tracking
every atom in a substance. Phenomena manifest at different scales with different expres-
sions. By eliminating detail and moving to an effective coarse description, we might lose
total information, but the lesson from the physics is that this doesn’t necessarily matter.
The laws of scaling and ‘renormalization’ can keep track of how small details either lose
their importance at scale, or get amplified into chaos.

For example, we can say that certain crystalline structures are susceptible to cracks.
Some are flexible and resilient. More practically, we can say things like: don’t build
a hammer out of glass as it is unsuitable. Such properties are usually learned from
experience and research rather than being a priori predicted from models, though today
the information technology does allow predictions. Elucidating scaled properties of
abstract ‘human-machine materials’ is a place to start, even if we can’t immediately see
all of the motivations and consequences: we follow the example of material science,
hoping for enlightenment down the road.

7.2.5 FLAWS IN SCALING: WHAT SEMANTICS CAN CHANGE?

Design issues that are sensitive to scaling include costs and benefits in a number of areas.
Some issues are controllable (they are short range effects). Others are dominated by the
environment and thus beyond control (they are long range effects).

• Maintenance.

• Replacability.

336 CHAPTER 7. SCALING OF AGENTS AND THEIR PROMISES

• Transport of people, materials and information.

• Latency.

• The efficiency of resource supply, harvesting of output, and maintenance come
into play.

One of the things a larger system can afford is to be more tolerant of faults; this may
come from having sufficient redundancy of dynamical processes to sustain functional
behaviour. However, when the fault lies in an external dependence, its own redundancy
may not help. So a multiply redundant flight control computer on an aircraft is no help if
the plane runs out of fuel.

Offering

• Backups, dynamical multitude, redundant agents keeping the same promise for
failover.

• Alternatives, semantic multitude or different promises for a different solution.

These are two ways of building flexibility and resilience into systems. They can be
combined with ‘mixing’ or random selection (so that agents do not always bind to the
same promise provider). In that way, a fault in a single location can be mitigated by
varying the selected location. This introduces a new scale, e.g. the timescales for the
bindings.

7.3 SCALED AGENTS (SUB AND SUPERAGENCY)

The treatment of a collection of agents as a single entity is a choice of scale, made by
any observer (see figure 7.3). Agency can further be defined recursively to build up
hierarchies of component parts, and their dependencies.

Definition 149 (Long and short range coupling). If dependencies are entirely self-
contained, there is a natural local scaling. If dependencies remain between agents, even
at a larger coarser scale, then there are long range effects.

In [Bur14], I showed how spatial boundaries can be defined by membership to a
group or role. We still have to explicate the relationship between the internal members
and the structure of the whole, as perceived by an observer.

We define a collective superagent as a spacetime structure that has collective agency,
i.e. its intended semantics relate to a collection of agents surrounded by a logical
boundary, with collective semantics (see figure 7.3).

7.3. SCALED AGENTS (SUB AND SUPERAGENCY) 337

intA

intA

intA Σ

Π
ext

Π
int

Aext

Figure 7.3: Agent structure consists of an element that makes a number of exterior promises,
some of which are scalar, some vector, etc. Interior promises are invisible from the outside. For
example, the subagents might promise to be trees (and not suddenly become cars), while the
superagent promises to be a wood.

Definition 150 (Superagent). A superagent of size S is any bounded agency composed
of individually separable agencies, partially or completely linked by internal vector
promises. The bare superagent is defined by the closed graph, without any external
adjacencies.

Superagency allows us to talk about redundant ‘material’ bulk promises. In principle
an observer could draw a line around any collection of agents and call it a cell or
composite superagent. This is an assessment any agent can make, as part of its definition
of an agency scale. However, it might still be of interest to distinguish special criteria by
which such an arbitration might occur. In component design, for instance, the choice of
boundary has often to do with the a choice interface an agent wants to interact with.

The alternatives fall into three basic categories (see figure 7.4):

(a) A membership in a group or associative role, where the central membership
authority may be either inside or outside the boundary, e.g. city limits, or company
campus. In this case, we are identifying a group of symmetrical agents.

Ahost
+membership−−−−−−−−→ {Atenant} (7.3)

{Atenant}
−membership−−−−−−−−−→ Ahost (7.4)

(b) A total graph or collaborative role. In this case, we are identifying agents with
coordinated behaviours.

338 CHAPTER 7. SCALING OF AGENTS AND THEIR PROMISES

1

2

3

4

1

2

3

4

(a) (b) (c)

Figure 7.4: Three ways of binding collective agency. Another way is to simply make an arbitrary
collection: (a) membership, (b) interaction mesh, (c) chain or dependency hierarchy.

(c) A dependency graph, path or story. In this case we are identifying dependency
bindings.

If we have superagents, then obviously we can talk about subagents, where a par-
ticular system region can be decomposed into helpful parts. Lesser agents can also
be residents or satellites of other agents. This leads to a hierarchy of containment by
functional role.

7.4 SUPERAGENT SURFACE BOUNDARY

Superagent boundaries may be formed with different structural biases.

• Aggregations of agents, related through membership or allegiance to a single
leader (leader may be inside or outside the superagent), and the connections are
made through the leader as a proxy-hub.

• A cluster of agents linked by cooperative vector promises.

• Strongly cooperative agents which are inseparable without breaking an external
promise. E.g. an organism made of components that are all different and non-
redundant to the functioning of the whole.

Interior promises are those entirely within the surface boundary of a superagent.

Definition 151 (Surface of a superagent). The exposed surface Σ of the agent is the subset
of interior/internal agents that have adjacencies to agencies outside the superagent.

7.5. SYSTEM MODULARITY 339

A superagent surface may also make new explicit promises that are not identifiable with
a single component agency.

7.5 SYSTEM MODULARITY

Modularity is about how we define the semantic boundaries around different functional
elements in a system98. Modularity is a strategy that the software industry, in particular,
has made bold claims about. If we believe software doctrine, modularity leads to
systems that are easier to understand, easier to maintain, and which scale better, give
you an automatic place in software heaven, and contribute to world peace. Modularity
has been connected to the increased efficiency, better focus and even the suggestion
of easier innovation. However, some of these claims seem contradictory, and data
from cooperative systems like cities offer a more nuanced view of the facts behind the
doctrine[Bet13, Bur16b].

Modularity is a long standing strategy in human cooperation, related to specialization.
By organizing a cooperative collaboration, the suggestion is that a specialist can focus all
its efforts on becoming an expert (assuming it has plenty to spare), learning by experience,
with more depth by being encumbered by less breadth. Anthropological evidence for
this is also mixed[Dia97, Har11, Tai88], but there seems to be an argument for scaling:
if we want to scale productivity of things like food and services to support a surplus, and
free people of the need to spent all their time subsisting, then a network of specialized
services does have clear advantages, which are revealed in studies of urban scaling.

Focusing on a single task requires less changes of context. This is really a claim that
contention leads to wasted resources. Changing context is costly as it may involve an
overhead of remembering and optimizing very different activities, not to mention the
expense of adopting different tools. If the tooling is expensive, centralized specialization
makes sense (see also section 5.13).

Example 153. When technologies are expensive and immature, it takes large wealthy
agents to afford them. They can provide the technology as a service. Later as the
technology becomes cheap, everyone can own it as a commodity and the argument for
centralization or modularity is exploded from above and below.

For example, think of the telephone. In the beginning, users had to go to a special
building to use a telephone. Later, public telephone terminals (phone boxes) were
deployed at distributed locations. Today, the technology has become so cheap that
everyone can have their own telephone in their pocket.

Is this complete decentralization of modules, or the elimination of modules be
equalizing for everyone? Clearly the answer depends on what scale we choose to look at.

340 CHAPTER 7. SCALING OF AGENTS AND THEIR PROMISES

We could argue that the modules are much smaller if everyone can have their own, or
that the module is all-encompassing since everyone has one (no barriers).

7.5.1 MODULES AS AGENTS AND SCALES

The standard ways of drawing technology systems are; the markitechture (layer cake)
and the class diagram (DAG). Neither of these captures anything like the actual human-
computer system in its environment. So how can we do better?

There are various levels of modularity.

• Non-modular monolith.

• Modular monolith.

• Service oriented.

A module may be a component or a superagent aggregation of components in a
nesting hierarchy of any depth. The promises we attribute to these may have scale
invariant characters (like service delivered or failed, usually the dynamical properties),
but the details of semantics are usually pinned to a particular scale.

7.5.2 MODULARITY, SCOPE, AND HUMAN COGNITION

It is practically an axiom of information technology that ‘modular’ design is superior if
not actually ‘the correct’ approach to system design. Books have chapters and sections,
software has procedures, functions, classes, objects, etc. Retail areas of a city categorize
shops by type of goods. It’s very common that engineers associate modularity with
specialization, but we also argue about ‘failure domains’ (see chapter 9), believing that
modules are security barriers, and that interfaces are security checkpoints. A common
feature of all the explanations of modularity is the matter of limited cognitive capacity
for human engineers, rather than the dynamical limitations of the system itself. We only
trust systems if we understand them.

Example 154 (Object Orientation and Service Architecture). Much effort went into look-
ing for evidence to support the ad hoc hypothesis that Object Oriented (OO) Program-
ming was superior to other forms of programming, like Service Oriented Architecture
(SOA). It’s one of the embarrassing episodes that reveals the immaturity of Computer
Science at millenial shift. The design principals of OO and SOA were compared in
[ABH06], using Promise Theoretic analysis. This revealed how OO focus on type seman-
tics could its doctrine down blind alleys, while in fact its methods were not significantly
more effective than other approaches. The insistence on modularity could event lead to

7.5. SYSTEM MODULARITY 341

unnecessarily fragmented program code, much harder to perceive for engineers than a
longer block of procedural code. In short, the OO hypothesis seems robustly disproven
today.

Containing scope is about managing cognitive limitations. Containment is an attempt
to limit the impact of human action, especially human errors, because we tend to employ
blunt instruments, like search and replace, to trade consistency for possible overreach.
Mistakes are made unconsciously as we flirt with the limitations of our cognition.

Even carefully trained humans may be unaware that the extent of their actions can
exceed the horizon of their intent. What starts as a reaction to an event or scenario ends
up being a chain reaction: an ‘explosion’, quite out of control. This is why (even in
futility) we try to limit scope. This is a trust issue. We cannot cope with too many details
at once, so we trust what happens inside selected black boxes, temporarily abdicating
responsibility. A system of connected parts is not isolated, by definition. We can leave
tripwires to shore up cognitive deficits, but once an error or fault has occurred, it will
almost certainly propagate, because the kinds of checks and control points that could
stop it lead to inefficiencies. No one likes to stand in security checkpoints or passport
queues, but this is what must happen to verify things we do not trust. Choosing to trust is
a policy decision to waive this verification.

Modularity pins a scale, because modules are semantic. They are discriminants. They
cannot be independent of scale, because they refer to the scale at which they interact, like
boundary conditions, spacetime dimension, size, density.

Modularity is a hallowed goal in computer science. Recently in particular, program-
ming culture has come to deride so-called monolithic.

7.5.3 THE LIMITS OF PROPAGATION

In factory manufacturing processes, components and processes are designed to be iso-
latable so that they can be manufactured according to commodity templates. This
separability leads to a mirage of independence. Isolatable should not be confused with
isolated. It is only when we connect the components together that the system begins to
work.

Unit tests are component oriented production control. Checking that resistors,
capacitors, and transistors meet their specs (plus or minus some tolerances) is only a
probable prerequisite for building the actual system of intent. We can build the composite
system to be tolerant of these variations, or brittle. In computer science, classic methods
favour the latter, basically because of the culture of misrepresenting outcomes as precise,
mutually exclusive, and deterministic. We misrepresent Boole calling them Boolean, but
poor old Boole shouldn’t get the blame, as he didn’t believe in these sharp distinctions.

342 CHAPTER 7. SCALING OF AGENTS AND THEIR PROMISES

I am not a historian, but this seemed to enter with Turing, von Neumann, etc and the
design of digital computers.

Without the existence of space and time to vary, nothing could be different anywhere
or anywhen; so, at some level (if we want to get fundamental), spacetime lies at the
bottom of everything we do. Promise theory is a kind of model of spacetime that
incorporates meaning (what’s the difference between a typewriter space and a parking
space? Well, physics can’t tell you, but computer science could. But what’s the difference
between a running on your laptop and running on the cloud? Software engineering can’t
really tell you, but physics could. So, we need a combined view, which is what promise
theory allows us to construct.

7.5.4 SEPARATION OF CONCERNS

Can we separate concerns? Individual system components may contribute in different
roles within the whole. Unless the different agents within a system are coordinated in
intent, their correlated behaviour may not have the concerted outcome an observer might
expect. In human teams, we speak of ‘loyalty to the team’ and ‘getting behind a leader’
and so on, but the same alignment of promises is needed in all components, not merely
human agents. This might seem like a trivial point, but human system designers are far
more likely to assume that non-human agents will be automatically aligned with the
system purpose, because they were made for the purpose, that they might neglect to be
certain.

Another argument for separation of concerns into discrete agents that make specific
promises is to limit semantic complexity by creating a ‘menu’ of limited choice. This
is how a restaurant limits customer expectations, and therefore makes the outcomes
repeatable and predictable. Of course, this does not lead to perfect certainty99.

• Scale of measurement

• Valuation of objects

• Separation of skills, procedures - often accompanies separation of data structures.
This is a conventional choice, not a necessity.

So let’s examine the idea that breaking this down into smallest possible units is the
answer. Well, that can’t be true, else we would all write directly to bits. There are
good reasons for defining integers and reals and characters, and structs and so on. This
simplifies logic. Structural data design is about caching or preempting computation.

At the opposite end of the extreme, one could create a generic datastructure and set
of algorithms for doing any kind of data, e.g. JSON, YAML, SQL. This separates along
spacetime lines rather than semantic lines.

7.5. SYSTEM MODULARITY 343

Class programming asks us to alter our code for each kind of template (TYPE).
Can we estimate the relative costs of separation?

• Can we count how many declarations are needed to represent a problem?

• Can we calculate how much wastage in terms of unused memory from fixed size
structs?

• How many additional header files do we need to include (C library is a lump, but
has many header files that add semantic complexity)

• What is the search cost of finding the right header file to include? What about
dependencies between header files and libraries?

Not only separation of function, but about how it is packaged together with other
things. I the C library, many functions are independent, just bundled. But we still need to
include the whole thing, unless we’ve gone all unikernel.

7.5.5 HUMAN-COMPUTER SYSTEMS

Our ideas are coloured by what we hope for or expect of systems, not about what they
actually promise. Most of these expectations are based on trust, and trust is rooted in our
human capacity to assess relationships.

We judge the trustworthiness of all things by which tribe they belong to, in our
minds; because it is the promises we perceive or believe in rather than the promises an
agent actually makes and keeps. This capacity for humans to distort expectations is a
serious issue may lead to serious functional and operational errors.

Example 155. We might have preferences for certain programming languages, certain
development frameworks, even certain programming styles, pair programming, teamwork,
lean, agile, and every cliche we’ve every heard. But how many of these actually make
clear promises, with measurable effects? CD is one example that is relatively clear..

We can learn something about the scaling of systemic behaviours from studies in
other areas. In [Bur13a], I likened modern computers to material science. I still believe
that this is a fair analogy,

If one considers technology in imagined isolation, then differences between modular
compositions and black box monolithic designs are only slight, and are difficult to justify
rationally. However, if we treat the entire interleaved human-computer system[Bur04a,
BB14a] as a system of agents, with different properties and roles, then there is reason
to see a clear distinction between what are referred to as monolithic and microservice
architectures. The number of interactions points is far greater when one has transparent
access the components of the system as a ‘white box’.

344 CHAPTER 7. SCALING OF AGENTS AND THEIR PROMISES

7.5.6 SYSTEM EQUIVALENCE: DYNAMIC AND SEMANTIC

INVARIANCE

We must address system scaling from two perspectives: dynamical and semantic. Rather
than beginning with change, it is simpler to ask what it means to maintain properties at
the same level: invariance of characteristics.

Dynamical invariance, or how quantitative behavioural performance remains the
same as certain parameters change, can be applied to study the scaling behaviour of sepa-
rate components, but because we know that the sum of a collection of components makes
promises above and beyond the sum of the collection of promises of its components, we
cannot be completely certain that invariance of components implies invariance of the
collective system. Semantic invariance, or how functionality remains the same, is not
obviously related to the size of a system. Some functions pin a system to a particular
scale. For example, if we double the size of a spanner, without doubling the size of a
nut or bolt, it loses its ability to perform the required function. If a talking clock, or
information agent speaks at twice the speed, humans might not be able to understand it
anymore. So there are natural functional limitations to scaling.

The term dynamical similarity (or similitude, in Newton’s language) refers to the
invariance of certain dynamical or behavioural system properties as others are changed.
Dynamical similarity is a science closely connected with dimensional analysis[Bur13a].
It allows us to build scale models of systems, such as ships or aircraft to study in wind
tunnels or wave machines, where the testing of a full size system would impractical in
the initial stages. Dynamical scaling is particularly important during testing, because
we are often interested in making a system larger to cope with greater demand, while
leaving the functionality provided unchanged. This is not always possible.

Some confusion arises around describing architectures and scales, as industry prac-
tices tend to focus on specific parts of systems when they talk about ‘the system’.
Software developers and programmers P make promises to users U , through the results
of their promises, but do not usually interact with the users directly, so users are easily
forgotten. They do not interact with operations engineers directly, so operations engineers
are easily forgotten. However, this does not mean that they are not part of ‘the system’
proper. Indeed, designers, developers, and architects are usually focused on semantic
issues, while operational engineers, builders, and maintenance engineers are focused on
the performance.

In order to ‘scale up’ a system to cope with higher demand, we might have to change
certain components to scale its promises faithfully, e.g. replace humans with machines
because humans cannot work fast enough, or employ robots because humans cannot
reach the top shelf. This might be a naive view of scaling: just because our old idea

7.5. SYSTEM MODULARITY 345

does not work anymore at larger scale, does not mean to say that there is not some other
arrangement that could keep the same agents working in a more efficient or scalable
manner, by a different process, with different costs and different tradeoffs. An alternative
design might not be dynamically similar to the original one, so we should not expect it to
have precisely similar behaviour, even if the user-facing promises are superficially the
same. An exterior agent’s assessment of the reliability of the promise keeping might be
quite different, either qualitatively (semantically) or quantitatively (dynamically). Scaling
a system dynamically and semantically is a subtle issue. It is not simply a question of
replacing components with stronger or faster components.

7.5.7 MONOLITHIC AND CENTRALIZED SYSTEMS

Monolithic designs are usually fully integrated, imperative, impositional processes, that
are driven by some input to produce some output is a quasi-deterministic fashion. The
factory production line is the classic example of this: factories were designed to work
like steam engines, in which humans were just commodity parts trained to keep simple-
minded promises, without reference to the operational infrastructure or the end-user
interaction.

Figure 7.5: Monoliths, as defined, generally have interior modularity. A so-called centralized
monolithic design has separation of concerns along stakeholder roles, e.g. developer, code, and
user. The optimization is a semantic one, contrasted with a microservice split that keeps module
stakeholders closer together at the cost of dynamical inefficiency.

Figure 7.5 shows a typical arrangement of the promises associated with a monolithic
system. Designers, developers or programmers P who compose the arrangement of parts
and promises promise to produce a set of modules M that work together. In the diagram,

346 CHAPTER 7. SCALING OF AGENTS AND THEIR PROMISES

the ring around the developers P implies that they work as a group, making cooperative
promises that coordinate their behaviour. They make the same collective promises to
the system modules. Similarly, the superagent boundary around the modules implies a
set of interior promises that coordinate the behaviour of the modules. The collection of
modules and their interior promises make a number of exterior promises to the users
U . System testing has been separated here, so that test agents T interact only with the
modules they test, not with developers or users. This picture is quite typical of a software
production pipeline. It also represents the implementation process of many other kinds
of system, whether cars, buildings, or food produce.

Developers usually see the system as the collection of M and tests T . Users see
the system as the promises made by M , and sometimes the promises made by P about
updates and repairs. Ironically, few of the agents P orU within the system see themselves
as being part of the system, yet their promises and behaviours are crucial to understanding
its performance. The structure of modules within {M} must have an influence on the
semantics and dynamics of the promises the collective set can keep. Even a monolithic
integrated design cannot easily be made without separating semantic concerns into
understandable modules. Modularity is a semantic issue, even a human issue (since
semantics are for humans P and sometimes U)100.

Modularity addresses the practical concerns of limiting the number of promises
made per module. This effectively limits the size and complexity of each component too,
making it easier for engineers to understand each part. However, it breaks up the total
narrative of the system into smaller pieces that are then harder to reconstruct into a total
narrative. The burden on programmers is now to understand the whole design. See figure
7.6. The hypothesis of modularity is that different developers can work on different
modules, and that the whole story must then work together analogously to Adam Smith’s
‘invisible hand’. There is an unspoken presumption that either a) a design specification
exists in enough detail to detail this composition of parts, or b) programmers collaborate
and communicate sufficiently to cause this to emerge along side tests. In this story, the
promises made to the end user cannot be fully understood without an appreciation of
complete workflows throughout the system, because workflow is impositional, triggered
by events and inputs from the top level. The storyline or narrative of the system is thus
rigid and brittle in the sense that every part must move immediately in response to the
others. There is no asynchronicity or obvious buffering.

7.5.8 SERVICE ORIENTED OR DECENTRALIZED SYSTEMS

What makes distributed service oriented systems different from monolithic systems?
Figure 7.6 has no implied scale, it could refer equally well to either. It represents a
necessary arrangement of interior promises between modules in order to lead to the

7.5. SYSTEM MODULARITY 347

Figure 7.6: Where we place boundaries may be arbitrary, and it might depend on the promises
that can be kept on either side of the boundary. A modular design may have structure that is
preferred, e.g. a particular hierarchy, in order to scale the activities of the different modules.
The promise arrangements are probably driven by the desire to avoid duplication of intentional
behaviour (what the software industry calls ‘code’).

exterior promises to end users, who might themselves be localized or distributed. Should
we understand M as a centralized entity, where the superagent boundary is localized and
physical, or as a decentralized set of modules, where the superagent boundary is abstract
and fluid? The same question can be posed for the users. Are they localized or scattered?

Designers and engineers often focus on separation of concerns through modularity as
being the key difference between service oriented and monolithic. However, this does not
seem to stand up to examination, given that equal modularity may be present in monolithic
systems discussed above. There is plenty of modularity in so-called monolithic designs,
especially in object oriented and functional code forms. If we imagine a monolithic
system, like a collection of parts on the table in front of us, and increase the scale so that
the parts are no longer on a table, but spread across the globe, with no other changes,
then we would call the system distributed. The number of modules and the promises
could be exactly the same. Clearly modularity can exist at any scale, so there must be
more to service orientation than mere prejudice about distribution.

What may different about a service oriented system is the asynchronicity and tol-
erance of the interactions between the modules. Recall that monolithic systems are
typically rigid and reactive, imitating deterministic responses like the shafts and gears of
a steam engine. A service oriented approach relaxes this rigidity by queuing messages
between modules (rather than forcing with rigid drive shafts). Whereas a monolithic
system has only a single timescale, this service pattern results in multiple timescales in
separate timelines, depending on the specific interaction patterns. The service systems
may still push or impose their requests typically, but they respond asynchronously, with
their own timelines.

348 CHAPTER 7. SCALING OF AGENTS AND THEIR PROMISES

Service orientation need not change the basic functional design of promises, modular
classes or function calls significantly. However, it places bilateral queues, or asyn-
chronous pipelines, in between the functions, reducing the brittleness of response. This
has two effects.

• It increases the options for robustness, or fault tolerance, by decoupling processing
schedules, and allowing for component redundancy or realtime replacement of
components. Thus, if one part of a service oriented system doesn’t respond, it
might be possible to find an alternative service provider to keep the promise.
There is an increased cost associated with this decoupling.

• Causal weak coupling introduces multiple timescales, rather than a single timescale
throttled by its weakest link, because each server can run its own affairs without
promising to be a slave to exterior impositions; thus, the buffering separation
increases the uncertainty of response time, and computation time.

Service oriented systems thus trade rigidity and temporal predictability for robustness
and flexibility with greater uncertainty and runtime cost. That cost might be worth it,
however, if the risk of a complete rigid failure propagation brings down the complete
system for an extended time.

7.5.9 THE MICROSERVICE HYPOTHESIS

In software architectures, a design pattern known as microservices has begun to gather
attention, since around 2015, due to its association with continuous delivery methods,
and scaling of whole software lifecycle at some major companies, most notably Netflix.

Microservices are more than just service oriented systems with many small services:
while monolithic and service oriented designs patterns talk only about the machinery
of software eschewing the user and the operational infrastructure, microservice design
integrates the notion of continuity between developer, operational infrastructure, and
end-user, as a closed loop human-computer system. Microservices might not be the best
name for this design pattern (the name indicates that its inventors didn’t realize the extent
of what they were really doing, being focused on the programming rather than the whole
system). The pattern suggests a more holistic integration of all the system stakeholders at
the microscopic system scale: programmers P , tests T , and users U , within a common
design.

7.5. SYSTEM MODULARITY 349

Figure 7.7: A so-called microservice architecture is not so much about centralization or de-
centralization as it is about mixing concerns. Different lifecycle roles are insourced. This
seeks dynamical integration of all processes leading to the keeping of a functional promise: the
interaction loop between promiser and promisee is minimized.

Comment 14. Limiting the number of programmers working together, and limiting the
amount of code they work on recognizes the cognitive limitations of programmers P ,
which is an important step in taking on the practical limitations of the human components
in the system, particularly because software lifecycles are must faster than other kinds of
societal systems. Updated versions are expected, because requirements are in rapid flux,
while profit margins are low, meaning that focus on reliability is tackled by ‘quick fix’
evolutionary adaptation rather than pre-tested perfection.

Figure 7.7 shows how one might redraw the monolithic system in figure 7.5 as a
microservice design. Once again, the extent to which we can call this design centralized
or decentralized is a about the scale we imagine for the diagram. The ‘micro’ in
microservices refers to semantic or functional scale rather than physical scale. More
importantly, the major superagent groups have been pulled apart and reintegrated in
different constellations, emphasizing the strengths of certain interactions we would like
to be tightly coupled. Each module is now closer to its own tests, and its own private
developers. Microservice advocates speak of team programming.

• Programmers are tightly coupled to their modules and their user promises, leading
to a close and familiar relationship that builds trust.

• A change in one location has the appearance of being more localized, so one
might hope that failures could be contained within the microclusters rather than
propagating throughout the whole. This hope is far from clear however. As we

350 CHAPTER 7. SCALING OF AGENTS AND THEIR PROMISES

know from the Byzantine influence pathways described in section 6.4 decoupling
a system is much more complicated than focusing on a diagram of partial promises.
Figure 7.8 shows how a common dependence on some third party exterior service,
such as a directory service (DNS), a host, or the electrical power supply, can still
allow a single module to bring down the rest by breaches of containment with
respect to promises only represented implicitly.

Figure 7.8: The apparent decoupling of modules in a microservice architecture is partly illusory.
There are implicit promises that couple them indirectly, such as mutual reliance on directory
services, software containers, hosting platforms, power supplies, and so on.

We cannot easily make claims about better containment of faults in a microservice
architecture, nor can we claim that they scale better. What is most important, in my
view, is that it is a rare example of a design that respects the human agents within the
system. The respect for cognitive limitations, and close relationships between designer,
user, and module encourages trust, and closer familiarity with all parties. This is so
fundamental to the human societal modus operandi. Moreover, for a strategy of rapid
repair above pre-tested perfection, it does seem well suited, as easy familiarity with all
stakeholders makes communication and response potentially more efficient. The key
problem with monolithic designs is the sheer weight of knowledge required to understand
the cooperation and coordination of parts.

What is notably missing from the microservice promise sketch is the cooperative

7.6. DISTRIBUTION OF STATE IN PROCESSES 351

promises between the developers. These have been traded out explicitly, in order to save
on cognitive burden, but this must itself have a cost that remains to be evaluated. If the
groups are truly independent, how do they know their resulting system will function in
total? If we discount an Adam Smith or Stephen Wolfram invisible hand of emergent
luck, we still need to engineer the collective promises between the teams. is a test for the
entire system (what used to be the exterior promises of M in figure 7.5).

It could be that this method of stakeholder reintegration is well suited only to
particular kinds of system, that are already loosely coupled enough (or well understood
enough) to allow the holistic aspect of the system to be taken for granted. This remains
for future studies to uncover.

7.5.10 SUMMARY: WHAT DOES MODULARITY REALLY MEAN?

The chief conclusion of applying promise theory to systems is that many of our ideas and
complaints about systems are particular figments of a particular scale. The table below
compares corresponding concepts for bottom-up scaling.

MACROSCOPIC, SCALED, HIGH LEVEL MICROSCOPIC, LOW LEVEL

Superagent Agent
Deterministic Non-deterministic and retry until success
Synchronous Asynchronous, retry until success or give up
Failure in exterior service promise (+) Failure in dependent interior promises (-)
Redundant backup promise (+) Promise to acquire multiple dependees (-)
(Un)Responsive on a long timescale (Un)Responsive on a short timescale

Comment 15. Modules separate interior from exterior promises, but do not necessar-
ily halt the propagation of unwanted influence. By forcing influence through certain
checkpoints, one might verify and potentially filter the passage of influence over each
selectively matched ± promise channel, at the expense of creating a deliberate serial
bottleneck. Parallelizing interfaces such adds the cost of calibrating and coordinating
consistency. If the promises made by the modules are not constant over the timescale of
the interactions, the presumed boundary of the module (a superagent region of constant
promises) is inconsistent, and we cannot claim containment of dynamics or semantics:
then the claims of rigorous modularity are rendered false.

7.6 DISTRIBUTION OF STATE IN PROCESSES

Processes are networks of agents that propagate states from location to location, whether
on the interior or on the exterior of a bounary. The location of those states might not be

352 CHAPTER 7. SCALING OF AGENTS AND THEIR PROMISES

important on a large enough scale, far enough removed from the details of the process,
but—on the interaction scale—engineers are often deeply concerned about how state is
distributed. This has been the subject of some controversy in software engineering, for
instance[BFKT, Wig17]. This section is based on the analysis in [Bur19b].

7.6.1 INFORMAL IDEAS ABOUT STATE AND CAUSALITY

The meaning of state can be pursued on many levels. Suffice it to say that no decision
process or computation can proceed without an interior dependence on some kind of
state[LP97]. State basically refers to any information that characterizes a process, over
some interior timescale, and may be stored anywhere within a hierarchy of agents and
subagents that characterize the process. For example, a clock is a process that maintains
an interior state counter.

The state concept therefore spans the full pantheon of memory what is stored in the
registers of chips, to configuration files, source code, or to long term databases—but no
two authors will necessarily agree on which states are the relevant ones to their arguments,
or why they choose to treat one kind of state differently to another.

7.6.2 THE ROLE OF SCALE IN LOCALIZATION

Scale plays a role in localizing state. Data may be localized to a geographical region,
a datacentre, a host, a container, a function, or even a register. Some authors play the
game of offloading state from one location to another in order to claim statelessness; but
that isn’t a scale invariant characteristic. In a virtualized world of cloud computing, the
meaning of being ‘within’ a process, entity, or agent is ambiguous—and, across the many
articles written about statelessness, there is little agreement about what storage level
one should be talking about. One author may call a process ‘stateless’ or ‘immutable’,
meaning that all decisions except unavoidable input-output should be based on state that
is frozen and held invariant before the specific execution of the process (see figure 7.9).
The scale-dependence of state management, over space and time, was also the origin of
the so-called ‘configuration management wars’[Bur04c, TH98, Tra02, Kan03, CHIK03].

Another may consider these prior frozen configuration choices to belong to a phase of
the processing itself, on a larger timescale, and the lifetime of a single process is further
part of a longer meta-process, involving many clients, in which continuous delivery of
upgrades to changes of dependencies are interleaved with the keeping of client promises.
Authors thus cherry pick the meaning of state to suit their arguments.

It’s especially important to revisit the topic of state in cloud computing, where
some definitions concerning locality need to be reconsidered in a scale invariant way;
cloud processes often scale elastically to some extent. Moreover, virtualization adds

7.6. DISTRIBUTION OF STATE IN PROCESSES 353

end

runtime state

input/output

code

configuration

start

Figure 7.9: Processes exhibit state on all manner of timescales. Some state is frozen into initial
state of the packaging, some is allowed to change. The main question is, over what timescale (or
part of the process) does the state remain invariant?

layers to its meaning: from source code, configuration, container packaging, runtime
environment, virtual machine, physical host, etc. Development is constantly jumping
between the concerns of different levels: from programming, to continuous delivery,
‘DevOps’, configuration management, serverless, etc.

Various perspectives on these issues have been expressed over the years[SS97,
Moo02, Hel07]. The Twelve Factor App[Wig17] is a widely referred to best practice
manifesto, which advocates that developers should execute applications as ‘one or more
stateless processes’, and that such apps ought to have a ‘share nothing’ architecture to
avoid contention. Recommendations then go on to explain how necessary state can still
be kept, after all, by employing ‘backing services’, and how caching of certain objects is
‘allowed’. There is a suggestion in these principles of favouring transactional rather than
continuous processing, for a particular scale and meaning of ‘transaction’. So-called
‘sticky sessions’ that tie multiple web transactions to a particular server context and
location are explicitly rejected in [Wig17]. However, if one takes an extended session to
mean a ‘complete’ dialogue over a business process, including reliable TCP and TLS
negotiations, etc, then it’s no longer clear that ‘stateless’, as implied, has an unambiguous
meaning.

Some platforms, like Kubernetes[Bur15b], have been designed with a notion of
statelessness in mind, but later extended their models to include state. This suggests that
state itself is not the real problem the guidelines are clawing at, but that the rejection of
what is perceived as stateful behaviour is really an attempt to address concerns about
localization (scale), speed (timescales), and fault tolerance (spread prevention). All of

354 CHAPTER 7. SCALING OF AGENTS AND THEIR PROMISES

this needs to be scaled to cope with the extended cloud of ubiquitous embedded devices.

7.6.3 POPULAR IDEAS ABOUT STATELESSNESS

A quick online search and query reveals a number of definitions about statelessness,
which point a finger at state but discuss reliability. These definitions are generally tied to
a single case, and generalize only by implication101. For example:

‘When an application is stateless, the server does not store any state about the
client session. Instead, the session data is stored on the client and passed to the
server as needed.’

This definition refers to client and server roles in a two-agent interaction. Similarly:

‘A stateful service keeps state ‘between the connections’ or session interactions,
whereas a stateless service does not’

In this case ‘between the connections’ is intended to mean that access to a service
is transactional and that some data persist between independent transactions when a
process is stateful. The preoccupation with connection indicates the author assumes a
client-server style application. Wikipedia talks only about stateless applications, which it
defines to mean:

‘that no session information is retained by the receiver’

The substitution of ‘connections’ for ‘transaction’ belies a focus on client-server comput-
ing at a particular scale, and the assumption that single exchanges are safely invariant
while longer exchanges are not. That would depend on the extent to which the compo-
sition of exchanges were ‘locked’ (e.g. mutex locks) and the data could go missing in
case of interruption. The excerpt also distinguishes the roles of sender and receiver as
part of the concept, as for a protocol, implying a directional arrow from client to server.
In general developers tend to focus their thinking on the preferred scale of the subtask
they are working on, even as ideas about DevOps and Continuous Delivery ask them to
rethink those ideas on a larger scale, for development continuity.

‘Think of stateless as if a service is a hardware chip. All computation needs short
term storage like registers and stack and maybe heap. What happens when we lose
power? A service that calculates some value and returns a result can be considered
purely stateless. Purely stateful would be a service that maintains state like a
game server tracking scores and players in a game world.’

In this view, scale plays a key role. A short lifetime for data (as measured in the proper
time of the process, rather than wall-clock time) means stateless and persistent and

7.6. DISTRIBUTION OF STATE IN PROCESSES 355

reusable means stateful. As I’ll show later, this view of stateless approximates the idea of
memoryless systems (section 7.6.6), and very long term data that are ‘invariant’ over the
effective lifetime of the process can be separated out and treated differently (see section
7.7.5). A refinement of this:

‘Stateful means written to localhost
Semi-stateful means 1:1 write over the network)
Semi-stateless (n+1 networks relay eventual write
Stateless means held in memory until dereferenced.’

The scale dependence becomes more evident here. The reference to ‘in memory’ suggests
a short lived once-only usage of state, versus persistent storage again. The reference to
networking is less clear: which network are we referring to? The interior host bus is
a network alongside the LAN/WAN. In the past, the preference for the processor bus
was about relative speeds: interior communication was much faster than LAN/WAN
communication. Today, it is impossible to know whether interior host bus or exterior
LAN/WAN connection will be faster. The goal of avoiding an architecture that relies
on a network connection, to disk storage, or to a remote service, therfore doesn’t stand
scrutiny in the cloud era, as even an in-memory process memory might be paged out to
disk, or retained in a hash table for extended usage. With this in mind, where exactly is
the imagined line between runtime state and persistent state in the architecture?

7.6.4 PROCESS HISTORY, ENTROPY, AND TIMESCALES

Lamport was the probably the first author to appreciate the relativity of time in computer
science, as a succession of causally ordered events[Lam78]. The transmission of mes-
sages, carrying causal influence plays a central role in understanding what happens in
computation, both locally and in a distributed system. Processes that depend only on a
current local register set, i.e. not on the recent past or the extended history of all such
sets are called path independent or memoryless (see appendix)102. This concept will be
most useful to explaining what authors are trying to express in ‘stateless’.

Predictive systems can never be memoryless, for instance, because they explicitly
use past experiences—not only current state—to predict the near future, involving a
computation over multiple samples collected over multiple proper times103. Weather
modelling is the archetypal case in point. Small differences in the data sets can lead to
large changes in the predictions. The dependence of data processing on history is utterly
susceptible to scaling arguments.

It’s hard to generalize about the role of causality, because it is so dependent on
the nature of interactions in a system, but I need to make a few comments on this
because the integrity of data sources has been challenged in some commentaries, e.g.

356 CHAPTER 7. SCALING OF AGENTS AND THEIR PROMISES

[Hel16, Bon19]. Some authors have argued that we should never throw away data because
it might be needed later to ‘recover’ from some fault. Apart from being unsustainable104,
the premise of this argument is wrong from a causal perspective; indeed, systems
must eventually forget their past over some timescale. The question, again, reduces
to understanding the relevant timescales. Sometimes regulatory bodies insist on data
retention, for legal reasons, up to some statute of limitations. This can be factored into
the policy and separated from the data that need to accessed dynamically at runtime,
becoming effectively a part of a different application.

Does it matter whether we take data transaction by transaction, or in bulk as a sum
of all transactions (such as an aggregate database or a file)? The process by which
data arrived in the past is only relevant if it affects the promises it makes at the time
of usage by another agent. For some authors, a ‘database’ is merely a cache for a long
linear process of accretion, i.e. that the current state of a database is the sum of all past
facts transacted at its entry point[Hel16, Bon19]. This is the ‘calculus’ view of data: by
integrating differential elements from some beginning to some end one calculates the
answer transaction by transaction.

‘From this perspective, the contents of the database hold a caching of the latest
record values in the logs. The truth is the log. The database is a cache of a subset
of the log. That cached subset happens to be the latest value of each record and
index value from the log.’[Hel16]

This quote, summarizes a linear view of data in which the current state is merely an
arbitrary point is a deterministic trajectory—a classic Turing machine argument. In this
view, all the causal information lies in the past. Neither of these assumptions generalizes
to distributed cloud computing, as I’ll show in section 5.11. The argument goes: the
present is a function that does not alter the past (which is true). It’s then assumed that the
function is a linear function, formed from a sequence of ‘deltas’ or state changes that can
be stored in a log and added together to yield the current state. The latter is only true for
reversible linearized (memoryless) processes, localized to a single point of entry. Popular
techniques of this include the use of ‘actors’, ‘pure functions’, and even mutex locks,
with associated costs (i.e. without interior reads or writes to exterior data sources)105.

Example 156 (Functional programming). The functional programming manifesto claims
that programs will be deterministic and reproducible if functions are defined as following
the following axioms: (i) if they are ‘total functions’, in the mathematical sense (i.e.
they return an output for every input), ii) if they are deterministic, i.e. they return the
same output for the same input (which assumes they do not implicitly rely on variant
configuration, database lookups, and are immune to ‘noise’ over all timescales involved
in the process), and iii) if they alter no exterior state other than computing their promised

7.6. DISTRIBUTION OF STATE IN PROCESSES 357

output. The composition of such objects would certainly be deterministic, but the axioms
are often violated in practice, e.g. by system faults and by inattention to environmental
noise. The naive view is that programs are perfectly isolated and that, if programmers
do nothing, nothing will happen. In practice, there is no such isolation context for
distributed systems, and it’s up to programmers to explicitly perform noise correction
fast enough to maintain these axioms.

It feeds the non-relativistic view that one can absolutely capture ‘facts’ about the
source of information, which can then be preserved and treated as immutable. The error
in this argument is that, as soon as a sample of data has been transported into storage, it
is no longer the source view: its the observer view of the data store. One would have to
transport all relevant context into the data snapshot. This may be a simple discriminator,
but it’s still an arbitrary view that doesn’t remove the uncertainties and doesn’t warrant
its preservation without an understanding of its significance.

In order to recover a snapshot of state, it’s argued that one should never delete any
of the contributing facts in the logs. After all, in a linear system, the current snapshot is
merely the balance of all previous transactions within the system; but this is simplistic.
In a non-linear system, there is no such separation of process timescales, and we would
still need the full past history including all leakages of noise and interleaved processes
to understand the present in general, because computations are not always linearizable
(see section 5.10.2). The final outcome becomes strongly dependent on the particular
moment at which data were collected (a kind of ‘butterfly effect’)—so both the current
snapshot of the database contains information that is not in the journal106.

Even if our system is linear, and we keep all data in an eternal timeseries, searching
backwards takes time, so we index data, but to do so imposes a rising cost (in energy and
labelling), possibly identifying unique instances, by GUID or quasi-universal timestamps,
and so on. There is a reason we aggregate data and use caches and latest summaries:
to localize relevant context, and separate it from other data whose meaning has gone
into the mix of entropy. What every system designer needs to consider carefully is the
extent to which we flatten a dynamical process into a timeless, static database model.
It’s okay to do so as long as you accept the loss of a relative temporal reference, and
the accumulation of entropy. It does not necessarily imply that the past is lost. Process
time information is lost to entropy by design in most systems—and this is not wrong;
relational databases focus entirely on static semantics of data, not on process histories.
We now have a pantheon of time-series databases that focus entirely on brute force
history, without attention to ‘scaled semantics’. By this, I mean that timeseries typically
involve many pattern scales, such as by hour, by week, by month, etc, and that these are
treated as issues for post hoc analysis rather than being built into the data model in an
efficient manner. There is a policy choice—a choice of semantics that can’t be stipulated

358 CHAPTER 7. SCALING OF AGENTS AND THEIR PROMISES

in general. If we want to get systems to behave ‘properly’ as well as efficiently, we need
to select an appropriate causal policy for what is ‘proper’, and be aware that these choices
are inherently scale dependent in both space and time.

7.6.5 THE POINT OF USAGE

I want to make one more point about the importance of the recipient in the determination
of so-called facts. Facts are a kind of promise, but it takes two agents and two promises
to pass on facts: a sender and a receiver. Past facts are therefore not really as immutable
as is often claimed. There is the original source value:

S
+V−−→ R (7.5)

and there is the moment at which the value is used:

R
−V−−→ S. (7.6)

It is this latter promise that actually passes on the information and creates an event[Bur19a].
We ask: can the promises be kept invariantly? The conditions for agent R might have
changed, between the keeping of these two promises, even if S is somehow etched in
stone. Promise Theory predicts that it’s not the time of origin of the data that matters
to its causal influence, but rather the moment at which the data are accepted into the
timeline of the next agent—just as in an electric circuit with feedback, which is the
inspiration for control theory.

If one dabbles in synchronous versus asynchronous processing, this may matter:
if the timescale over which the behaviour of an agent changes is comparable to the
timescale over which you sample data, the data basically become random variables, by
the receiver’s hand (not the source’s). Sufficient immutability can be assured in a few
ways: e.g. by assembling the states one promises to depend on before processing, to
decouple independent processes. That way the processes can continue at their own rate
and still avoid such issues107. This is what functions do in programming: automatic
variables (by value) copy the value into private workspace.

There are two approaches: trusting the source and trusting the receiver.

• If one trusts the promise of invariance (immutability) of the source S (as one
does in timeseries databases, as a trusted second hand source), then keeping state
there becomes a policy choice and one reads information directly from that source.
This second hand information replaces the source of ‘truth’, and is not the same.
This assumes that there is also an invariant key for looking up the data, which is
understood by both parties and that relationship is also constant.

7.6. DISTRIBUTION OF STATE IN PROCESSES 359

• If one trusts the receiver to sample and keep the information invariant (as one
does in using private local variables in programming, and in ‘immutable images’
in cloud computing) then policy abhors reading any new information from outside
the boundary of containment. Derivative processes, like that of R, which depend
on data from a source S, thus capture all their dependencies before beginning to
keep any subsequent promises—freezing them and rendering them immutable as
a matter of policy.

It seems, in neither case, is there any guarantee of the invariance of the data, or the ability
to replay the same interactions multiple times, as that is entirely a policy decision for R.
In general data come from many different sources, with conditions that are quite unequal,
and merely sampling these into a trusted repository does not alter that. In fact it adds a
second layer of trust, by the Intermediate Agent Law (see 7.2.2 of [BB14a]).

What matters is not whether we cache data in a database, or keep each update in
a journal. What matters is whether the data can be relied upon not to change over the
course of trying to use them. This often assumes implicitly that there is a single correct
dependency value for each moment in time, with an ability to ‘roll back’, yet this notion
has been debunked many times[BC11].

Coarse graining time and separating interior from exterior time: this is what we do
in functional programming. It introduces the full range of process causal viewpoints.

‘Mutable state needs to be contained.’

There is a causal twist here, in the form of Nyquist’s sampling law, and Shannon’s er-
ror correction law[SW49, CT91] (for a review, see [Bur19c]). If a system has knowledge
of a correct state (where correct is promised as a matter of policy), then no unintended
deviations from that state will be measured by an observer if restored quickly enough.
We take for granted that such feedback processes are on-going at a low level of memory
in all our technology at all times. The same principles may also be applied at a higher
level, as maintenance procedures108. If problems are fixed before a fault can be sampled
downstream, there will be no propagation—and the system will be invariant by virtue
of dynamic equilibrium[Bur13a]. This is how data consensus works and memory error
correction work, for instance.

The Twelve Factor App manifesto claims to avoid software erosion, which implies
that there is should be a maintenance process at work.

In the various cloud manifestos, there has been a focus on reorganizing the main-
tenance process so that dependent information is embedded and assumed invariant (as
in a transaction), by freezing ‘golden images’. If errors are detected post hoc, due to
state drift, one deletes the process, replacing it with a fresh copy (see the car example
below), which is accepted as a matter of policy. Corrective actions post hoc (instead of

360 CHAPTER 7. SCALING OF AGENTS AND THEIR PROMISES

preventative actions) then require some kind of ‘rollback’ on the scale of the promised
transaction. Without a preventative error correction underlying the use of the image,
a post hoc correction is needed, but if the error has been observed by any process, its
influence will already be too late. In a kernel or database monitor, keeping validating
transactions is relatively easy (given deep memory error correction), but as the scale of
interactions grows, isolation becomes less likely.

7.6.6 THE IMPORTANCE OF FORGETTING AND

INDISTINGUISHABILITY

Dependency on process history adds baggage (process mass[Bur19c]), tangling up
changes in dependencies with data going back in time. Memoryless processes appear
‘agile’ or ‘cheap’ to run—as far as change, creation, deletion, replacement, etc, are
concerned—because they have little baggage, i.e. fewer dependencies. This allows
changes to be made to them easily. Of course, that should not be taken to mean that all
changes will be simply localized, with no effect on other processes.

Keeping processes agile seems to be a way to address reproducibility. Reproducibility
has nothing to do with computation, per se. It has to do with trust. We build businesses
and institutions on reproducibility, because it allows anyone to verify a result and repair
possible errors, when something is judged to go wrong. At such a time, the idea is that
we can forget a state of the system we consider erroneous, and replace it with a ‘proper’
policy-acceptable one.

If a process is interrupted, and some of the contributing past information is lost, we
believe that this must compromise the reproducibility of the outcome. This is not neces-
sarily true, as explained below, but let’s continue. The result is that we make transactions
that carry all relevant data bundled with them, and keep a copy until the transaction has
successfully been prosecuted. If the transaction should fail to be confirmed, we can
repeat it. The implicit assumption here is that there will be no effect on either agent (the
receiver or the source) unless the transaction completes successfully. Repetition should
also be ‘safe’, i.e. convergent to a definite outcome, not just a ‘first come first serve’
(FCFS) in a random walk.

If there are errors on multiple scales, we may have to go back across cumulative
transactions on multiple scales to repeat the transaction. So, if one builds systems at
scale on the basis of transactional determinism, we are doomed to keeping ever growing
amounts of data, up to the size of the largest transaction. The cost grows in relation to
history (time) not in relation to scale of parallel instances (space).

If any data are left ‘floating in limbo’, in extended ‘stateful’ sessions, it is argued
that those states could be lost and data may go missing. This is not about statefulness,

7.6. DISTRIBUTION OF STATE IN PROCESSES 361

but about when the data are discarded from the source. This seems to return us to a
justification for the idea of never throwing away any data, discussed above, but this is
not so. We simply need to preserve data until confirmation of receipt—as in reliable
transfer protocols. Next we need to define the scale of that remark: on what process scale
do we need confirmation of ‘ok to delete’? If we treat transactions as packet by packet
over a session, then a process crash could lose data. But if we treat completion as the
confirmation of a promise kept that depends on the data, then scaled transactions can be
constructed using locks.

Safety under repetition is the much neglected method of assuring certainty in systems.
Idempotence is sometimes mentioned, but most authors think this means remembering
which transactions are completed on a FCFS basis without checking for contradictions.

Example 157. Numbering of transactions, like in TCP, is one way to maintain coherence
of order, but this is not always meaningful without ad hoc assumptions. In a data pipeline,
for example, you can number items, but the numbers assume that both ends have a clear
sense of how the arrival of data will take place in order to combine multiple sources
meaningfully. So, while a 1:N transport can be regularized by partial ordering, N:1
aggregation cannot. Numbering promises process as ‘intentional’ events, but random
arrivals have no such coherence, making the processes non-reproducible unless the entire
history is captured and used as the future source of truth. That assumed truth may not
be a faithful representation of the original source processes. As always, the receiver
determines the semantics of data.

Fixed point convergence is the more economical key to reproducibility, because a
fixed point is the only certain way of guiding a system with random behaviour to a known
state. It requires knowledge of a future state to which the system is headed. Absolute
invariant future state is simple and cheap to manage. Relative future state is fragile and
susceptible to faults and cumulative errors of execution. In data pipelines, for instance,
this needs to be treated very carefully (see our Koalja work, for instance[BP19]).

Example 158 (State of a car). If you crash your car, the car will be lost if it is a unique,
one-of-a-kind design. But if the memory of its design (its ideal state, minus age and
mileage decrepitation) is kept elsewhere, as a separate manufacturing process, then the
car can be replaced—but not its runtime state, i.e. the precise details of what it was
doing at the time of the crash (including its passenger inventory). If the car client is not
fussy, it may overlook a few details and be satisfied with an equivalent.

Some of the state you are happy to forget, some you are attached to. There is no fact
present in the car that can tell you how to discriminate this line. We don’t always need to
remember the past, sometimes only a single future ‘desired’ state. Indeed, it’s desirable
to forget the past as it’s just in the way—and sends you a regular bill.

362 CHAPTER 7. SCALING OF AGENTS AND THEIR PROMISES

Example 159. A statute of limitations, or causality horizon. If you build on advanced
boundary conditions, you need no memory. Memoryless processes have a very short
horizon. A function is basically a mutex lock around a private cache of function argument
values. The completion of the function is a tick of its clock at the scale of functions, and
therefore a pure function is memoryless at that scale.

We may conclude that the implicit accusation in favour of ‘statelessness’ is that one
should push responsibility for preserving state backwards along a causal chain (into
the past): onto the sources rather than the receivers. But which of these agents is the
most fragile? Why should events from the past be more important or ‘correct’ than what
happens in the future? Many will answer that ‘the past determines the future’, but this
naive determinism. Promises about future states also contain causal information, and it is
not correct once one accounts properly for scaling. So we need to return to look at the
ways in which causal propagation takes place and is scale dependent.

7.6.7 SUMMARY: PROPER AND IMPROPER INVARIANTS

To summarize, we appear to have succumbed to the trap of illusory detail rather than
focusing on the key question: how can a stable promise be kept? So what we seem to
be struggling to express is a design decision (a promise) about which processes will be
considered atomic at each scale, which is equivalent to expressing which data we are
potentially willing to lose.

Assumption 5 (Promise manifesto). The central question about systems is: will the outcome
of promises be invariant to the conditions under which the promise is kept or not? Does that
matter?

From this perspective, statelessness actually seems to imply a preference to use
‘current state’ in short-lived, ephemeral interactions, over which dependencies can be
treated as approximate invariants. If all agent interactions are kept short, as measured by
their own proper time, and relative to the scale of their exterior time,

∆tinterior

∆texterior
� 1. (7.7)

then a process will tend to a state of statistical invariance. This relative timescale argument
could perhaps be used as a definition of ‘micro’ in microservice. It makes dynamical
sense: it’s a linearization of a potentially non-linear process. We should understand that
as a design constraint. The choice enables eventually consistent outcomes over a sample
set, but there may be other sample sets that have not reached the equilibrium. The best
promise (no guarantee) of stability is to ensure that updates have plenty of time to reach
equilibrium, by separating timescales.

7.7. LOCALITY AND DISTINGUISHABILITY 363

Example 160. If a dependency changes every second, and a process promises output
every few seconds, there is insufficient time for the process to promise invariance. How-
ever, if changes to dependencies occur only once per year, then processes lasting a few
seconds can be considered invariant in practice, by (7.7).

There is an implicit separation of concerns in talking about state: the part of state
that we care about, in the current context, and the part we don’t. This suggests a natural
partitioning by policy of scales for each relative process, rather than a universal best
practice guideline. The final point about ‘good enough replacement’ leads us to consider
the role of observability and distinguishability in deciding outcomes[Bur19a].

The issue in question seems to be: over what timescale can some form of state be
considered dependable (invariant relative to the receiver), from the perspective of all
stakeholders in the system? This includes at least the role of the client (when data are
uploaded) and the server (receiver of uploaded data). For the remainder of the discussion,
I’ll therefore focus on the dynamical principles of keeping promises across a multitude
of scales.

7.7 LOCALITY AND DISTINGUISHABILITY

Let’s try to illustrate how a few key concepts, are behind the promises authors are trying
to capture in rhetorical usage. These concepts are mainly spacetime concepts, about
order, scale, and observation[Bur19a].

7.7.1 LOCALIZATION OR SPATIAL PARTITIONING

The virtue of source code modularity, for the separation of semantic concerns, is doctrine
in computer science. Localization of process execution in space is a form of modularity
too, that we call scaling of execution context—‘containment’ for short. Today, virtual
machines and container technologies are the tools for achieving such spatial localization,
erecting barriers that are supposed to limit the exchange of influence between interior and
exterior. Isolation from an influence X implies causal independence of X (see section
2.4.3). In Promise Theory, bare agents that make no promises are assumed independent
of all causal influence a priori.

In Promise Theory, every active or passive part of a system is an agent. The definition
of an agent also defines a scale, and an isolation boundary for that scale. Elementary
agents are the smallest observable scale of a system, and superagent clusters of them
form larger scales, where agents work together to keep collaborative promises.

Modularity is achieved by partitioning the process into separate agents whose inter-
actions are defined by promises.

364 CHAPTER 7. SCALING OF AGENTS AND THEIR PROMISES

relay

client 1

client 2

client N

shard 1

shard M

shard 2

. . .

. . .

back (advanced)

forward (retarded)

conditional

Figure 7.10: Causal influence can flow forwards or backwards along the direction of an interac-
tion (defined arbitrarily). At the ends of an N : M interaction, say from clients to servers, data
may be shared or kept in entirely separate scopes, in either direction. Where nothing is shared, we
often say that the data are ‘sharded’ or have private scope. Integrating shard implies reintroducing
a shared resource in the agent that aggregates them however, so we don’t escape sharing; we only
delay its onset in order to acquire partial invariance of data for other processes.

Definition 152 (Partitioning of a process). A subdivision of a process agent into a number of
non-overlapping subagents, whose mutual promises are exposed.

Agents may be decomposed by space or by time if they are distinguishable by some
label. In other words, if agents are numbered in order, or labelled with names or types,
they can be separated into subdivisions using the labels they promise. Examples include
the division of a larger process into microservices, or the partitioning of a database into
shards, perhaps curated by intermediaries with a APIs between them, but the principle
doesn’t refer to any particular technology or set of assumptions.

Now, let’s formalize the hierarchy of agents involved in representing data processing,
starting with the easy parts. This helps to establish the language of promises and use of
terminology.

7.7.2 SCALING OF STATE

Every memory location in a system that can record state is an agent that can promise to
hold a value109. All states are memory agents, and partitionings lead to separation of

7.7. LOCALITY AND DISTINGUISHABILITY 365

states that keep different promises—sometimes called ‘sharding’ (see figure 7.11):

clusters (pods)

variables

process
agents

process

Figure 7.11: Distinguishability of agents to clients determines whether they can be partitioned
or whether they form a redundant set. Agents are distinguished by the promises they make, which
in turn are states of the agent. Together the states of a system form a configuration. Some states
are promised to exterior agents and some have private scope. In general the scope of a promised
value is contained by a certain scale, which we call a semantic boundary. Redundant agents are
indistinguishable. Non-redundant shards make different promises.

Definition 153 (Variable). A key-value pair, that promises a name and a value, representable
as a simple agent: promise.

V
+(name,value)−−−−−−−−→ S, (7.8)

within a scope S.

The internal variables of a process agent are what one normally thinks of as the state of
the agent.

Definition 154 (State of a variable). Let V be any variable (or set of variables), on the
interior of a process agent S, which takes values from any set of distinguishable elements
X . The state of V is the value of V ∈ X , promised by the source S to any outside agent
A?:

S
+V−−→ A?. (7.9)

366 CHAPTER 7. SCALING OF AGENTS AND THEIR PROMISES

The problem with this definition is that the state is only observable to the process agent
O outside of A, if both the source S promises the information as an exterior promise,
and the observer also promises to accept and use the promised information:

Definition 155 (Observable (state) of a variable). Let the state of a variable VS ∈ X ,
promised by S, be sampled on any occasion by an observer O:

S
+VS−−−→ O (7.10)

O
−VO−−−→ S, (7.11)

where VO ∈ X . Then the observable state of the variable is VS ∩ VO .

The role played by the observer in this definition is crucial. It underlines how relativity
will play a role in all stateful phenomena110. If a state is persistent or invariant to order
N samples, then multiple samples, by an observer O, lead to the same value for some
number of samples N . It is clear that a variable, even of order 1 implies the existence of
memory on that can be sampled by some process that carries information to an observer.
State is an observer issue rather than a provider issue.

Definition 156 (State of an agent). Any promise made by an agent S to any other agent
O, concerning the state of an interior variable V :

S
+V−−→ O. (7.12)

The total state of an agent S may consist of any number (or composition) of variables V .

In effect, each variable is a subagent member of a larger process (superagent). This
tells us that the boundary where we choose to define the edge of a process plays an
important role in the way we describe its behaviours (process, container, group, pod,
host, etc). Moreover, since it relates to promises, whatever else it may be, the statefulness
of an agent S is an assessment made by each recipient observer involved in promised
interactions.

7.7.3 SEQUENCES OR TEMPORAL PARTITIONING

There is also localization in time: when a process’s trajectory starts and ends (see figure
7.9), and whether information is fed into it only at those endpoints as immutable constants
or ‘invariants’ of the process, or whether information is accepted into it and modifies
the process as it evolves. The purpose of ‘functions’ in programming is to promise that
only the I/O channels belonging to the function (the arguments and the return value)
lead to change. This is hard to assure on a larger scale, however, as computer code

7.7. LOCALITY AND DISTINGUISHABILITY 367

is only one in a mixture of overlapping processes whose dependencies lead to mixing.
Seeking invariance of promises is the key to process stability. A process may be called
adiabatic[Bur03] if exterior information does not alter promise definitions over the
timescale of interactions that rely on it—meaning that a process’s promises are invariant
over the interval during which they are being kept, with no configuration changes. If
process fragments are partitioned end to end, they form a sequence. If they coexist,
either starting or ending at a common agent at a common time, then they may be called
concurrent.

Confusion ensues for many developers when considering the origins for such change.
There may be intentional change, such as a code change or a manual input of data, and
there may be unintentional (hidden) change to a dependency presumed invariant. A lot of
rhetoric has been exchanged around ‘never touch the system and it will never go wrong’,
but ‘if it fails, don’t fix it—replace it’. These are policy decisions, not unique recipes for
handling change, but they are rooted in the idea that invariance is a solid foundation for
process continuity. They may have different causal outcomes.

Localization allows us to partition processes in space and time, holding certain
aspects constant over the duration of a subprocess.

• Time localization leads to promise invariance for agents.

• Space locality leads to privacy of scope and non-interference.

This is a form of lock-free synchronization. Proponents of the Actor Model will find
these principles familiar[HBS73].

7.7.4 DISTINGUISHABILITY, PARTITIONS, AND REDUNDANCY

In order to distinguish partitions from redundant agents from partitioned agents, all
agents have to be distinguishable by the agents that interact with them.

Definition 157 (Redundant agents). Two agents A1 and A2 are observationally redun-
dant if they make the same promises to an observer A3, and the A3 accepts the promises
equally, i.e.

A1
+X−−→ A3 (7.13)

A2
+X−−→ A3 (7.14)

A3
−Y−−→ A1 (7.15)

A3
−Y−−→ A2 (7.16)

where X ∩Y 6= ∅.

368 CHAPTER 7. SCALING OF AGENTS AND THEIR PROMISES

An observer that discriminates between two agents making identical promises may be
called a discriminator. Such agents are the basis of all decision making based on data.
In principle, discrimination at a single agent location can be made in on the basis of
space (source agent) or arrival time, but each simultaneous time step sampled by the
discriminator represents a new causal decision, so that must depend on how we define
the scale timesteps and the discriminator itself—a distributed superagent discriminator
has to be able to promise interior time coherence. As always, the scale of encapsulation
over which we can assume invariance (‘coherence’) plays the main complicating role.

Definition 158 (Partitioned agents). Let two collections of agents P1 = {A1, . . .} and
P2 = {A2, . . .} be partitions, as discriminated by an observer A3, then:

P1
+X1−−−→ A3 (7.17)

P2
+X2−−−→ A3 (7.18)

A3
−Y−−→ A1 (7.19)

A3
−Y−−→ A2 (7.20)

where X1 ∩Y 6= ∅, X2 ∩Y 6= ∅, and X1 ∩X2 = ∅.

Note that a partitioning is a superagent, i.e.

Lemma 33 (Partitions are agents). If agents Ai are scale n, then a partition is a
superagent at scale n+ 1.

This follows trivially from the definitions, without any restrictions on what other promises
the agents may make.

Example 161 (Shared nothing). ‘Shared nothing’ agents cannot be completely redun-
dant. They make a priori uncorrelated and uncalibrated promises, so they cannot promise
determined redundancy; they are merely random and possibly similar. As soon as they
accept a common source of calibration (by cooperative dependency on a single source),
or achieve dynamical equilibration (as in data consistency protocols), they share some-
thing from O(1) to O(N2). In practice, developers will overstate ‘shared nothing’ and
allow agents to share configuration that only changes on a long timescale, making it
effectively invariant, according to (7.7).

7.7.5 INVARIANCE OF DISTINGUISHABLE PROMISES

We can now define the meaning of invariance of an interaction, as a process involving
pairs of agents (on any scale): a source and an observer:

7.7. LOCALITY AND DISTINGUISHABILITY 369

Definition 159 (Invariance of a promise π). An agent’s (exterior) promise may be called
invariant if the body of the promise is constant for the lifetime of the promise.

Theorem 5 (Invariant promises). An agent may be invariant with respect to exterior change
if and only if it contains all its dependencies and promises them constant.

To prove this, suppose an agent A makes a promise of X to an observer O, conditionally
on the promise of another agent AD being kept, which promises a dependency D, then:

πA : A
X|D−−−→ O (7.21)

πAT : A
−D−−→ AD (7.22)

πD : D
+D−−→ A. (7.23)

In addition, A promises its value of D to be constant:

πC : A
D=const−−−−−→ O (7.24)

If we form the superagent from {A,AD}, from the two collaborating agents, then

{A,AD}
+X|D−−−−→ O, (7.25)

{A,AD}
−D=const−−−−−−→ O, (7.26)

which is unconditional after A assesses the promise to provide D has been kept, i.e.
αA(πD) 6= 0. Now, sinceD is promised constant,X|D → X|const, and this is invariant
under D. If the promise πA is made unconditionally, then D = ∅, and the result is
trivially true.

Example 162. This theorem may be considered the basis for freezing all dependencies and
configurations internally in containers before execution, e.g. in Docker or using fixed images in
the cloud. But it also applies to dynamical configuration engines, like CFEngine etc, where the
policy for D is fixed and the promise keeping is maintained dynamically by ‘self-healing’ based
on fixed policy. In either case, the promise may be broken because the result cannot be guaranteed.
In the case of containment, one is trusting the integrity of the containment, which can only be
assured for non-runtime state by making it read-only. In the case of dynamical configuration,
runtime state can also be repaired by dynamical equilibrium in the presence of noise. So the
required invariance is not dependent on a particular strategy. A dynamical configuration is more
expensive in processing, but may prevent errors before they occur. Static containment may appear
cheap, in terms of runtime process resources, but is more likely to result in exterior consequences
that breach containment, because the timescale of exposure to non-corrective actions is maximal
(the lifetime of the process) rather than a regular shorter maintenance interval.

370 CHAPTER 7. SCALING OF AGENTS AND THEIR PROMISES

We can reduce this to a very simple expression of invariance for agents, as a whole:

Definition 160 (Invariance of an agent A). An agent promises to accept nothing from any
agent.

From the proof, we see that this is a scale dependent assertion, since we may always
partition the agent internally such that one interior partition makes a promise on which
the other interior partition depends, entirely within the boundary of the agent, leaving its
exterior promise unconditional.

The key assumption in this argument is the absence of unintended change, by
impositions, such as noise, that systems are fragile to. Many developers believe that
there is no noise in systems, only the programmed change, because a lot of it has been
eliminated by low level error correction111.

As long as ‘a system’ of choice interacts with some other agency, it is not the total
system, merely an arbitrary partitioning of it. If an promises to accept nothing, i.e. make
no (-) promises, then its interior state will be invariant for as long as that promise can be
kept. We may assume that this is the actual goal of systems that serve users.

7.7.6 SHARING VERSUS PARTITIONING

Partitioning is naturally the opposite of sharing. The original definition defined ‘shared
nothing’ for databases was ‘neither memory nor peripheral storage is shared among
processors’[Sto86]. In the cloud era, we need a more generalized abstraction to cope
with the branching technologies.

Definition 161 (‘Shared nothing’ agent). An agent is keeps all of its promises unconditionally
(makes no assisted promises), from its own intrinsic capabilities, i.e. it makes no promises that
require the assistance of another agent.

An example would be a unikernel architecture without network service interactions and
private disk. Since ‘shared nothing’ the default assumption of ‘autonomous’ behaviour
for agents in Promise Theory, we see the utility of promises to describing these issues:
every dependency has to be revealed as a promise to see the channels that constrain
process operation. A simple consequence of defining this is that agents that play the
mediating roles of hubs, switches, or routers (as in figure 7.10) for promises of any kind
violate the condition above.

Lemma 34 (Hubs violate ‘shared nothing’). Any nodes that operate as a point of confluence,
or a divergence like a switch, and connect a sharding of process messages, promises to partake in
sharing and violates the assumptions of ‘shared nothing’ in the broader sense. Shared nothing
involves promises that do not depend on one another for any of their resources. This even includes
power supply at the deepest level.

7.8. AGENT SCALING HIERARCHIES 371

The degree of sensitivity to sharing depends on the possible variance of the dependency.
If we seek to depend only on invariants, then there is only weak coupling. The shorter
the timescale for variation (the more active a dependency is), the greater its effect on the
system promises.

The connection between state and partitioning lies in what information is used to
distinguish process agents. Process trajectories trace the evolution of causal relationships
from agent to agent, at whatever scale an observer can witness. Some agents may make
indistinguishable promises leading to redundant parallelism, or they can promise full
distinguishability leading to branching and switching (decision making).

Distinguishability of promises is what enables non-shared futures, i.e. sharding and
switching of process trajectories (see figure 7.10). In switching, a process selects from a
set of possible futures based on the state of variable data. Each decision partitions possible
outcomes into branches, or ‘many worlds’ futures. If branches are indistinguishable
(contain only the same redundant information, both in initial conditions and runtime
state) then the branching process is memoryless, and the superposition of agents acts as a
single superagent on a larger scale. If they are distinguishable, the program takes on a
new course.

Occasionally, different process flows merge into a single one. This happens with
pull requests in software development, for example. It also happens in data pipelines
where source information gets aggregated into batches. Branching (+ promises) costs
nothing, but merging timelines (- promises) requires causal intervention, and the input of
new information in the form of state-dependent selection criteria. Thus we do not escape
the cost of a memory process by branching as long as there is a need for the branches to
be merged112.

Example 163. In network package delivery, i.e. ‘routing’, for instance, the decision about
which route to take is variable according to a separate parallel process, but that might be made on
the same timescale as the running process from which the data arises. This is then non-linear (see
section 5.10.2). It is always downstream (receiver) promises that carry the greatest responsibility
and the greatest potential cost—hence the downstream principle (see section 2.4.3).

7.8 AGENT SCALING HIERARCHIES

A full range of agent dynamics should be able to mimic all the processes of the natural
world, as well as artificial behaviours based on computation. Promise theory’s goal is
then to explicate the semantics of these processes. As in the scaling and renormalization
of physics, this leads to hierarchical ideas. However, the implications for semantics go
further than those dynamical ideas, as function is often tied specifically to a fixed scale.

In the foregoing sections, I’ve shown explicitly how the subagencies of one (super)

372 CHAPTER 7. SCALING OF AGENTS AND THEIR PROMISES

agent can be contained within its boundary, and even promised to others as a resource,
by emission113. Agency thus exists and interacts in coarse, bounded ‘packages’, much
like Milner’s notion of bigraphs[Bur14, Mil09], and all the time on top of a substrate of
basic adjacency promises that we call fundamental spacetime.

7.8.1 RESOLVING INTERIOR DETAILS OF SUPERAGENT STRUCTURE

DURING COUPLING

Every time an observer zooms out by coarse graining, the detail wiped out by the
formation of a grain can be captured as a map called a directory or index (see discussion
in section 5.8.10). Preserving this map can help an external agent to resolve and interact
with the the subagencies inside a superagent’s boundary114.

This is paradoxical: in order for an agent to exchange promises with a superagent
at scale M (which has no physical boundary or form other than its constituent parts),
an external agent perceiving the effective promise at scale M would surely have to be
directed to an available subagent to provide the directory is available to the external
agent.

Example 164. A bank superagent might promise to give you cash, but the promise still
has to be given meaning and carried out by an actual bank teller. The bank itself has no
interface to bind to without its subagents.

As a fictitious boundary, a superagent could simply be imagined by the assessments
of an observer, with no coordinated intent of its own. However, a promise made to
or by a superagent has to be a promise made to or by its components somehow. If a
promise binding is only conceptual, this might not be an issue, but if an actual transfer of
information is implied, there must always be a real source and a real receiver.

Definition 162 (Transparency). An agent may be called transparent if it promises an
index or directory of all its internal subagents and their promises.

In the remainder of this section, we address how such a coupling of agency scales,
given what we know about irreducible promises (see section 5.8.13), from the dual
perspectives of dynamics and semantics.

7.8.2 DISTRIBUTION OR DISPATCH OF PROMISES AT SUPERAGENT

BOUNDARIES

So, what happens at boundaries when a promise is made to a superagent? What happens
to the information? This is not defined a priori, but we can promise an answer. Let’s

7.8. AGENT SCALING HIERARCHIES 373

try to answer the question dynamically first, since everything is dependent on what is
dynamically possible.

When we make a new promise at scale M to a superagent, we need to understand
what this means for the component subagencies at a finer-grained scale within it. Two
possibilities present themselves:

• Distribution/flooding (broadcast): Promise bindings made to a superagent are
broadcast or diffused throughout the subagents that comprise it, spanning multiple
agent locations, like the behaviour of a gas or fluid flooding into contact with an
interface.

• Direction/dispatch (switched): Promises are routed to a subset of subagents, or
representative binding sites, in a solid state, making an exterior use-promise on
the surface is responsible for accepting the promise. The routing can be direct
from the promise to the interior subagent (if the superagent exposes its directory),
or it can be made via a proxy routing agent inside the superagent (if it exposes
only a gateway).

Why and how these possibilities should happen at all merits some further discussion. The
details almost certainly depend on the scale and context. The generality of the questions
(and the occurrence of examples in the natural and technological worlds) is what makes
them most intriguing.

Example 165. Consider an example of an extended superagent {a, b, c, d} bound by
some cooperative promises, which we neglect to mention here. These may occupy a
space of similar extent {A,B,C,D}, as in figure 7.12. This scenario is a realization
of many possible scenarios, e.g. a journey in many legs (plane, train, network routing),
in which the promise of multi-tenant sharing of several sequential host resources forms
a journey in which several hosts have to cooperate as a superagency (an inter-network
cloud) (see figure 7.12). A traveller, (a tenant of the journey) has to be authorized for
passage by each stage of the journey. This requires promises to authenticate credentials
to be distributed throughout the path, and the collaboration of the hosting agencies in
trusting the credentials.

Example 166. Directing or dispatching promises, through a specialized agent, is like
using a reception desk, service portal, in an office or hotel. Routing of information re-
quires the underlying adjacency infrastructure to be able to direct messages to particular
addresses.

We may now state the two methods formally, for clarity:

374 CHAPTER 7. SCALING OF AGENTS AND THEIR PROMISES

A B C D

a

A

B

C

D

a

Figure 7.12: Path tenancy. The circled agents form a single superagent that occupies the
corresponding space in the line above. The circles region is simply a superagent with exterior
promises at its end-points. An agent binding to each site in transit can only do so at the scale of
the subagents but the tenancy binding can be made as a distributive promise to the superagent.

Definition 163 (Distributive promise, at scale M (flooding)). A promise made to a
superagent As

A
+b−−→ As (7.27)

is assumed made to all agents within As:

A
+b−−→ Ai, ∀Ai ∈ As. (7.28)

The agents Ai voluntarily accept the promise, if they are suitable recipients, hence
selecting by brute force rather than intentional labelling.

Example 167. In information technology, flooding is used to make a ‘bus architecture’.
Ethernet and wireless transmission are examples.

Definition 164 (Directed promise, at scale M (dispatch)). A promise of type τ , made
to the superagent, is assumed directed to a named subset of (one or more) members, on
behalf of the entire superagent.

A
+b−−→ Ai, Ai ⊂ As. (7.29)

The subset Ai voluntarily accept the promise, if they are suitable recipients, which we
may assume is likely, given the intentional direction.

Example 168. In information technology, dispatch to a directed address is used in queue
managers, like load balancers, or memory and storage devices, to route data to a labelled
destination.

7.8. AGENT SCALING HIERARCHIES 375

Stating these methods does not imply that they are possible in all cases. To understand
whether diffusion of promise information is realizable we need to understand the small
scale adjacency structure of spacetime, and its effect on promise scope.

7.8.3 TRANSPARENT ADJACENCY

Can promises, made by an exterior agent, reach all the internal subagencies in a supera-
gent, then be comprehended and accepted? A promise made to a superagent has to be
transmitted along the network of underlying adjacencies.

Both dispatch and distribution approaches to dissemination and binding assume that
promises can be made directly between the subagents of neighboring superagents. The
communication needed to make and keep such promises depends greatly on the network
substrate of adjacency made at the lowest spacetime level. So the question becomes one
about how spacetime adjacency is wired (see figure 7.13).

Example 169. To visualize promises made at coarse grained scale, imagine a water
authority that promises electricity to a town. Both these agencies are superagents
composed of many subagents. Where (which agent) does the promise come from, and
who receives it? What adjacency allows the promise to be transmitted?

A generic promise made in the name of the company, depending on its legal depart-
ment might make the promise. Every resident in the town is a potential recipient, as long
as they can receive the information directly or indirectly, i.e. as long as they are in scope.
The adjacency might be by postal communication and by water pipe.

(a) (b)

Figure 7.13: Regardless of whether promise diffusion has the semantics of flooding or directed
dispatch, one is limited by the actual adjacencies that mediate communication in the space. In
(a) agents are directly adjacent or ‘patched’ to all promisers of a particular type, and hence the
promise diffuses naturally. In (b) adjacency is only to specific ‘front desk’ agents, who must then
arrange adjacency virtually by proxy.

376 CHAPTER 7. SCALING OF AGENTS AND THEIR PROMISES

In figure 7.13a, the external agent promising to a superagent is directly adjacent to
every subagent inside it. In figure 7.13b, the external agent only connects to a binding
site. How these adjacencies come about, in practice, depends on the phase of the agents.
There are two possibilities:

• Agents in a disordered gaseous state (no long range order), agents have no prior
knowledge about one another without random walk meetings, and binding to one
another. Thus discovery is a kind of Monte Carlo search115, and communication
is like broadcasting or flooding with messenger agents.

• Agents in an ordered phase, can assign fixed coordinate locations which can be
indexed and used to access agents by design. This requires a mapping in the index
between promises and locations, and adjacency between the index and each agent
inside the superagent boundary. Thus an index or directory service must act as a
switch, routing promises to intended destination.

This, in turn, can be done in two ways:

– By exchange of agent contents at the boundary, and exterior lookup

– By encapsulation of agent contents and routing with interior lookup

Super−agent 1

Super−agent 2

Figure 7.14: A schematic ‘virtual’ coarse grained view of promising, on top of the real adjacen-
cies between subagents. If adjacency is mediated through intermediate adjacencies, the entire
structure has to support the dispatch and/or flooding of messages to keep promises through the
substrate of true adjacencies (whether gas or solid).

7.8. AGENT SCALING HIERARCHIES 377

7.8.4 SEMANTICS OF PROMISE SCOPE FOR SUPERAGENCY

The semantics of scope need to be clarified during scaling, since scope represents the
boundary of information about a promise’s intent, and the ability to distribute a promise
depends on the underlying adjacencies of spacetime. If two agents are not adjacent, they
might not be able to occupy the same scope.

Lemma 35 (The scope of a promise to a superagent). Consider a promise made to a
superagent SM at scale M :

π : A
b−−→
σM

SM . (7.30)

Without the coarse graining directory πdirectory(SM) for superagent SM , the scope of π
is only defined to the boundary of SM . It is not possible to say which subagents of SM
are in scope of the promise. If access to the directory is promised to the promiser:

SM
+directory−−−−−−−→ A (7.31)

σM → σM + σdirectory (7.32)

If agent SM promises access to its coarse graining directory, an external agent A can
infer the scope of a promise in terms of the subagents of SM .

The promise could be visible to all the subagents Ai ∈ SM , which are adjacent to A, as
well as the extra scope σ. However, a promiser can say which agents are reachable by a
promise message if and only if the directory πdirectory(SM) is available.

The implication of this is that promises do not scale automatically by replacing an
agent with a superagent: the scope of a promise made to a superagent is not necessarily
distributive, because of the loss of information in coarse graining.

7.8.5 COUPLING TO A SUPERAGENT BOUNDARY (GATEWAYS AND

ADVERTISEMENTS)

If all actionable agencies are concealed behind a superagent boundary, how can any
promise message reach them from outside? The answer is often a role known as a gateway
agent. The subagents are the agencies that must ultimately act to keep any promises of
the superagent. As seen in section 7.8.3, the underlying adjacency of spacetime remains,
even under the coarse graining of superagency, though it might not be visible inside
a boundary, without the help of a specialized role. A promise could thus reach the
subagents by flooding, or by direct dispatch of a gateway, following the adjacencies
within the boundary, provided sufficient adjacency exists. Dispatch can be directed by the
promiser (if transparency is granted to an external agent by access to the coarse graining

378 CHAPTER 7. SCALING OF AGENTS AND THEIR PROMISES

directory) or by an intermediary agency (acting as a relay gateway) within the superagent.
It is assumed that there are no changes to agent semantics simply by aggregation:

Assumption 6 (Promisee autonomy is preserved in superagency). Once a promise
reaches a subagent, it is up to the subagent to accept the promise or not, and behave
accordingly, unless it has voluntarily promised to subordinate itself to another agent.
Even if the promise is transmitted as an imposition, autonomy can never be violated.

Thus the scaling of cooperation remains does not change the rules of autonomy; the
‘voluntary cooperation’ assumption of autonomous agents persists. It is up to subagents
to use any promise made to them. However, this does assume that they are in the
scope of such an external promise. Hence to ensure the coupling of an external agent
to a superagent, transparency has to be restored or relayed. Under coarse graining, a
superagent is seemingly replaced by only its boundary, possibly with a promise to access
its index/directory of interior information. Promises from external agents outside the
boundary can only refer to the superagent as promisee or body-tensor coordinate. How
then would the internal subagents know what to do with the promise? How do they find
one another?

Example 170 (Cloud computing clustering and receptions). In human organizations,
the gateway between outside and inside is a reception desk, or even a secretary. This
provides a single point of contact, whose role it is to route messages internally and vice
versa. In cloud computing technology, users rent clusters of machines that are dispersed
with complicated internal addresses, which are not exposed to the outside world. A
gateway agent, often a directory service, such as LDAP, key-value store (Consul, etcd,
Zookeeper), or DNS. The gateway acts as a tranducer, coupling a single visitor to a
larger cluster, and routing a process on its own scale within the larger entity. Another
example of a gateway is a connector plug on a device, or a power socket that connects a
low level process to a larger system serving many.

In order for one scale to couple to another scale, we can introduce the idea of a
gateway—which plays the role of scale transducer (see figure 7.15): a combination of
necessary and sufficient conditions for promises made to a superagent boundary, to be
resolved without mentioning any subagencies.

Example 171 (Radio as a superagent). What part of a radio makes the exterior promise
of being a radio, rather than a collection of electronic components? Whether the device
is switched on or off, its function is not clear without a promise. The agency that explains
this is usually the packaging of the radio, i.e. the casing. It might further be packaged
in a box, but that is not a part of the radio itself. In this case, the enveloping a casing
becomes an agent with a promise that tracks the superagent boundary116.

7.8. AGENT SCALING HIERARCHIES 379

Definition 165 (Scale transducer). Let As be a super agent at scale M = {As}, and let
πs be a promise made As, by any agency A (see figure 7.15). Recalling that the scope of
a superagent includes all agents inside it, and coarse graining limits scope (see section
5.8.11), we define a scale transducer by:

1. A number of promises addressed to the superagent boundary, along exterior
adjacencies.

2. One or more subagents that make exterior use-promises, within the superagent, to
accept the promise made to the collective:

∃Ai ∈ As : Ai
U(πs)−−−−→ A. (7.33)

3. An index for directory πdirectory is promised externally to agents outside the
superagent boundary. This provides them with information about how to address
their promises.

4. If there is more than one agent adjacent to the superagent, i.e. more than one
possible agent that can make promises with the exterior, these agents can be
located through the directory.

5. One or more subagents in Ai play the role of gateway and dispatcher, to condi-
tionally forward messages to interior agents with matching use-promises. This is
a standard entry point for the agent, e.g. it is the agent adjacent to all exterior
agencies, thus forming a skin or boundary between exterior and interior agencies.

∃Ai, Aj ∈ As : Ai
U(πs)−−−−→ A (7.34)

Ai
+πs|πs−−−−−→ Aj i 6= j (7.35)

In this case, the superagent must advertise the location of one or more gatekeepers,
entry-points or directory agencies that promise to relay information.

(a) The subagents inside a superagent boundary of a given type τ are advertised
in the index/directory πdirectory(τ). They are symmetrical with respect to
what they promise (promise type τ), but they might not necessarily be
equivalent in how much they will promise (their promise bodies might differ
in all details except the type). This means that the directory must advertise
any promises to this effect also.

(b) If a gateway is used as a proxy relay (see figure 7.15a), it must additionally
make promises that select promisees from the subagents inside As, e.g.
policies might be distributed (by flooding) or directed by dispatch.

(c) Gateway agents might also need to translate between the language βs
assumed for the superagent, and the language(s) of recipient subagents βi,
as part of transducing through the opaque boundary.

380 CHAPTER 7. SCALING OF AGENTS AND THEIR PROMISES

We may note that messages from an external agent might be forcibly constrained to a
particular route by spacetime structure, i.e. by a limited adjacency (a bottleneck, as in
section 7.8.3). Also, a gatekeeper need not be a single agent, or even a localized cluster in
the role of gatekeeper. It could, itself be a fully distributed collective agency, embedded
within a specialized set of subagents, and coordinated by mutual cooperation. e.g. like a
cellular skin. This idea of exterior agents binding to specialized ‘docking sites’ leads us
naturally to consider the idea of tenancy in semantic spacetime structures. Indeed, I’ll
return to this later in these notes.

A A A

(a) (b) (c)

directorydirectory

Figure 7.15: Scale transduction for incoming promises to a superagent: (a) the coarse graining
directory is internal to the superagent and the external agent makes its promise to a gateway
‘receptor’; (b) the coarse graining directory is exposed and makes the superagent transparent to
the external promiser so that it can promise directly to the subagents; (c) there is no directory, and
internal information is lost. Promises are flooded to all subagents, and may or may not be picked
up. The efficiency of flooding depends on the solid or gaseous state of the superagent.

From the list of requirements for transducing promises between scales above that the
following corollary applies:

Lemma 36 (Dynamical requirements for coupling between external agent and supera-
gent). Any agent A can probe scale information in a superagent, at scales finer than its
boundary, provided the superagent promises its coarse graining directory:

πdirectory(SM) : SM
+directory(SM)−−−−−−−−−−→ A (7.36)

πdirectory(SM) : A
−directory(SM)−−−−−−−−−−→ SM (7.37)

Alternatively, we can say that a coarse grained agent SM may be made transparent by
promising its coarse graining directory.

Example 172. To couple to a single interface in an electronic device, there has to be an
exterior promise to bind to (e.g. USB), and an address of the agent inside.

7.8. AGENT SCALING HIERARCHIES 381

Example 173. In order to affect a nucleus within an atom (e.g. NMR), a field basically
floods its promise to all subagencies blindly, hoping to excite the resonance (receptor
use-promise).

7.8.6 ADDENDUM ON SCALING OF SCALE TRANSDUCTION ITSELF:
QUEUE DISPATCH

Since scale transduction is itself a dynamical process, dependent on underlying spacetime,
its efficiency is also subject to scaling issues. Consider first the coupling issue from a
semantic perspective, of interfacing instead. When a promise is made to a superagent
boundary (as in equation (7.30)), the promise information has to go to an agent that is
listening. A superagent is not such a real agent, it is only an abstraction. This suggests
that, in the case of superagents, the boundary itself might be represented by an explicit
agency that can perform routing and forwarding of messages between the superagent’s
fictitious boundary and its subagencies.

While this direct dispatched routing of promises makes sense semantically, dynami-
cally, the idea seems contrary to the notion of scaling: to replace a scaled mass of agents
by a single gatekeeper or router creates an obvious bottleneck and fragile dependence.
This is the cost of coarse graining, especially in a discrete spacetime, and it suggests that
the grain size should never become too large, else a superagent becomes hindered by
interfacing issues.

Example 174 (Queue dispatcher). In queueing theory, a dispatcher is an agent that
processes a queue of incoming messages and routes them to a service agent[Kle76,
GH98]. Load balancers introduced into networks as ‘middle boxes’ are single-agent
dispatchers to multiple subagents within an superagent of servers. These middle boxes
break the equivalence of the system under re-scaling, by forcing all adjacency through a
single route.

Example 175 (Reception desk). A reception desk at a company accepts promises and
information on behalf of the collective organization of subagents. An agent works at this
desk to receive messages, and dispatches, routes or forwards these messages to other
relevant agents using an internal directory for responsibility.

An alternative is for the superagent boundary to promise flooding contact and allow
the surface agents to coordinate internally, as redundant gatekeepers, each deciding how
to resolve what happens if multiple agents receive the same message. If promises are
not, by their nature, exclusive to a single gateway, then coordinating exclusivity adds N2

complexity of promise coordination.

382 CHAPTER 7. SCALING OF AGENTS AND THEIR PROMISES

Example 176. Using the coarse graining directory to give transparency, any external
agent could perform its own dispatching / load sharing without loss of scalability. For
example, a directory service used by software could replace ‘middle box’ load balancers
in software, with the help of a software interface used to select a specific subagent server
within the superagency of all servers.

Let’s summarize the implications of loss of scope from the past previous section.

• Routing of messages to internal agents through a single gateway breaks scale
invariance.

• A scale transducer may be introduced, for mediating interactions directly by
granting transparency, using a directory.

• Directory promises allow external agents to look up lists of subagents encapsulated
within enabling scale transduction, i.e. a kind of microscope for crossing the
semantic scale boundary.

7.8.7 ADDRESSABILITY IN SOLID STRUCTURES, AND THE TENANCY

CONNECTION

To see how we can route messages back to the specific subagents, we need to understand
addressing. The ability to give every agent a predictable address, and then be able to
have messages forwarded to it uniquely, using that address, depends on a number of
promises being kept. To illustrate this, let’s construct a semi-lattice by iterating a simple
asymmetric message pattern.

S

R

R

2

2

2

1

1
1

+message (R)

−message | condition (R)

−message | condition (R)

+message (R)

Figure 7.16: Two promise bindings, leading from a source agent S to two different recipient
agents R1 and R2. This forms the basis of a routing structure for address decomposition, where
part of an address can lead to selection or rejection of a particular route.

Let Si and Ri be two types of roles for a set of agents Ai, and consider bindings
between two kinds of promise:

7.8. AGENT SCALING HIERARCHIES 383

• A vector promise to dispatch messages to a recipient agent R:

S
+dispatch message to R−−−−−−−−−−−→ R (7.38)

• A use-promise to accept messages from a source S, only if its address is compati-
ble with the agent’s conditional expression for forwarding:

R
−message|addressed to me−−−−−−−−−−−−−−→ S (7.39)

Building on these two promises, we may construct uni-directional adjacency-like binding
for use as a template to build larger structures.

In the figure 7.16, we see a node with two such promise bindings sporting different
conditionals in different directions. Notice how the choice to forward a message from
S to R is a voluntary act by S. It can send in different directions to purposely separate
messages, or it can send along different paths for traffic management or load balancing.
Note also that the difference between a flooding promise (sending messages to all
recipients) is simply a scalar version of the dispatch promise, in which we take away a
target from the promise body, i.e. without exclusivity to promisee/body vector. The result
is the same, but the efficiency is compromised; efficient routing is assisted by long-range
cooperation, and ultimately by long-range order.

The receiver R, has the last word in accepting a message. So no message will
arrive at the wrong location no matter whether it was forwarded by targeted dispatch or
broadcasted to all agents. Agents have to promise their unique identities, both so that
they may be recognized by neighbours, and so that they can recognize messages directed
to them.

The consequence of creating an ordered tree from these promises is to create a dumb
filter, which routes messages along a unique path depending on their address.

Example 177 (Coin sorting). Coin sorting machines create unique pathways the sort
and select different sized coins, allowing the to roll only one way through a maze of
pathways. This is the basic principle of a semantic sorting process. The pathways for a
treelike structure, and the end points of the tree all have a unique address. By placing a
coin of a particular kind into the process at the root, it is like placing a message with an
address (the type of coin), and having it sorted until it reaches its destination. Coins with
the same address will end up at the same location.

Armed with this tool for spatial sorting, we may iterate these promise patterns to
generate semi-lattices of greater size. Having a coordinate system within a superagent
boundary, for example, would allow agents to be located in a targeted manner, assuming
only that they are connected. To iterate the pattern, we simple make each receiver into a
source for the next iteration, and so on.

384 CHAPTER 7. SCALING OF AGENTS AND THEIR PROMISES

Example 178. Figure 7.17 shows to iterated patterns formed from branching source-
receiver iteration. The first (a) is a simple tree structure. Every leaf node of the tree has a
unique address, and can be reached from the root by a unique path. This is the property
of trees (and spanning trees).

(a) (b)

Figure 7.17: Iterating a pattern of promise bindings over a spanning tree allows unique labels
to be associated with destinations in a graph. The symmetry can be a minimal tree as in (a),
or, by adding redundant links it can be turned into a semi-lattice (b). Arrows are not shown for
simplicity; however, both structures are uni-directional.

The second case (b) is also a tree formed from three-way branchings S
+b(R1,R2,R3)−−−−−−−−−→

{R1, R2, R3}, iterated homogeneously and isotropically. The agents then fall into a
three dimensional, Cartesian arrangement, which we may call the Cartesian semi-lattice.
By filling in some redundant promises from each point, one can arrange multiple routes
from any node to any other, but still only in one direction (radially outwards from the
origin).

By making the promises in each of the three dimensions sort forwarding of messages
according to a different component in a vector tuple, forwarding can be encoded as a
purely local operation117, e.g. forward only if the tuple value is greater than the current
tuple address of the agent for the current lattice location. Furthermore, by completing
the reverse direction, as a mirror image, with opposite semantics, addresses can also be
navigated in the opposite direction, completing the lattice.

7.8. AGENT SCALING HIERARCHIES 385

7.8.8 CONDITIONS FOR A UNIFORM COORDINATE COVERING OF

AGENTS

What are the conditions for being able to address agents using contiguous coordinates
without loss of locatability? This is a slightly different question to the one about naming
and promise body continuity, because it requires us to preserve the partial ordering of
agents in a lattice. It is helpful to explain addressability by introducing two concepts that
cover the semantic and dynamic aspects of location:

Definition 166 (Semantic addressing). An agent is said to have a semantic address if it
is labelled only by a tuple of names that do not form part of an ordered pattern. Semantic
addresses contain no relevant kinematic or dynamical information about an agent’s
location in a space.

Semantic addresses act only as sign-posts, and a directory is needed to map which
adjacency will eventually lead to the named agents. This is the approach used in Internet
routing.

Example 179 (IP addresses). Internet addresses (aka IP addresses) are semantic ad-
dresses, despite being composed of numbers, because they have no requirements of
spatial order. Any agent can assign itself an address with any number, and these numbers
do no not imply information about where agents can be found. In order to locate IP
addresses, a directory called a routing table is needed, which maps the random numbers
of the addresses to physical adjacencies of the cabling. This is the function of a router or
switch. The advertisement of these local directories is performed by services, which are
called routing protocols (BGP, OSPF, RIP, etc).

Definition 167 (Numeric (metric) addressing). An agent is said to have a numeric or
metric address if it is labelled by a tuple of values in which each value map to a unique
integer. Numeric addresses represent kinematic or dynamic information about a space.

Agents with numeric addresses are partially ordered in a multi-dimensional lattice. The
addresses form a coordinate system in the usual sense of mathematics.

In lieu of setting up a proof, I’ll hypothesize this informally, as an assumed lemma,
for now:

386 CHAPTER 7. SCALING OF AGENTS AND THEIR PROMISES

Lemma 37 (Conditions for a uniform coordinate covering of an ensemble of agents).
Possible placement of fixed and ordered address labels on an ensemble of agents, in a
voluntary cooperation structure include:

• Fixed locations.

• Addresses ordered by location.

• Promises to sort and relay messages to destination.

• Long range order in address promises, i.e. cooperation in behaving uniform
sorting/routing to addresses.

• Overlapping regions of β-language relevant to address

This does not refer to any particular topology, so it can be solved by multiple adjacency
patterns. A suitable address-sorting process can be satisfied in a number of different ways,
reflecting the encoding of the address in relation to the structure of spacetime. Network
structures are typically tree-like, and IP addresses are prefix-based with distributed
routing tables based on tree branching assumptions. Toroidal structure and Cartesian
lattices using tuples are based on a pre-ordered layout, as in a warehouse, for instance.

Example 180 (Network partition). In networking, regions of a network (like the Internet)
can become cut off from the rest by a loss of routing information. Because the Internet
is a gas, with semantic rather than numerical (metric) addressing, each superagent
boundary must contain a routing table that points to the next signpost to the destination.
To prevent this from getting out of hand, a ‘default route’ is normally used as a wildcard
(go this way to find any unspecified agent A?), allowing regions to compress information
about how to reach non-local agencies by handing off to centralized routing hubs.

There is an interesting suggestion here, that semantic naming tends to favour the
formation of a hierarchy in order to scale. Such a hierarchy is unnecessary for metric
naming. This warrants further study.

7.8.9 EFFICIENCY OF ADDRESSING IN A SEMANTIC SPACE

Consider a network of agents, with unique names and which are all interconnected by a
sufficient number of adjacencies to allow full percolation. Suppose these agents promise
to cooperate in relaying messages to one another, by passing the message along one of
their adjacencies until it reaches the unique name (i.e. address). How much information
has to be available to each agent in order to know how to forward messages to every
other agent?

7.8. AGENT SCALING HIERARCHIES 387

The maximum size of directory information may be computed as a sum over every
location, which keeps a table of every other named agent in the space, paired with the
‘next hop’ neighbouring agent that brings the message closer to its destination. This
applies for every agent in the space.

• If every agent is independent, then every agent needs a list of all N − 1 agents,
with

(Agent name, direction of agent) (7.40)

and a direction in which to forward. In total memory required for this information
is of order N(N − 1) in the number of agents. If there are few agents, this is easy.
If there are many, the search cost rises linearly, and the distribution of information
by flooding brings high cost.

Example 181. This is exactly like routing in the Internet, imagining there are no
network CIDR summarization prefixes, which would correspond to superagent
boundaries.

• If one can replace atomic agents with superagents, which can handle their own
internal forwarding, then the amount of information one needs to exchange is less.

(Superagent of every node, direction of superagent) (7.41)

Aggregation of clusters leads to a cost of order (N−1) logN memory. Scaling of
addresses now depends on the ability to delegate responsibility to agents ‘further
down the line’ by using superagent container names to route messages, as in the
coin sorting machine or lattice. This leads naturally to hierarchical naming and
routing.

Example 182. Postal addresses refer first to town, then street, then building,
and so on. By referring to larger container boundaries first, one can delegate
the detail of finding the final destination to agencies within the boundary of the
superagency, e.g. the town. This assumed encapsulation comes at a price, however.
It introduces inter-dependency into the end-to-end communication.

Today, postal addressing also now uses metric post codes, which are non-hierarchical.
Given modern computational resources, a simple brute force approach can be
used to look up these codes from directory information.

Example 183 (CIDR prefixes). This is like IP routing with CIDR prefixes. Internet
(IP) addresses were originally designed to reduce routing cost by aggregated along
certain prefixes, originally of fixed length (called class A, B, C networks). By

388 CHAPTER 7. SCALING OF AGENTS AND THEIR PROMISES

grouping addresses under a smaller number of prefix patterns, and assuming
that all such addresses were contained in the same superagent boundary, routing
tables could be kept small. Later, as these limited prefixes became consumed, they
were subdivided into more, causing routing table growth.

• If there is a regular lattice, e.g. (x, y, z), with long range order, and tuple ad-
dresses, then the amount of information is now of order 1. It is like asking which
way is ‘up’? Irregularities (like holes) can be routed locally at no extra cost.

Example 184. For a Cartesian lattice, one knows left or right, forwards or
backwards for each address because of the ordering of the integers.

Delegation, or deferred evaluation, is an attractive idea for scaling linearizable
searches, however we must note that, an agent cannot ask another agent for help without
already being able to know how to reach it; so, with no basic pattern to compress by,
there is no way of centralizing this routing information in the manner of a coarse graining
directory.

Consider the following worst-case scenario in which every agent has a random name,
i.e. a spacetime addressed by random numbers. Then, every location has to have a
complete map of every other location, with zero possible compression. The need to flood
all that information to all parts of spacetime adds a significant cost to promise keeping,
and might exceed the capabilities of any or all agents.

Example 185. Instead of handing out metric addresses to visiting mobile devices (as
a parking lot, or hotel, would do to its visitors), the Internet hands out local semantic
addresses (by DHCP), and tries to map them into its routing infrastructure. This makes
sense for ephemeral gas-phase devices, but is quite inefficient for the re-purposing of
solid phase agents, like virtual machine slots, or process containers.

In practice, we see, from the stages of address scaling above, that the information
is compressible only if each agent can replace a collection of addresses with a single
promise. Hence to coarse grain addresses into a hierarchy of containers, without loss of
information, we need to restore the information lost using a directory at each superagent
boundary118. If we want to keep directory information small, we need long range order
in the structural addressing promises (and presumably the adjacencies too) to enable
logarithmic aggregate summarizability. Asymmetric tree structures can be adequate, but
bi-directional lattices, like a Cartesian lattice, are better still119.

7.8.10 SUMMARY OF AGENCY PROPERTIES IN SEMANTIC SPACES

The scaling behaviour described thus far allows us to ‘inflate’ (or scale-up) any functional
arrangement of promises by substituting an arbitrary agent with a superagent composed

7.8. AGENT SCALING HIERARCHIES 389

of subagents making similar promises. Then, one may define the exterior promises in
such as way as to integrate the subagent members seamlessly to agents on the outside of
the superagent boundary. There is a progression:

agent→ superagent→ role→ subspace (7.42)

In other words, as an algorithm to scale given a single agent, we replace it with a black-
box superagent. Then we proceed to fill it with multiple subagents that are connected
to the outside agents by exterior promises. These similar subagents are symmetrical
with respect to the outside, so they form a role by association. Eventually, as we scale
each of the original agencies and connect them to scale the promises, what remains is
a set of non-overlapping subspaces, one for each agent, embedded in a larger semantic
spacetime120.

Example 186 (Gated community). Namespaces, walled/gated communities, zones of
privilege, service providers, etc are examples of agencies which scale from a single agent
to collections bounded by some kind of contact surface.

Semantic spacetime (agents) have a number of scalable properties:

• They have discrete languages of intentions, easily translatable, in order for
promises to be effectively communicated.

• They can be observed and interpreted at a multitude of scales, at the behest of an
observer.

• They can effectively cluster their own promises into coarse grains, through coop-
eration.

• The number of agencies can grow or shrink, i.e. spacetime itself grows or shrinks,
as new points are added or retired.

• There are simple rules for transforming from one agency scale to another, analo-
gous to renormalization transformations.

• Promises behave like tensors in general, with directionality.

• Causal influence is passed by vector promises, and principally through use-
promises, by the principle of autonomy.

• Biological organisms offer a useful measuring stick for spacetimes with strong
semantics.

390 CHAPTER 7. SCALING OF AGENTS AND THEIR PROMISES

So far I’ve focused on preserving symmetries and semantics, while piecing together
the underlying connectivity of space. The asymmetry in these promises for routing to
fixed addresses has a general utility, and it can be associated with the idea of tenancy (next
section). Functionally, this asymmetry is the most important tool for making anything
happen in space or time, and is worth exploring in more depth.

7.9 OCCUPANCY AND TENANCY OF SPACE

Let’s now turn to a different topic: how to fill the space we’ve built up. A semantic space
is richer in structure than its underlying connective graph so it contains information that
goes beyond pure adjacency. In particular, as we add autonomous observers with their
own agency, we quickly arrive at the need for agents to extend their realm of autonomous
control through occupancy and ownership of resources. The question of occupancy and
tenancy are thus about how we draw the boundaries of agency on a background of spatial
adjacency So far we’ve focused on symmetry and scale in discussing agency, however
strong functional semantics are a result of asymmetry, hence we must now pursue the
effects of broken symmetry.

7.9.1 DEFINITIONS OF OCCUPANCY AND TENANCY

Tenancy goes beyond simple aggregate membership in a cluster. A tenant is understood
to be an agent that ‘occupies’ or utilizes a resource or service, provided by a host, often in
a temporary manner, and for mutual benefit (symbiosis). Tenants have separate identities.
When we think of tenancy in every day affairs, we do not usually imagine a tenant
as merging with its host, and becoming a part of it (though merger and acquisition is
certainly a process one can discuss, as absorption). Tenancy is rather an association
between two separate agency roles (host and tenant), each of which retains its autonomy.

To relate this to our spacetime discussion, consider the following question (which,
at first glance, might seem purely facetious): does a suit occupy space when no one is
wearing it, or does space occupy the suit? The space inside a suit is simply empty before
someone climbs into it. Try replacing ‘suit’ with ‘car’ and ‘wear’ with ‘sit inside’.

This peculiar question is closely related to the considerations surrounding the kinds
of motion described in [Bur14], section 5.12. Since we are modelling space as a resource,
this is not only a meaningful question, it is essential to understand what kind of volume a
suit occupies. Does the presence of suit matter replace space, occupy it, attach to it, or
overlap with it? These have different semantics121.

To address some of these issues, we need to formulate definitions using promises,
building up the distinctions in a rational way. Let’s begin with occupancy. Its semantics

7.9. OCCUPANCY AND TENANCY OF SPACE 391

are difference from mere presence, as there is an assumption of valency. Within the scope
of promise theory, we can define the following:

Definition 168 (Occupancy). An asymmetric association of one agent (the occupier)
with another representing a host (the location) at agency scale M , in which the valence
of a promise make by the host is reduced by its binding to the occupier. The resource R
may be any scalar, vector or tensor type:

HOSTM
+R#n−−−−→ A? (7.43)

OCCUPIERM
−R#1−−−−→ HOSTM (7.44)

In other words, a host makes a finite promise +R to a number of agents in scope, and
each occupier reduces the valency by making a use-promise −R

Valence(R,HOST) = Valence(R,HOST,OCCUPIER) + 1 (7.45)

Example 187. Our understanding of the semantics of occupancy has many possible
interpretations. Here are some examples:

• Occupation of a territory without necessarily being there. e.g. a table reservation.

• Occupation of space.

• Occupy a car, a suit, a dress.

• Occupy a time slot in a calendar.

• Filling a space with something.

• In physics, bosons can occupy the same space, like voices in a song, but Fermions
have exclusion, like the bodies in the choir themselves they occupy space.

From here, we may state a basic template for tenancy for application to a variety of
special cases:

392 CHAPTER 7. SCALING OF AGENTS AND THEIR PROMISES

Definition 169 (Tenancy). Tenancy refers to the conditional occupancy of a location, by
an agent, together with the provision of one or more services by the host, which may be
considered a function f(R) of resource R. These services are provided conditionally on
a promise of C from the tenant:

HOSTM
+R#n|C−−−−−−→ A?

HOSTM
−C−−→ TENANTM

TENANTM
+C−−→ HOSTM

TENANTM
−R#1−−−−→ HOSTM

HOSTM
+f(C,R)|−R−−−−−−−−→ TENANT (7.46)

This is the basic template for tenancy, which may be extended by additional promises.

Example 188 (Landlord). A landlord promises a rentable space for a single occupant
+R#1, conditionally on the signing a contract of terms (i.e. the promise to abide by
terms and conditions) +C.

L
+R#1,f(C,R) |C−−−−−−−−−−−→ A? (7.47)

A tenant quenches this exclusive resource, by signing up and promising the terms:

T
+C,−R−−−−−→ L. (7.48)

The terms and conditions contain a composite promise body, detailing the services
f(C,R) offered as part of the promise:

C = {+payment, termination date, . . .} (7.49)

and

f(C,R) = {+power,+heating, . . .} (7.50)

Tenancy is a service-like relationship between a host and a tenant. This may be
contrasted with the notion of residency at a location, which is related to definition of
boundaries within an observer’s realm. Tenancy is a also relative concept (relative to
promise semantics).

7.9.2 LAWS OF TENANCY SEMANTICS

It is basic to promise theory that we distinguish between a promise made by an agent,
and the agency itself. Hence, we begin by noting that:

7.9. OCCUPANCY AND TENANCY OF SPACE 393

Assumption 7 (Promisees are independent). Promises are neither occupants nor tenants
of the promisers or promisees, since they have no independent agency.

• Tenancy and occupancy requires two agencies to become associated.

• Agents can be promised, but promises are not agents (they do not possess inde-
pendent agency).

In a sense, a promise emanating from an agent seems to be attached at the location
represented by the agent. However, we do not call this tenancy. A promise is a property
of an agent, but it has no independent agency, thus it cannot be a tenant.

Example 189. An agent A can be the subject of a promise, e.g.

A1
+A−−→ A2, (7.51)

but it is not the promise itself, which belongs to A1.

The semantics of the promises in (7.46) select an inherent directionality for the
provision and use of a resource.

Lemma 38 (Tenancy flows in the direction of the resource being used). Tenancy flows
towards the host, i.e. towards to source of the hosted resource.

It is important to bear in mind the semantics when looking at host and tenant.
Consider the following case in figure 7.18. From the perspective of a renter going directly
to a hosting apartment block, the tenant

Assumption 8 (The host:tenant binding is 1:N). A host can have any number tenants, at
any one time, keeping full promises, up to and including the valency of the host resource
promise.

There is an exclusivity between a tenant and a resource, which is a question of
definition. Tenancy with a superagent scales like any other promise (see section 7.8.2).
When we speak of a tenancy, it refers to a single relationship, even though an agent might
be engaged in multiple similar tenancies.

Example 190 (Horse rider or jockey). A rider on a horse is a tenant of the horse. A
rider cannot ride a herd of horses, at the same time. Moreover, the rider and horse are
not joined by encapsulation, forming the embodiment of a superagent. A driver in a
car however, is a tenant of the car, and is encapsulated by it. The car is a tenant of the
driver’s direction. Hence, while the two have independent agency, they seem to form an
encapsulated superagent.

394 CHAPTER 7. SCALING OF AGENTS AND THEIR PROMISES

renter

broker

renter

host

resource unit

tenant

host

tenant
office 1

office 2

resource unit

office block

tenant

host

Figure 7.18: Identifying tenants and hosts correctly requires us to follow the tenancy law
carefully. In each case, the arrows point towards to host resource sought by the tenant.(1) A renter
may be a tenant of either an office block (providing multiple offices to multiple renters), (2) A
renter may be a tenant of a broker (providing multiple client offices to multiple renters), (3) An
office block or single office may be a tenant of a broker (offering multiple renters as a resource)
to multiple office blocks or office.

Example 191 (OSI model). In the OSI network model, the layers from L1-L7 form a
tower of dependence, in which network resources (at the bottom) are shared out between
different applications and users which are tenants of the basic service. These layers
farther up the stack depend on the lower layers, hence the arrow of tenancy points down
to the L1 physical layer. L2 is a tenant of L1, L3 is a tenant of L2 and so on.

Network encryption is a tenant of L3, and computing applications are tenants of the
encrypted stream.

When these layers are implemented as encapsulations, the tenancy increases into
the core of the encapsulation, and the host is the outside part. This seems to be the
opposite of the way we are taught to think about networking, from a software engineering
perspective.

Lemma 39 (Causation is partially ordered by pre-requisite dependency). Promises and
intentions may be partially ordered by conditional dependencies, from the conditional
promise law. This leads to a hierarchy of directional intent, for fixed semantics.

We can distinguish tenancy from simple scaled agency by this partial ordering of
tenants to hosts in the direction of a named resource. However, in most cases, the law

7.9. OCCUPANCY AND TENANCY OF SPACE 395

of complementarity of promises allows us to transform one tenancy into the reverse
relationship interpreted as a different promise. In either case, the orientability of tenancy
gives agents topological ‘hair’ which can be combed in a certain direction, as a vector
field.

7.9.3 FORMS OF TENANCY

Let’s look at some familiar exemplars to see how this general pattern is realized in
different scenarios.

• Club membership, or passenger with ticket

The issue of club membership is one where an agent associates itself as one of
a group of typed agents: a vector promise directed to a specific host. The host
offers the tenant a membership, and the tenant accepts the membership lease.

C → membership fee (7.52)

R → membership credentials (7.53)

f(C,R) → benefits and services (7.54)

Membership in a club is a label, i.e. a property of an agent. However, in the case
that a separate agency validates this label as evidence of an association, we can
view the members as guests of the hosting club. The condition C is typically
some kind of subscription, the membership itself is promised with a badge or
access credentials, and the additional services that accompany membership require
showing of the credentials.

If a club is exclusive, then the promise of +R has finite valency, else it has infinite
or unlimited valency.

• Employment An immediate corollary of membership is employment at an orga-
nization.

C → work performed (7.55)

R → employee status/badge (7.56)

f(C,R) → benefits and wages (7.57)

In this case, an employee is a tenant of the hosting company that pays for mem-
bership with his/her daily work. Tenancy is fulfilled by access or credentials (the
company badge), and benefits include wages, lunch, travel costs, etc. Tenancy is
always symbiotic, by nevertheless asymmetrical. The relative values of C and
f(C,R) are in the eyes of the beholders. When trading promises, what is valuable

396 CHAPTER 7. SCALING OF AGENTS AND THEIR PROMISES

to one party is usually not valuable to the other, else they would not be motivated
to trade.

• Privileged access (territorial access)

A further corollary is the use of credentials to gain access to territories, e.g. foreign
visas, password entry, identity cards, etc.

+C → identity credentials (7.58)

−C → authentication/access control (7.59)

R → access passport/visa (7.60)

f(R) → territorial access/resources (7.61)

• Shared exclusive resource usage (multi-tenancy)

Now consider the case where we add a finite valency to a limited resource, as well
as a condition of fair sharing. A fair sharing promise, up to a maximum valency
of n, becomes an additional constraint on the host, of the form:

+Rj#n
∣∣∣ n∑

i

Ri ≤ R, (7.62)

for each qualifying tenant TENANTj , paying its tenancy cost Cj .

See figure 7.19

T

T

T

T

T

H

Figure 7.19: Tenancy of a singular resource by multiple agents. This is the same as membership,
and containment. If multiple tenants occupy the same space, then the host effectively promises
independent constituencies, so it has internal structure.

7.9. OCCUPANCY AND TENANCY OF SPACE 397

So the total promise set becomes:

HOST
+Rj#n

∣∣∣ Cj , (∑n
i Ri≤R)

−−−−−−−−−−−−−−−−−→ TENANTj (7.63)

TENANTj
−Rj#m−−−−−→ HOST (7.64)

TENANTj
+Cj−−−→ HOST (7.65)

HOST
−Cj−−−→ TENANTj (7.66)

where m < n by necessity due to the valencies. Services f(C,R), based upon R
might be subject to additional constraints, but they are also naturally limited by
the constraint (7.62).

• Representation by proxy (spokesperson)

In some cases a hosting agency’s purpose is to be a proxy or representative for a
client. This is the case for modelling agencies, writers’ agents, sales representa-
tives, public facing spokespersons, and even accountancy firms. Examples include
‘Intel inside’, goods on a shelf in the shop that represent their brands.

In this case, the value added service to signing up is the representation of the
tenant itself:

+f(C,R)→ TENANT representation (7.67)

Representation or brokering for the tenant does not necessarily imply constraints
on the tenant’s autonomy (this depends on other promises). This is not exchange
of the tenant, like sending a letter, or transporting a passenger. Notice, furthermore,
that nothing promised here can prevent the tenant or host from acting as separate
entities in other ways.

• Catalysis (special semantic environments)

In a chemical process, some tenants need the help of a tailored environment to
make a transition to a new state. A host plays the role of catalyst

A pit-stop for tyre change, or a port/dock for loading and offloading, or repair of
transport vessels.

In the human realm, start-up labs and incubators are catalysts for companies and
biological processes. The womb is a host for infant morphogenesis.

In each case f(C,R)

Example 192 (Multi-tenancy). Users are tenants of multi-user software, logging into
walled communities with login credentials. Processes are tenants of operating systems.
Operating systems are tenants of computer hardware. Computers are tenants of networks
and datacentres.

398 CHAPTER 7. SCALING OF AGENTS AND THEIR PROMISES

7.9.4 TENANCY AND CONDITIONAL PROMISES

It should already be apparent from the definition of tenancy, in section 7.9.1, that there is a
likeness between the pre-condition for tenancy (denoted C) and the resource relationship
(denotedR). From the conditional promise law[BB14a], a conditional binding to provide
service S takes the form

AT
+b−−→ A1,

A1
S|b−−→ A2

A1
−b−−→ A2

}
' A1

S−→ A2 (7.68)

Notice how the exchange of the condition has the same structure as the tenancy relation-
ship. This is because both are examples of a generic client-server relationship, based on
vector promises.

This can be formalized this further to show that a tenancy is really a conditional
promise (see figure 7.20).

H
+R−−→ A? vs A

−c−−→ D (7.69)

T
−R−−→ H vs D

+c−−→ (7.70)

H
+f(C,R)|−R−−−−−−−−→ T vs A

+b|c−−−→ A? (7.71)

Thus the tenant is the assumed recipient of functional promises derived from the tenancy
relationship, whereas in a general conditional promise this is unspecified.

Note, we shouldn’t worry too much that the sign of the +R maps to a −c, as the
complementarity rule (see [BB14a], section 6.2.2) allows us to re-interpret the signs.
For example, +R could represent the active garbage collection of resources, while −R
represents quenching with resources. Similarly, +R could represent employment, while
−R is work done to fulfill the employment moniker. In both these cases, the + promise
takes on the character of a receipt of service, often associated with − promises.

The tenancy relationship is just an extended version of the basic client-server rela-
tionship, with the special focus on identity122.

7.9.5 REMOTE TENANCY

If we consider the case in which tenancy is not between agents that are actually adjacent
to one another, then the promises are delivered by proxy, in the sense of a delivery chain
(see [BB14a], section 11.3, and figure 7.21).

When carried out via proxy, every adjacent node in a connective path through the
adjacencies of the carrying spacetime becomes a possible point of failure or loss of
integrity, and the cost of promising explicit integrity increases as the square of the
number of agents along the path taken via adjacent agents.

7.9. OCCUPANCY AND TENANCY OF SPACE 399

T

H

A

D

?
?

(a) (b)

Figure 7.20: The likeness between tenancy and a conditional promise involving a third party.

Host

Tenant

Figure 7.21: Promising tenancy virtually, over a substrate of truly adjacent intermediaries, often
requires the distributive rule adds to the complications at the finer-grained scale, and scaling away
these details requires implicit trust.

7.9.6 ASYMMETRIC TENANCY

The semantics of tenancy are always asymmetrical, by definition. Adjacency is usually
symmetric and mutual, at least when locations are equally weighted. However, if a
superior location is next to an inferior location, according to some weighted impor-
tance ranking, then the symmetry is broken, e.g. pilot fish surrounding a whale, shops
surrounding a mall. Unifying locations like malls, hubs, planets are natural host-roles
to shops, spokes, and satellites, regardless of their relative size, because they connect
agencies into an accessible nexus. Their ‘size’ may be thought of in terms of their
network centrality[BBCEM10], for example, which gives them semantic importance.

400 CHAPTER 7. SCALING OF AGENTS AND THEIR PROMISES

Lemma 40 (Adjacency is a form of tenancy, or tenancy is ‘rich adjacency’). By sym-
metrizing over the host-tenant promises, and directing unspecified promisees to mutual
neighbours, we reproduce adjacency.

H
+R−−→ (A? = T) , T

+R−−→ (A? = H) (7.72)

T
−R−−→ H , H

−R−−→ T (7.73)

H
+f(C,R)|−R−−−−−−−−→ T , T

+f(C,R)|−R−−−−−−−−→ H (7.74)

which reduces to

H
±R,f(C,R)−−−−−−−→ T (7.75)

T
±R,f(C,R)−−−−−−−→ H (7.76)

Thus R plays the role of adjacency, and identifying R→ adj and f(C,R)→ ∅, we see
that adjacency is equivalent to mutual tenancy in its weakest form.

7.9.7 SCALING OF OCCUPANCY AND TENANCY

The ability to use space and time in a functional and operational way is the key to building
organisms and organized processes. When we speak of scaling these semantic forms,
we implicitly expect to preserve symmetries, asymmetries, and functional relationships,
while inflating the overall size of a semantic space by introducing more agents. Coarse
graining should then allow us to see the functional equivalence of the larger and the
smaller system.

The asymmetry inherent in the ideas of occupancy and tenancy suggests that we
are not generally going to see scale-free phenomena. What characterizes tenancy and
occupancy is the retention of a differentiated cooperative relationship between agencies.
Specific agents are bound together with intentional directionality. This contrasts with the
idea of absorbing new agencies into a singular agency.

Example 193. In a business partnership, or symbiosis, businesses or organisms retain
their separate identities and work together for mutually beneficial returns. In a merger
or acquisition, one company or organism subsumes the other, hoping to control it without
worrying about explicit cooperation.

The homogeneity of host-tenant semantics often play a role in the coordinated,
functional usage of space. Long range order helps us to utilize space in a regular way.
Without it, many aspects of space and time are simply opportunistic.

7.9. OCCUPANCY AND TENANCY OF SPACE 401

Example 194 (Parking lot). In a parking lot, the spaces need to be homogeneous in size
else you might not be able to park your car in just any space. The same applies to the
width or refrigerators, washing machines and kitchen appliances, block and sector sizes
on disks.

We need to account for both strong and weak couplings, homogeneity and inhomo-
geneity, to understand the wealth of possibilities in the world around us.

7.9.8 EXTENDING TENANCY WITH STRUCTURAL MEMORY

Homogenization is a forgetting process, while inhomogeneous differentiation encodes a
memory into spacetime. In a semantic spacetime, memory is encoded through promises,
and structure might refer to any one of the aggregation, residency, occupancy and tenancy
candidates.

Let’s contrast the ideas of scaling by absorption and tenancy more carefully. Consider
the two scenarios in figure 7.22, which contrasts a symmetrical form of cooperation (a)
with an asymmetric tenancy configuration (b). The solid circles represent agency scales,
forming various levels of superagency.

(b)(a)

Figure 7.22: The scaling of membership can retain a memory of its process. The introduction
of an agency scale can introduce artificial asymmetry. In (b), a promise binding is made to
the superagent, but this has yet to be realized by a physical agency within this virtual/logical
boundary.

In the first case (a), the cooperative arrangement is completely symmetric, and no
information about the order in which the agents came together is retained in the structure.
If we assume that the tenancy binding is based on a promise with some body X , then we
may characterize this arrangement by:

Ai
±X−−→ Aj , ∀i, j = 1, 2, 3, 4. (7.77)

Ai
±C(X)−−−−→ Aj (7.78)

402 CHAPTER 7. SCALING OF AGENTS AND THEIR PROMISES

We see exchange promises for ±X , and symmetrizing coordination promises C(X). In
the second case, an intermediate step is apparent which singles out a distinction between
the set As = {A1, A2, A3} and A4:

Ai
±X−−→ Aj , ∀i, j = 1, 2, 3. (7.79)

Ai
±C(X)−−−−→ Aj ∀i, j = 1, 2, 3. (7.80)

As
±X−−→ A4 (7.81)

In this case, we see a memory of the structure which sees A4 joining an already estab-
lished agency. As yet, the agent A4 is not completely symmetrical with the other three.
The asymmetry of intent remains, although an observer watching how these promises are
kept might not be able to tell the difference between scenarios (a) and (b). This depends
on how we interpret the promise between A4 and the superagent As. There are two
possibilities:

• A4 binds distributively, assuming that each of the agencies A1, A2, A3 ∈ As

makes individual promises so as to behave symmetrically (by virtue of (7.80)),
allowing:

A4
±X−−→ Aj ∀i, j = 1, 2, 3 (7.82)

The addition of these promises completes the symmetry that turns scenario (b) into
(a), eliminating the memory of their inequivalence to an observer, and absorbing
A4 effectively into a cooperative entity. Regardless of how a partial observer
might draw its superagency boundaries, it is now able to identify a symmetrical
role by cooperation (see [BB14a]) between all four agents. This exercise gives us
a clue about what absorption means, in a formal sense.

• A4 binds only to a single representative of the collective As. This remains
asymmetric, and we would consider A4 to be a non-resident occupant or tenant of
As. The memory of the inequivalence is coded into the intentional behaviour, by
promises.

These figures illustrate how the promise configurations document the history by which
an arrangement of agents was constructed, and allow an entity formed by multi-layered
cooperation to retain a memory of past states.

What we see, in figure 7.22, is that adding promises can effectively remove asymme-
try between host and tenant, meaning that tenancy can be eliminated by ‘acquiring’ an
agency123. However, it is important to also consider scaling in which the tenant never
becomes a part of the host, i.e. we maintain the strict asymmetry, as this implies no loss
of autonomy between the tenants.

7.9. OCCUPANCY AND TENANCY OF SPACE 403

7.9.9 SCALING OF THE TENANCY LAW

Now, let’s see how the extended scaling of internal structure in either host or tenant
affects the promises made in a tenancy relationship. This scaling applies to all promises
between coarse grains, not just tenancy promises.

As the number of subagents in internal structure grows, it becomes natural to consider
them both as embedded subspaces of the surrounding semantic space. Such a subspace
may be either a solid lattice, with long range order, a gaseous state, or forest-like
(molecular).

Consider the full tenancy relationship:

Asuper
+X#n |C−−−−−−→ Atenant (7.83)

Asuper
±C−−→ Atenant (7.84)

Asuper
+f(C,X) | −X−−−−−−−−−→ Atenant, A? (7.85)

Atenant
−X#m−−−−−→ Asuper (7.86)

Suppose we try to add agents in the manner of a scale perturbation. We preserve
the implied roles (the tenant Atenant, and host Asuper), and the structure of the binding
between them. What features would change, if we now attempted to scale this relationship
by adding new internal structure to either host or tenant? With the further addition of
Apert, assuming this adds to the valency, this becomes:

Asuper +Apert
+X#(n+1) |C−−−−−−−−−→ Atenant (7.87)

Asuper +Apert
±C−−→ Atenant (7.88)

Apert
±C−−→ Asuper (7.89)

Asuper +Apert
+f(C,X) | −X−−−−−−−−−→ Atenant, A? (7.90)

Atenant
−X#m−−−−−→ Asuper +Apert (7.91)

Hence, the symmetry and internal structure of the superagent has a material effect on
the binding properties in a tenancy arrangement. This is a formal scaling, but it does not
really explain what happens to communicate intent across a coarse grain, as discussed in
earlier.

The exterior promises of a host need to scale to provide valency n binding sites. The
first issue to satisfy is the valency binding constraints, we seem to need m ≤ n in the
tenancy promises. There are several ways this might be solved:

• One subagent is allocated to one tenant.

• Subagents host multiple tenants each.

404 CHAPTER 7. SCALING OF AGENTS AND THEIR PROMISES

• Several subagents working together service a single tenant.

Similarly, we have to answer the question: how does a tenant know with whom
it should interact? Will tenant and host subagent be able to locate one another (see
figure 7.13)? Referring to figure 7.13, and the previous discussion of promising at
superagent boundaries in section 7.8.2, we ask: should external tenants bind (a) directly
to independent subagents, or should they (b) go through brokers and interfaces?

Example 195. A tenant in figure 7.23 might represent a person or a population looking
for an unoccupied apartment through a fronting organization; or a car looking for a
parking space in a collection of parking lots, a cubicle in an office space, and so on.
While the superagencies like apartment blocks and parking lots formally promise space
(valency), the potential tenant needs to locate the empty slots in order to bind to them.

tenant #1

tenant #2

Figure 7.23: Tenants, èn masse, can contact a front organization like a website to search for
housing, but still need to connect with the agency’s internal components (individual landlords)
that can provide actual rather than logical service. e.g. a person needs to make direct contact with
the apartment block that offers apartments to rent, not merely the superagency of ‘real estate’
which has no physical reality. This if one tenant is asking for more service than a single host can
offer, an issue becomes whether the service can be delivered in practice, in spite of the apparent
size of the superagency.

7.9.10 DISTRIBUTIVE SCALING OF TENANCY RELATIONSHIPS

In order for an outside agent to form an adjacency or a tenancy binding to subagent,
its has to know of the other’s existence124. In all cases, tenant and host need to be able
to locate one another, or be introduced, in order to communicate, both form a promise
binding and to keep the promise. There are only two possibilities here:

7.9. OCCUPANCY AND TENANCY OF SPACE 405

• Host and tenant are directly adjacent (see figure 7.13a).

• Host and tenant can communicate with the aid of intermediaries (see figure 7.13b).
This requires cooperation between the subagents.

The superagent coarse graining directory plays the key role here in making these details
transparent.

Example 196 (Virtual network). Viewing virtual or switched private networks as ten-
ants of a series of hosts that cooperate as superagency: this requires tenancy at each
independent host, and coordination between them. In addition, the agencies are con-
nected by adjacency promises between the chained carrier hosts (see figure 7.24), or
virtual adjacencies via intermediaries or proxies (see [BB14a], section 11.3). The scaled
tenancy relationship allows tenant spaces to appear contiguous, even though they might
be distributed. Structures like overlays and tunnels act as virtual adjacencies, which rely
on a substrate which we coarse grain away.

net tenant 2

net tenant 1

net hosts

1 2 1 2 1 2 1 2 1 2

Figure 7.24: Shared network requires the distribution of the entire tenancy binding. The
two hosts cooperate on handing over their resources to make a collaborative channel, while
maintaining the integrity of the segmentation of tenants.

To scale tenancy on the host side, there are some basic requirements:

Lemma 41 (Distributed tenancy law). In order to distribute a tenancy to a collection of
autonomous hosts subagents, there must exist:

• A cooperative agreement between all subagents acting as hosts to share its local
resources according to the collective multi-tenancy agreement.

• An index for adjacency coordinates of the host subagent, if not directly adjacent.

Example 197. A customer of a bank can visit any branch to access their account, by
mutual cooperation between the branches, else the customer has to deal directly with

406 CHAPTER 7. SCALING OF AGENTS AND THEIR PROMISES

their home branch. (Remarkably, this is still an issue even in 2015, in spite of the prowess
of information technology.)

Example 198. Binding sites on cells, immune cell responses, MHC etc, allows a chance
encounter for antigen to locate a cellular tenancy.

7.9.11 THE SIGNIFICANCE OF FUNCTIONAL ASYMMETRY

The economics of tenancy (regardless of the currency used, e.g. energy, money, prestige,
etc) brings tenants and hosts together, leading to an asymmetric relationship (see figure
7.25). Functionality is associated with broken symmetry: the default state of maximal
symmetry has very little going for it to attach semantics to. As seen in earlier sections,
pure scaling of agency, in the absence of constraints, does nothing to break symmetries,
and hence leads to a maximal radial (spherical) symmetry, like a cell; however, boundary
conditions from the environment break symmetry allowing functional behaviour. There
are many examples of this in the world of biological organisms.

Example 199 (Reproduction). Reproductive organisms begin as a single egg, which
grows and differentiates. Initially it grows symmetrically, dividing into a ball of cells,
then boundary conditions from the environment during morphogenesis create preferred
directions with chemical signals. This leads to dorsal-ventral asymmetry, etc. Selective
apoptosis leads to further local asymmetries, with functional consequences, such a
fingers. Cephalization (formation of a head) is associated with the appearance of brains
in the nervous systems of organisms, and the brain is at the front where the organism
meets and senses its environment.

Example 200. The shift from a spherical symmetry to axial and bilateral symmetries
has happened prolifically in biological evolution. Axial symmetry is typically associated
with orientation of an organism with respect to a flow, e.g. a jelly fish. In computational
terms organisms orient along their input-output axes.

Example 201. A bottle (box, container) is usually a round axially symmetric structure,
but this is irrelevant to its function. It does not matter whether the axial structure is
symmetric or asymmetric, round, square, oblong, ellipsoid, etc. The functional shape of
a bottle only depends on one end being open to be able to receive the substance it will
contain. This asymmetry makes it bind with specificity with functional consequences.

Figure 7.25 shows organisms that can be modelled as tenancy relationships with
various levels of symmetry and asymmetry. The more decentralized organisms are, the
more symmetrical they tend to be, and the less ‘smart’, i.e.’ with functionality that
is more uncoordinated. In biology, brains are associated with ‘cephalization’, or the

7.9. OCCUPANCY AND TENANCY OF SPACE 407

forebrain

midbrain

hind brain

input function output

processinterfere

(a) (b)
(c)

(d) (e)

(e)

(g)
(f)

Figure 7.25: Functional behaviour is associated more with symmetry breaking than with residual
symmetry. Maximal symmetry or disorder may be regarded as the default state for structures,
with minimal cooperation, e.g. starfish. Cooperation with exterior forces order, and symmetry
breaking, e.g. cephalization and axial symmetry.

evolution of asymmetry to deal with an axis of input-output. Segmentation along that
axis (e.g. figure 7.25d,e,f), or the formation of cells or functional compartments can form
through non-linear transmission of boundary information in the manner of Bénard cells,
from the presence of a preferred length scale, and aids in semantic differentiation. The
segments then often work together in the manner of a host-tenant relationship, binding
through specific functional promises. Thus scaling of tenancy (a strong coupling regime)
looks very different to the scaling of simple aggregate residency, such as how herds,
swarms, and societies scale (weak-coupling regime).

Example 202 (Cells). Mitochondria and cells co-exist, with mitochondria residents of
their superagent cells. Herds and flocks scale in the manner of residency, but remain
loosely coupled without direction intentional ‘encoded’ functional cooperation.

The scaling of intentionality tends to promote asymmetry, through specialization.
This places much greater emphasis on strongly coupled, and hence fragile, semantics. It

408 CHAPTER 7. SCALING OF AGENTS AND THEIR PROMISES

is no longer sufficient to have safety in numbers, as in a herd or tissue design. Functional
uniqueness, like the components in a radio, bring fragility125.

7.9.12 TENANCY AS A STATE OF ORDER

The structural memory of tenancy leads to asymmetry, but the long range effects of that
asymmetry depend on the phase in which spacetime elements find themselves. The phase
becomes a part of the strong or weak coupling constraints.

Consider first tenancy in gaseous state. If agents that are seeking to bind in some
kind of tenancy relationship are in a gaseous state, it is easier for them to rearrange
and attach directly to a host binding site. Conversely, this makes their meeting more
haphazard, since no agent is in a known location. Agents are free to move, so it is harder
to trust their identity. On the other hand, they can move around and form adjacencies
directly without the need to hand off to intermediaries.

Any spacetime location that is not fixed is in a gaseous state, as a free agent. In
technology, this applies to humans, mobile phones, vehicles, satellites, etc There should
be sufficient similarity between agents that they can cooperate? Else they will remain
inert noble gases.

Example 203 (Internet phase). The Internet, for example, appears superficially solid,
with all of its cables and boxes, but its lack of a robust adjacency relationships makes it
just a slow liquid (like the amorphous solids or pitch or glass). Moreover, the lack of a
fixed spatial coordinate system means that it has a cellular structure on a large scale:
it has small regions of brittle coordinatization, loosely floating in a structureless soup.
Names and addresses have no global significance within the scope of a symmetrical
pattern, and hence have no long range predictive value.

In contrast to simple absorption, any cooperative tenancy configuration must bring
additional stability to the combined system of agents in order to persist: a symbiosis
which confers a positive advantage to being a solo agent. This suggests an instability
leading to the condensation of cooperation, first into amorphous liquids and swarms, and
then into more rigid crystalline structures. The binding of a tenant and a host into an
H − T molecule is locally solid, but might be globally a gas. One could imagine a phase
transition in which a bi-partite crystal was formed when scaled, with the structure of an
alloy, formed from donor and a recipient.

As a general principle, flexibility and agility require fluidity; but, in order to stabilize
semantics, time or change need to be eliminated. The more time plays a role, the less
significant the information is. This points us towards solid structures.

Next, we consider tenancy in a solid state The solid state is familiar to us through
regular spacetime structures including hotels, parking lots, warehouses, hard-disks, and

7.9. OCCUPANCY AND TENANCY OF SPACE 409

computer memory, to cite a few examples. In a solid spacetime, agents are not free to
alter their adjacencies over ‘time’ (see [Bur14], section 5.12), so we trust their identities
and relative promises more easily.

At the lowest atomic levels of agency, tenancy in a solid state must lead to asymmetry
of space itself, as we’ll see in addressable structures. When agents are locked into a solid
structure, tenancy often leads to a large scale asymmetry, such as that seen in biological
organisms. This seems to have implications for being able to pinpoint functional locations.
Hence the loss of maximal, random spatial symmetry (or the rise of so-called long range
order) is associated with functional behaviours, and hence functional promises. There
are numerous ways in which functional asymmetry can manifest and materialize:

• Tenants and hosts are sufficient in number to be able to symmetrize on a larger
scale, say in n-dimensions, and give the appearance of minimal loss of symmetry,
e.g. a metallic cubic crystal, such as steel, with tenant impurities.

• Back to back, tessellating structures mixing various orientations are a possible
solution to long range order however.

• Hierarchical structures which fill partial spaces, with self-similarity (fractals).

At coarser scales, where ‘virtual’ agencies can form tenancy bindings on top of an
underlying solid adjacency substrate. The fixed locations cannot easily change and be
replaced, so they are easy for other agents to trust local neighbours, however being locked
into a fixed number of neighbours now mean that long range promise relationships have
to be prosecuted through intermediaries (the so-called end-to-end problem discussed in
[BB14a]). The presence of intermediaries means that information integrity is now in
peril, and trust in non-local relationships is not automatic.

The tighter coupling of agents and reliance on intermediaries to transmit information
leads to the possibility of topological defects in the structure, such as crack propagation,
and sudden catastrophes. The homogeneity of a solid crystal is important, as mentioned
earlier. Re-usability of space suggests quantization of resources in a ‘first normal form’.
The relational data normalization rule of first normal form is about the re-usability of
space[Dat99, Bur04d].

Example 204 (Parking space entropy). In a parking lot, the spaces need to be the same
size else you might not be able to park you car in just any space. The same applies to the
width or refrigerators, washing machines and kitchen appliances, block and sector sizes
on disks.

410 CHAPTER 7. SCALING OF AGENTS AND THEIR PROMISES

7.10 MULTI-TENANCY, AND CO-EXISTENT ‘WORLDS’

Multi-tenancy in information systems is one of the key challenges of operational effec-
tiveness. As the custodian of the shared resource, the host has to be able to keep promises
on an individual basis, while still being constrained by the behaviours of all its tenants.
This means that there will be contention at the host. Moreover, the host is often the seat
of mediation between the tenants and the outside world, acting as a gate-keeper, and
sometimes as a barrier or firewall between them.

How the host isolates these resources from one another is one of the key issues in
a functional space. One tenant should not be able to bring down another through its
misbehaviour, either directly or through the host as proxy. This is the thinking behind
insulated private rooms, isolated electrical circuits, multi-user systems and even virtual
machines in computing. In these scenarios, the special semantic role of the host makes it
vulnerable: a ‘single point of failure’.

7.10.1 DEFINING MULTI-TENANCY

What are the promises that make a spacetime multi-tenant? See the example figure 7.24.

Definition 170 (Multi-tenancy at scale M). Consider a agency scale M =

{H,T1, T2, . . . , Tm} for some m > 1. An agent H is said to exhibit multi-tenancy
if a number of autonomous agencies {T1, T2, . . . Tm}, called the tenants (making no a
priori promises to one another) independently form a tenancy binding to H , in the role
of host, for a share of a single resource R that H promises.

H
+R#n|C−−−−−−→ A?

H
−C−−→ Ti,

Ti
+C−−→ H

Ti
−R#1−−−−→ H

H
+f(C,R)|−R−−−−−−−−→ Ti

m ≤ n

∀i = 1 . . .m (7.92)

The issues for multi-tenancy include all those for general tenancy, and also segregation,
mutual isolation, addressability of tenants, scaling of naming, sharing of resources
between tenants, and the possibility of tenants sharing amongst themselves, without
involving the host.

7.10. MULTI-TENANCY, AND CO-EXISTENT ‘WORLDS’ 411

7.10.2 BRANCHING PROCESSES: SUBROUTINES, WORLDS, AND HI-
ERARCHY

A brief digression on understanding the dynamics of aggregation of tenants around a
host, introduces the notion of a branching process (and its inverse, the merge, confluence
or aggregation process). Branching is what happens as the possible states or locations
of a system fan out and increase in number from n to n′, where n′ > n, selecting a
preferred direction, either over space or in time.

A branching process is an evolutionary sequence of changes in which the level
segregation or multiple agency increases either in space (over distance) or time (spacelike
hypersurfaces) (see figure 7.26). The branch points are associated with instabilities of
the system both dynamically (bifurcations) and semantically (if-then-else reasoning).

HOST TENANTS

Funnel

Delta

Fan /

Mouth /

Figure 7.26: A schematic branching process, showing asymmetry of process.

Branching has an arrow of directionality from the root, along each local vector to
nearest neighbour, which marks a gradient from fewer to more states. Thus as the process
unravels (in time or space), the number of outcomes increases, favouring an increase in
system entropy, and decreasing the likelihood of arriving at any chosen one outcome.
The structure is not necessarily linear in total: it could be radial (like a Cayley tree,
or snowflake), but there is a coordinate direction in which the number of locations is
increasing, quasi-exponentially.

• Branching is associated with fine-graining, sharing from one to many, reason-
ing about different possibilities, and it is also about increasing specialization.
Branching is a + promise of the host.

• Merging, the inverse of branching, is associated with generalization, coarse grain-
ing, averaging over possibilities, and shared or common resources. Merging of
aggregating is a − promise of the tenant.

412 CHAPTER 7. SCALING OF AGENTS AND THEIR PROMISES

As a companion to branching, we also have a notion of hierarchy, which is sometimes
confused with it. Similar to branching, hierarchy comes about by ranking of states. Thus,
if one assigns greater importance to having more or less states, one could call a branching
process a hierarchy, as the branching asymmetry implies an order from head to tail.

Definition 171 (Promise hierarchy). An iterated process, over a series of promises πi,
in which the promises πi exhibits asymmetric semantics, with respect to the promiser
and promisee. Hence the process generates a chain or sequence of ranked or ordered
elements (agents), in the manner of a semi-lattice.

Example 205 (Promise dependency and broken symmetry). For example, a promise to
use (dependency, requirement, etc) is asymmetric. Promises of mutual adjacency, on
the other hand, have symmetry, hence there is no preferred direction for semantics. A
branching process over mutual (symmetric) adjacency does not form a hierarchy, only a
tree or forest structure.

Definition 172 (Branching hierarchy). A branching process in which there is direction-
ality of both dynamical branching and semantic intent.

Example 206 (Taxonomy as a symmetry breaking hierarchy). Dependency trees, and
taxonomies form branching classification hierarchies.

Because the branching of a single host into multiple tenants has the same asymmetry,
clearly branching is a key process in interpreting multi-tenancy. It is the inverse of the
accretion of multiple tenants to the single host. The converse of the tenancy law is that
tenancy is a branching process of host resource usage, branching from one host into
multiple tenants, and thenceforth. Semantically, branching may come about in a number
of ways:

• Through a breakdown of cooperation between existing agents, leading to a fine-
graining126 or fragmentation of roles.

• As a spawning of new agents, increasing in number.

Dynamically, the branching can be either

• Due to a change in the receiver, e.g. a (-) use-promise no longer aggregates agents.

• Due to a change at the source, i.e. a (+) promise now differentiates agents.

Branching processes lead to proliferation of ‘parallel worlds’ (disconnected subspaces),
and possibly a change of dynamical scaling. Keeping track of these worlds becomes
a divergent problem of knowledge management, without a counter-process. If there is

7.10. MULTI-TENANCY, AND CO-EXISTENT ‘WORLDS’ 413

exponential growth of agency, this may be intractable, in the sense of computational
complexity.

Branching processes may be examined through the lenses of semantics and dynamics:

• Semantic: Disambiguation, tenancy, security, etc.

• Dynamic: Isolation, bifurcation, cell division, renormalization, etc

Figure 7.27 contrasts a few of the scale issues mentioned thus far. Notice how, at what
might be perceived in one way, at one scale, could be perceived another way from the
perspective of a different scale.

Figure 7.27: Dynamical and semantic aspects of multi-tenancy eventually merge through the
semantics of scaling. This illustrates the importance of scale in the total semantic content of an
observer’s realm of assessment.

7.10.3 TENANT SEGREGATION, AND RESOURCE MULTIPLEXING

A host shares its resources into slots, which can be occupied by a number of tenants in a
number of ways:

• Segmentation or partitioning of adjacencies in an underlying graph, or spacetime.

• Labelling of regions by promises, marking gradients (stigmergic typing of agents).

• Growing and spawning new agents.

Example 207. Division multiplexing is a common strategy in hosting:

• A parking lot (host) divides up its space into slots that can be used by cars
(tenants).

• A hard disk (host) divides its surface platter into sectors and blocks, for user-data
(tenants).

414 CHAPTER 7. SCALING OF AGENTS AND THEIR PROMISES

• A time-sharing computer operating kernel (host) divides up its computational
resources into processes that can be used by jobs (tenants).

• Memory address spaces (host) divide up addresses into pages, for occupation by
process data (tenants).

Isolation of a subspace at the host can come about by two means:

• The absence of adjacency between the tenants.

• The absence of reachability: i.e. an agent cannot be reached because it has:

– No adjacency path/route, with or without the help of intermediaries (vector
promises).

– No name or (unique) identity, or address, to locate it by (scalar promises).

Thus, both scalar promises (e.g. names) and vector promises (e.g. adjacency) play roles
in the segmentation of shared spaces.

7.10.4 MOUTH FORMATION AND GATEWAYS

The picture of spacetime described in most computer science (see, for instance, Milner’s
bigraphs [Mil09, Bur14]) represents a containment view of the world; such a representa-
tion is not an efficient way of addressing objects for ease of locating them. On the other
hand, it is a useful way to describe the semantics of interfaces.

One of the values of the concept of multi-tenancy is the ability to have the host act as
a broker for mediating contact with the tenants. We see this in many everyday scenarios:

Example 208. Interface scenarios:

• A security checkpoint at the mouth (or head) of a host building, or secure area.

• Passport control at the airport interface of a host country.

• Gated access via host to locked tenant storage units.

• The eyes and mouth of a host organism mediate contact to the tenant organs:
brain, stomach, etc.

A tenancy leads to a form of superagency seeded on (and mediated by) a host. The
host acts as a kind of moderator or proxy for certain communications with the outside
world, though it might not be the only source of adjacency, if the scale of the tenancy
relation is based on promises that are made over a fabric of lower-level adjacency. The
axial symmetry induced by a gateway can be compared to other functional spaces (as
discussed in section 7.9.11).

7.10. MULTI-TENANCY, AND CO-EXISTENT ‘WORLDS’ 415

7.10.5 TENANCY FORMATION AND PRIVACY AS AN ADDITIONAL

PROMISE

There are two questions concerning tenant segmentation and containment in a hosted
superagent:

1. Who gets to decide whether a tenant or member can join a hosting collective?
This might simply be part of the evolution of the design, or it might be a decision
made by the host, or indeed all of the tenants in concert.

2. How are tenants kept disjoint from one another, and how is access to the tenants
moderated? The connectivity involved in a tenancy with a host favours a radial
symmetry between host and tenants. This can be folded (see figure 7.28) leading
to the functional asymmetry.

The default assumption is that there is no cooperation between tenants:

Assumption 9 (Default null adjacency promise for tenant segregation). The default
adjacency state, at scale M , between tenants is no adjacency. This is most easily
accomplished in a spacetime gas phase. If tenancy is built on a connected lattice in the
first instance, then this isolation might require additional promises to block adjacency.
However, the latter is a losing strategy: the amount of information needed to ‘lock down’
every agency is too large. You need to compress the pattern into a list of exceptions.

Independent semantics of tenants might well go beyond this simple dynamical
observation however. Segregation of assets might be viewed as being an important
requirement of tenancy. Naturally, this promise can only be kept by a single agent, hence
only host-mediated resources can be segregated as a promise to tenants.

(b) axial symmetry(a) unfolded (c) head−mouth

Figure 7.28: How the preferred host role leads to an axial symmetry. From spherical sym-
metry (a), a external flow selected a direction (b), which eventually organizes along an axis.
Segmentation along the axis then marks out different levels of hierarchy in multi-stage tenancy.

416 CHAPTER 7. SCALING OF AGENTS AND THEIR PROMISES

If resources are mediated by the host, as is natural for this reason, it can also act
as a moderator, gatekeeper, or security monitor. The point of a gatekeeper is to limit
adjacency to a narrow bottleneck, or checkpoint (see figure 7.29). While this does forces
a fixed scale limitation on the choke point, it simplifies the semantics of authentication.
The host has to be able to verify the identity of tenants to keep its promises. Having
a gatekeeper interface at the host is a simple way to do this. This helps to turn the
branching process of the tenancy into a hierarchy, in which the host is the gatekeeper to
upper levels, mediating contact to the hosts below.

host

tenant 1

tenant 3

tenant 4

tenant/host 2

head

brain

mouth

gatekeeper supporting

services

Figure 7.29: Stacking tenancy branchings leads to an oriented access hierarchy. Each branch
point acts as a gateway point for accessing the tenants.

Example 209 (Lack of addressability). Many of the classic security blunders have been
due to relying on the lack of addressability, in the belief that an item that cannot be
named would not be accessed. This is a form of ‘security through obscurity’. Systems
that base isolation on prevention are much harder to police than

As an exercise to the reader, consider what promises lead to ‘secure semantics’. How
are keys or addresses for accessing tenants assessed by the host, and by users? What
agency plays the role of gatekeeper, if not the host? Implement a ‘secure’ system using
conditional promises to segregate tenants.

The functional utility of the asymmetric tenancy structure thus seems to lie the
following observation:

Law 2 (Hosting of input and output leads to axial symmetry). The functional arrange-
ment of input/output mediated by the host leads to a natural head-tail asymmetry, in
which the head is favoured in a hierarchy of longitudinal stages. This is known as
cephalization.

7.10. MULTI-TENANCY, AND CO-EXISTENT ‘WORLDS’ 417

7.10.6 SPACETIME SHARING BY TENANTS: SERIAL TIME AND PAR-
ALLEL SPACE

When tenants subscribe to a resource in parallel, they share the resources of the host.
This is called multiplexing in the resource domain. When a host-tenant network has net
valency less than zero, tenants can multiplexed in the time domain. Over-subscription of
a resource could lead to the need for time-sharing. Time division multiplexing is the way
this is done in a serial queue127.

Example 210. Time-division multiplexing (queue-processing) of an oversubscribed
service:

• Time-sharing of apartments.

• Car rental, or recycling of vehicles.

• Aircraft/bus passenger seating is only fixed for the duration of a journey.

Finite-duration promises are the key to all queueing systems.

7.10.7 MULTI-STAGE MULTI-TENANCY, AND FABRICS

This section is a continuation of the iterated solid state tenancy structures, used for
locating agent addresses, described in section 7.8.7. I return to the topic to emphasize
that iterated multi-tenancy leads to important scaling properties, both in the information
technology realm and in the biological realm. Network fabrics include toroidal networks,
Clos networks, and Batcher-Banyan networks[Nar88]. This example is about the popular
2x2 Clos networks.

Example 211 (Clos network). The example of a 2-valent Clos network is instructive
because it is a dynamically simple case that is increasingly used in datacentres. Seman-
tically, it is more complicated, because it combines multi-tenancy with multi-homing
(multiple hosts) in order to create a cooperative self-organizing structure. To make
addressing work as a repeated, tessellating pattern, each agent needs to be both a host
and a tenant for different promises.

Today, Clos networks are intimately connected with a particular implementation
involving the Border Gateway Protocol (BGP)[NLK13, Ano14]. BGP is a network
route advertisement service, or gateway service, that implements a set of promises for
promising route information between superagencies known as Autonomous Systems
(ASN)128.

Figure 7.30 shows the basic tenancy and dual homing. Two adjacencies upwards,
from each agent in the fabric (shown in bold), connect each tenant in a lower tier to two

418 CHAPTER 7. SCALING OF AGENTS AND THEIR PROMISES

redundant hosts in the tier above (for resilience and load sharing). Multiple adjacencies
downwards in a tier connect each agent, now in the role of host, to its subtenants. Thus
there are two tenancies back to back promising resources:

The characteristic of the tree structure in a Clos network is that each branch termi-
nates at a definite ‘leaf location’ with a definite and unique address. This means that
every agent in the pattern knows that ‘down’ means a specific location, and everywhere
else is ‘up’. Hence, each agent engages in two cooperative relationships, framed as
tenancies:

• R↑: tenants forward messages that don’t belong below me upwards for the host
to aggregate and deal with. This could mean routing to one of the other parallel
tenants, or it could mean sending the message out into the wider world beyond
the host’s boundary.

• R↓: hosts forward messages that belong belong me downwards to the tenant they
belong to. They know which direction to send the message, because the tenancy
requires this information to be paid up as part of the condition C.

The tenancy boundaries thus lead to progressive layers of concentric nested agency. The
agents (which are all network switches) play the dual roles of host and tenant with
respect to these different services, in different layers. The tessellating pattern of all of
these woven into a fabric allows it to scale to number of independent addresses that are
greater than the fixed valency v of any one host129.

When forwarding upwards and out, what was a host for the downward routing is now
a tenant of each of the lower layer agents that provide addressing data. So the semantics
of the roles are reversed depending on the process we consider.

A

A

A

A

A A
4321

(1) (1) (1)(1)

(2) (2)

1 2

D1

Figure 7.30: Each agent promises to form tenancy agreements with two hosts above it. Each
host is a gateway to a subordinate world.

7.10. MULTI-TENANCY, AND CO-EXISTENT ‘WORLDS’ 419

1 2

A

A
4321

2

A

A

A A
(1) (1) (1)(1)

(2) (2)

1

D

A

A
4321

2

A

A

A A
(1) (1) (1)(1)

(2) (2)

1

D

A A A A
(3) (3)(3)(3)

Figure 7.31: The structure can be replicated across datacentre superagents (Dn) Notice that
each tenant always has two adjacencies upwards, connecting it to redundant hosts. Eventually,
as a message goes up, it will reach the boundary of the Clos superagent and then the rules for
regular (solid state) addressing must change.

The promises all rely on the correct positioning of the nodes to work. In practice, the
Border Gateway Protocol is typically used to equilibrate that information and make sure
the promises can be defined relatively, with self-organizing consistency.

Keeping a simple notation for representing a pattern this complex is a challenge;
however we can illustrate the intent, along with the essential concepts of vector promises,
and tenancies. I denote the ith agent A(n)

i in tier n, either by T (n)
j or H(n)i , depending

on its role, where the indices i simply run from 1 to 2 for the dual homed hosts, and j runs
from 1 to the downward valency v. Let’s formalize the pattern using the multi-tenancy
promises. We can label the tiers by superfix (n), and the tenants/hosts within a tier
by subfix i. Without taking into account the vertical edge conditions, we can write the
tessellating mutual tenancies by the pattern:

T (n)
+R

(n)
↑ (H

(n+1)
2i−1)#2|C↓

−−−−−−−−−−−−−−→ H
(n+1)
2i−1 ∀ i = 1, 2 (7.93)

T (n)
+R

(n)
↑ (H

(n+1)
2i)#2|C↓

−−−−−−−−−−−−−−→ H
(n+1)
2i (7.94)

H(n)
R

(n)
↓ (T

(n−1)
j)#v|C↑

−−−−−−−−−−−−−→ T
(n−1)
j ∀ j = 1 . . . v (7.95)

Downward forwarding assumes that an agent will only accept an address for forwarding
if it knows that there is a path to the address below it. That information could be
hardcoded into the pattern. In practice what happens is that BGP broadcasts this

420 CHAPTER 7. SCALING OF AGENTS AND THEIR PROMISES

information upwards from the bottom to the top, so that each agent tells the two agents
above it (its redundant upward forwarding hosts) which names and addresses it can
forward to:

T(n)

f
(n)
↑ (H

(n+1)
1,2)#2

−−−−−−−−−−−→ H
(n+1)
1,2 . (7.96)

The summary of the parts may be written in terms of these vector promises:

R
(n)
↑ (An+1

i) = +forward up to An+1
i if it represents the best path (route)

R
(n)
↓ (An−1

i)#v = +forward to best path (route) ∀ i = 1 . . . v

C↑ = −R
(n−1)
↓ i.e. accept the upward forwarding from below (ACL)

C↓ = −R
(n+1)
↑ i.e. accept the downward forwarding from above (ACL)

f↑(C↓) = Inform about known addresses from below (BGP) (7.97)

Each v-valent agent is a host to the v agents below it, and a tenant of the agents above
it. The upward valency is 2. As long as we are far away from the lower edge of this
pattern, each host also knows that it has two possible routes downward to its tenants
also, because of the interwoven tenancy agreements. However, at the bottom edge, there
is only a single adjacency to the final address.

Throughout this patterns, the (-) use-promises play the role of access control lists
(ACL) for accepting data. I have suppressed most of this to avoid overwhelming with
detail; however, those details are important the security and autonomy of the fabric.
Without individual tenant control over its choices, the fabric becomes a homogeneous and
isotropic solid state space, with long range order. Certainly, this is a good illustration
of how such order is valuable, both semantically and dynamically, but it doesn’t really
explain how it comes about in practice between uncooperative agents.

When the Internet Protocol was designed, the routing of messages in this way was
not conceived in such dense and regular spaces. The Internet was assumed to be a
sparse network with clusters at the edges. Gradually, however, as the density increased,
and superagent boundaries were drawn around organizations, a cooperative agreement
protocol (BGP) was introduced for mutual benefit. The sole effect of this protocol is to
propagate homogeneity along point-to-point adjacencies. Thus, today, a Clos fabric
is implemented as a BGP multi-tenant array, just like a tenancy between two utterly
independent organizations who want to cooperate in order to forward messages within a
shared address space.

Although we think of the Internet as having a single global address space, there is
no reason why this should be the case. What makes it true in practice is the need to
cooperate between ‘peers’, i.e. between private superagents who can work symbiotically.

7.10. MULTI-TENANCY, AND CO-EXISTENT ‘WORLDS’ 421

AS1

AS2
AS5

AS4

AS3

AS1

Figure 7.32: The large scale structure of agent spacetime could easily have different coordinate
patches, falling into independent namespaces (called BGP autonomous systems (AS)). Each
superagent (AS) can choose whether to cooperate with the community of addressing or go it
alone. This has become common due to the poor scaling of the IPv4 address space, with Network
Address Translation for partial splicing at the edges.

As discussed earlier, it is the breaking of symmetries that leads to functional differen-
tiation in a structure. As a final comment on this example of a Clos regular spacetime,
we can note that there is very little differentiation. So let’s focus a moment on the natural
residual symmetry of the structure. The functional asymmetry of the Clos network is a
compelling example of how multi-tenancy orients a structure, but it has a less obvious
cephalization. The structure has no obvious brain that forms a master host for the entire
structure, but the head is clearly at the top or mouth of the outside world. The scaling
is a symmetrical interior scaling of the superagent boundary: more of a starfish than a
cephalopod.

Given such a level of long range order, and insignificant anisotropy along the up-
down left-right axes, it makes sense to study the residual symmetry. On paper, we draw
these networks as trees with promise adjacencies that cross over one another (see figure
7.33), as if they were in a two dimensional Cartesian lattice. However, we should not
be fooled by the clumsiness of a paper drawing. The fact that the adjacencies cross one
another should be a sign that this is wrong. Tree-structures have a radial symmetry, and
hence the host-tenant decomposition lends itself naturally to polar coordinates, centred
on the host.

If we allow the structure to untangle itself, by going to three dimensions (see figure
11.9), then its true structure begins to make more sense. First the dual hosting can be

422 CHAPTER 7. SCALING OF AGENTS AND THEIR PROMISES

S S

S SSLRLL RL RRS

L R

P P P P
LL LR RL RR

A

L

A A A A A A A

L L L L L L L

LL LL

LL LL

LR LR

LR LR

RL RL

RL RL

RR RR

RR RR
R

L R

L R

L R

L R

L R

L R

L

L

R

Figure 7.33: A Clos network showing redundant multi-stage multi-tenancy.

symmetrized axially, going up and down instead of just up. The then twisted pairs near
the bottom of figure 7.33 can be untwisted to form rings. What one is left with is a hollow

LL

A RL
LL

R

LRS SRR

S S
LL RL

P P P P
LL LR RL RR

A
LL LL

L L L
A A A

AAA

L L L

LLL

Figure 7.34: A Clos network showing redundant multi-stage multi-tenancy.

tube forming a toroidal geometry, with symmetrical up-down mouths at the top and the
bottom. Thus, we have eliminated the quasi-cephalization of the structure and revealed
its natural form, which has no asymmetry. It can work top to bottom or bottom to top
interchangeably. The final form is shown in figure 11.10. This tendency for us to orient
structures into hierarchies is a common habit in human affairs. However, it often leads
to scaling issues and bottlenecking of promises.

It is interesting to think about how Software Defined Networking has tried to recen-
tralize network controls with brain-like controllers. The annals of science would suggest

7.10. MULTI-TENANCY, AND CO-EXISTENT ‘WORLDS’ 423

Figure 7.35: Re-folding the radial symmetry into a non-oriented axial structure with no crossing
paths. All connections are ‘line of sight’.

this would be associated with a natural asymmetry. But where is the asymmetry in a
datacentre network fabric? Where should the brain be located in order to fulfill its roles
as a rapid correlator of sensor input, and coordinator of reaction?

7.10.8 CROSS-COOPERATION

Tenants are assumed to be initially isolated from one another by default. However, we
need to ask at what scale is this isolation true? The assumption might not be compatible
with the underlying adjacencies of spacetime, since the tenancy promises could easily be
made on top of an adjacency substrate.

Example 212. Two students sitting an exam occupy desks next to one another, with
line of sight. They make no promises to communicate, but they are physically adjacent,
not isolated. Similarly, two rival companies share offices and computing resources in a
hosting unit. They make no promises to interact, they might even promise not to interact,
but they have an underlying adjacency making the assumption ambiguous.

Segmentation, and non-interference rest on the default assumption about tenants that
they make no promises to one another, i.e. that their only notable promises are with the
host only. Sometimes separate tenancies may need to be combined. This process can be
carried out following the scaling rules in earlier sections.

424 CHAPTER 7. SCALING OF AGENTS AND THEIR PROMISES

Example 213. Several military units under a common command are combined to carry
out a mission, e.g. different NATO country members collaborate.

Example 214. The section of this document that you are reading now, and the next,
are separate tenants of the total host document. However, they would better be written
as a single section, and their isolation can be worked around by making promises to
cooperation (either through the adjacency of the host, or otherwise).

If one tenant promises to sublet part of its space to another, by making a promise
transverse to the longitudinal axis, this is ok, as it does not affect the sharing promises
of the host. If the intermediary funnels resources from one tenant to the other, this
could undermine the host’s intentions, but it can never cannot cause the host to break its
promise, thanks to the locality of promises (see figure 7.36).

However, the host might want to prevent this. It’s channel for this is in setting the
conditions it is willing to accept from the tenants (conditional −C). Thus, at best, the
host can try to protect its own interests locally, and ask for the tenants to promise good
behaviour. It can punish bad behaviour (tit for tat) but it cannot prevent it.

host

tenant 2

tenant 1

cooperation

tenant 3

sub−letter

host

tenant 2

tenant 1

tenant 3

super−tenant

Figure 7.36: Tenants might promise to cooperate and break their isolation. They are free to do
this, unless the host agreement’s conditions C forbid it, in which case the host might cease to
keep its own promises.

Example 215. Choice of agency semantics are a design decision in a functional world.
For commodity items like radios, television sets, watches, and so on, we design agencies
to be easy to grasp by asking the question: what semantics do we wish to expose to
an observer?. Consider the illustration in figure 7.37, showing two choices of agency
boundaries for a common appliance. The listener of the radio only needs to see the outer
surface of the agency, not its internal components. The battery is a component that needs
to be changed frequently compared to the lifetime of the device, so from the perspective
it might seem to be a separable piece. However, few users of a radio would want to
have the battery alongside the radio as a separate entity. Thus, an agent in the role of

7.10. MULTI-TENANCY, AND CO-EXISTENT ‘WORLDS’ 425

listener
listener

loudspeaker

receiverreceiver

loudspeaker

battery

battery

(a) (b)

Figure 7.37: Agency scales for a radio: (a) separate battery, (b) battery included.

radio listener (appliance user), a single agency offers the preferred semantics of scale.
However, another agent in the role of radio-maintainer could prefer to see the agent at a
different scale, where replaceable components are exposed as separable entities.

7.10.9 SCALABILITY OF MERGERS

It is not uncommon for mergers and acquisitions of tenants to take place, in any realm of
tenancy, so knowing that this can be done without violating the isolation of any other
tenants is important. Following on from the subject of scaling agents in section 7.9.7,
we can also consider how segregated tenants and hosts behave when they promise to act
as collective entities. Does this change the tenancy relationship? From the viewpoint
of the host, the addition of a cooperative agreement changes nothing. Any resources
are still provided as +Ri and +Rj to tenants i and j respectively; thus sharing has to
be re-routed by the tenants to one another. This places them in the host of mutual host
for one-another, which might not be optimal in terms of semantics (it is an unwanted
complication of the design). The solution for the long-term would be to renegotiate a
new host-tenant relationship for the new composite entity.

The asymmetric resource tenancy shown in figure 7.36 is another example of how a
semantic space remembers the historical process of its genesis, (recall figure 7.22). The
resulting network is a non-optimal promise bindings that are not simple scalings of the
intended relationships can come about by ‘hot-wiring’ the promises to work around the
lack of scalability. Such ad hoc cooperation can solve a temporary need, but creates

426 CHAPTER 7. SCALING OF AGENTS AND THEIR PROMISES

a new scale pinning, through the asymmetry of the promise, which will further stifle
scaling should further superagency

7.10.10 NAMESPACES AND HIERARCHIES AS MULTI-TENANCY IN

IDENTITY SPACE

A namespace is a cooperative tenancy in which members are isolated from their sur-
roundings by a gateway host. The host promises to make names of its tenants unique,
usually be extending the names hierarchically under the common umbrella of its own
name. This is now sometimes called ‘disambiguation’ in software. It is essentially the
same as adding more lines to place addresses so bound location by containment within.
It is a different strategy opt uniqueness than tuple-coordinatization.

Example 216. The same street names appear in many of the local towns, often based on
names of historical figures, but this is not a problem, because each exemplar can make a
unique address by adding the name of the local town to disambiguate from the others.

Similarly, the ‘High Street’ is a common fixture in British towns. Since most towns
have a High Street, the name of the town and district can be added for uniqueness.

The term ‘namespace’ is a popular concept in computing, but the concept of names-
paces are clearly in common and widespread use.

Definition 173 (Namespace). A namespace N is an isolated subspace of a semantic
space, formed from a collection of agents. Inside a namespace, all agent coordinates and
names are unique by mutual cooperation.

Ai
+namei|namei 6=namej−−−−−−−−−−−−−−−→ Aj ∀i, j ∈ N (7.98)

Ai
±C(name)−−−−−−−→ Aj (7.99)

Outside the namespace, names can be made unique by transforming the names according
to some bijective function, e.g. either extending the name with a boundary prefix identifier,
or performing a name translation.

Ai
+f(namei,N)−−−−−−−−−→ Ak ∀i ∈ N, k 6∈ N (7.100)

Ak
−f(namei,N)−−−−−−−−−→ Ai (7.101)

The hierarchy implicit in nesting namespaces allows us to view these as tenancy
relationships, where a host is appointed as the gatekeeper mediating adjacency between
the namespace and the outside:

Example 217. Namespace examples:

7.10. MULTI-TENANCY, AND CO-EXISTENT ‘WORLDS’ 427

• A family surname labels a namespace in which Christian names can be made
unique relative to other families. Today, this is not a very successful scheme, as it
has not scaled well to modern populations.

• Filesystem trees, like the Unix or Windows hierarchical directories name subdi-
rectories and files tenants of their parents, in a forest graph structure.

• Recursion with local variables in functions and subroutines uses the functional
closure as the host agent.

• Subnets and networks form a two or more level hierarchy of attachment. A layer
2 broadcast domain is a namespace, in which an IP router is the hosting gateway
prefixing addresses with their subnet prefix.

• Taxonomy and classification hierarchies use subject categories as hosting agencies
which contain subcategories.

• Programming class hierarchies, class member functions etc are hosted within
named objects, much like a file-tree.

7.10.11 TOPOLOGY AND THE INDEXING OF COORDINATE-SPACES

IN SOLID-STATE

As we saw in section 7.8.7, addressing and tenancy are related through the notion of
routing between autonomous agents. The basic asymmetry of tenancy is what allows
message sorting by address to implemented by cooperation, and the ability to scale this
is therefore connected to how we scale tenancy.

Branching hierarchies are the most common form of classification sorting (‘dis-
ambiguation’) in information technology. They follow in the Aristotelean tradition of
taxonomy, widely embraced during the 19th century. It is not uncommon to shoehorn
models into a tree structure out of habit. This should not be necessary, however. The
challenge of any coordinate system, for address encoding, is to mimic the structure
of spacetime in the naming conventions of the points. This enables predictability and
emergent routing from local autonomy. Cartesian tuple-based coordinates are flexible,
and are not tied to any particular origin.

Since subagent names are interior (local) to a given superagency, they can be orga-
nized as that agency sees fit. If the size of the namespace is not too large, almost any
naming scheme is workable. However, as the number of internal subagents grows, the
efficacy of tuples depends on the internal connectivity. This need not be a hindrance to
using tuples for the following reason: tuples can always be fitted to a spacetime as a
covering, with a possibly complex boundary. Put simply, even if the tuple space is not

428 CHAPTER 7. SCALING OF AGENTS AND THEIR PROMISES

fully populated with points in a Cartesian lattice, one can use the points that are available
and ignore the others (see figure 7.38).

1

1

2

3

4

2 43

Figure 7.38: Even though the actual occupancy of the Cartesian lattice is sparse, we can use
tuple coordinates with a convenient dimensionality. In this example, the only occupied points are
(1,0,0), (0,1,0), (1,1,0) and (1,1,1). Using any other values is simply defined to be disallowed.

A namespace can be covered by an arbitrary set of coordinate tuples of the right size
so as to span all agents in a spacetime uniquely, giving each agent its own unique ID. For,
example, a tree reference

/tenant/container/subcomponent

is trivially written as a tuple:

(tenant, container, subcomponent)

The principal different between these two forms is that the order of the tuple components
does not imply any particular ordering of dominance or containment. An agent can
approach the identification of points by iterating over the tuple members in any order to
parse the space according to the desired semantics.

7.11 APPLICATIONS OF MULTI-TENANCY

With a number of tools, principles, and concepts for multi-tenancy under our belts, we
are now approaching a vision for how one could design and operationalize environments,
both as isolated ‘organisms’, and as fully connected ecosystems of autonomous agencies.

Let’s consider some examples to illustrate these points, focusing particularly on the
world of information infrastructure, or what is now called ‘cloud computing’. These

7.11. APPLICATIONS OF MULTI-TENANCY 429

cases have immediate utility. We can summarize the basic principles covered so far as a
number of points to cover for each analysis:

1. Determine language of promise bodies.

2. Determine the conceptual head of the organism, from input/output flow.

3. Describe segmentation or tenancy/sharing relationships.

4. Explain the role of spacetime phase (solid, gas, hybrid, etc).

In these examples, I will sketch out some outlines only, leaving the details as an exercise
to the reader. Completing a full analysis of a comprehensive system would be a significant
undertaking.

7.11.1 EXAMPLE: PROCESSING ELEMENT IN IT INFRASTRUCTURE

Example 218 (Cloud infrastructure). Modern IT infrastructure (what is now termed
cloud computing) is built from arrays of processing nodes, storage devices, and network
switching devices. There is a plethora of terminology which I will try to avoid. In this
example, I want to focus only on the processing nodes. A processing node (sometimes
called a ‘compute node’ or ‘machine’) generally consists of a physical computer (also
called a ‘server’ for historical reasons). It acts as a host which promises an operating
system (+f(C,R)) providing tenancy to processes. These sometimes consist of virtual
machines or ‘containers’ (+R).

The purpose of hosting these machines and containers is to support the running
of software applications within the tenants. For now, I’ll disregard the details of the
applications and simply assume that there are isolated processes (see figure 7.39).

An array of computing machines can be thought of as a semantic spacetime, with
each host representing a location. Taking the view that the hosting service is a ‘front’ for
the internal tenants, each host may be modelled as a superagency, with internal structure
consisting of the tenants. Each host has a name and an address, and the processes inside
them have names and addresses too.

Let’s consider the four points:

1. The language of promise bodies.

We always start by expressing promises that we know we can keep. Promising
something vague or undefinable is an act of self-sabotage. Simple promises, close
to the capabilities of the agents are preferred. Here, the alphabet of promises may
include promises to execute programs at a certain rate (based on the CPU clock
speed), transmit data, isolate processes from one another, etc.

430 CHAPTER 7. SCALING OF AGENTS AND THEIR PROMISES

interface

network

interface

interface

interface

network

network

physical container

process

process
container

interface

interface

Figure 7.39: A tenant-oriented infrastructure. Notice the limited self-similarity between the
process container scale and the physical container scale.

2. Determine the conceptual head of the organism, from input/output flow.

The head of a processing node is where the interfaces to the outside world enter
(see figure 7.39). These are connected directly to the kernel, and the kernel
(represented by the dotted line) acts as a kind of brain for the hosting of the
tenants. The tenants are the processes, which have virtual interfaces connecting
them to the actual network interfaces, via the kernel.

3. Describe segmentation or tenancy/sharing relationships.

Segmentation of the host’s body is in terms of the process containers. The isola-
tion is maintained by two-mode operation at the hardware level, and thereafter
mediated by the kernel.

4. Explain the role of spacetime phase (solid, gas, hybrid, etc).

The phase of the spacetime is undefined here. Inside a superagent, processes
come and go, addresses typically change, looking like a gas. Outside the host, the
Internet at large has the structure of a gas, for much the same reason. However,
inside a datacentre, fabric design with regular symmetrical arrays (e.g. in leaf-
spine Clos networks) and fixed networking has the structure of a solid. This looks
not unlike a biological cell, with structure floating around inside and outside a
boundary.

How does this scale up? Scaling can be done in one of two ways: either on the interior
of the superagent boundary of the host, or on the exterior:

7.11. APPLICATIONS OF MULTI-TENANCY 431

1. Interior agents can be scaled by parallelizing each subagency of the supera-
gent into a larger subagent. The number of subagents grows linearly and the
superagents remains constant. This is how we build a mainframe, or NUMA-
scaled cluster. Each component is made stronger by adding parallel numbers,
but the structure of the design is constant. It is low level redundant scaling,
which is known to lead to best effort reliability, according to the reliability folk
theorem[Bur04a, HR94].

2. Exterior agents can be scaled by parallelizing entire hosts. This increases the
total number of superagents with constant number of interior subagents. This is
how we build a server farm, like a cloud environment.

The main difference between these two is the adjacency structure, or how communication
between the agents is wired.

What can we say about the host-tenant asymmetries? Within each superagent, there
are actually many host-tenancy relationships working together. Referring to figure
7.39, we see a hierarchy of agency at a typical host. The stippled circle illustrates
the superagent boundary of the host (running the system kernel), and the solid ellipses
demark various subagents associated with it. The subagents form a variety of multi-tenant
bindings, with different semantics. These are summarized in this table:

Role of Host Role of Tenant
Process container Process interface

Physical container Process container
Physical container Physical interface

Physical container interface Process container interface
Physical network Process network

A process container houses several process interface tenants, each of which pay by
mediating a connection between the internals of the application and the process via
logical network channels. The process network channel interfaces are themselves tenants
of the physical network in the manner of figure 7.24.

In a similar way, but at a coarser scale, the physical interfaces are tenants of the
physical host superagent, mediating physical network connections by direct analogy.
Ironically, the process interfaces bind as tenants of the physical interfaces, drawing their
agency from the network resource provided by the physical interface host. Such reversals
are completely unproblematic, as they are simply semantics pointing towards a resource
in a particular viewpoint of the collaborative ecosystem.

It is habitual in IT modelling to simply impose a hierarchy on these resource agencies,
from a single viewpoint; however, the imposition of a hierarchy, without reference to the
promises they make, leads to viewpoints that masquerade as authoritative, but are not.

432 CHAPTER 7. SCALING OF AGENTS AND THEIR PROMISES

What one learns from Promise Theory is that, for every asymmetric relation, there is
a complementarity transformation which reverses the preferred interpretation and the
natural ordering.

Let’s focus on only one issue: addressability. Can we assign a coordinate system of
names in a way that is faithful to the structure, and conducive to locating resources from
any viewpoint? The possible varieties of naming of agencies are extensive, though not
all are used in practice:

Agency Promised identifier(s)
Physical interface { MAC-addresses }, { IP-addresses }
Process interface { IP-addresses }

Namespace Namespace umbrella name
Physical container Hostname

Physical IP-address { DNS translation names }
Process IP-address { Namespace translation names }

Process container Process container name

Following industry practice, it is normal to coarse grain away several of the distinctions
between these promises. This leads to problems in tracing the origins of promises made
by some of the coarse grained agencies.

Well-known problems associated with design of the Domain Name Service (DNS)
(especially reverse lookup) can be cited as an example of how coordinatization based on
perceived containers, rather than general tuples leads to difficulty in tracing inter-agency
collaborative processes. I’ll leave it as an exercise to the reader to design an improved
DNS service which acts as an invertible, based on the Resolvability lemma (lemma 18).

7.11.2 EXAMPLE: TENANT-ORIENTED HOSTING INFRASTRUCTURE

In the previous example, the low-level resource container (hardware) was considered to
be a superagent boundary for processes running inside. However, we have great freedom
to change the nature of a hierarchy in Promise Theory 130.

Functional thinking is invariably top-down. Computer science teaches top-down
decomposition of problems through a logical branching process. Often this leads to
trouble at lower levels due to inconsistency. The bottom-up aggregation process avoids
inconsistency, and permits logical scaling, however we don’t interface with systems from
the bottom up. The ‘cephalization’ of agency around physical connectivity tends to fix
attention on the host and its role as a kind of manager or brain. However, the applications
(the minds of the system) are run inside the tenants, and there are more tenants than hosts.
From a human perspective, then, the tenants see their concerns as a focal point, since they
pay rental fees to support the host’s existence as their service provider. The customer

7.11. APPLICATIONS OF MULTI-TENANCY 433

service viewpoint thus weighs in semantically, where as the engineering viewpoint of the
previous example was attractive dynamically.

Example 219. In a computing platform, design for hosting software systems, multiple
applications run as tenants of an infrastructure provided for them. This separation
allows delegation with cooperation, sometimes called DevOps: tenants deal with content
development, while the host deals with operational delivery.

By analogy with the radio example 215 above, the agencies, which a user of the
application would like to see, are shown in figure 7.40. The agent, in the role of user, does
not want to see the internals or even the ‘battery’ that makes the thing work, it only cares
about the surface boundary of the application, and its exterior promises. The illustration

app 1 app 2 app 3

user 2user 1

outside world

Figure 7.40: The user-application interface scale hides all details of what makes the application
tick.

in figure 7.40 shows how tenants would like to conceptualize spacetime, placing their
concerns as the top-most or outer-most interface. Once again, this is no limitation,
since Promise Theory tells us that we have significant freedom to turn hierarchies and
viewpoints upside down for convenience. With this viewpoint, the application tenant is in
focus, and, from this user perspective, the application subsumes its infrastructure within
the outer boundary. It wears user semantics on the outside.

The four concerns are:

1. The language of promise bodies

This will include the exterior promises made by the application to its users, and

434 CHAPTER 7. SCALING OF AGENTS AND THEIR PROMISES

the interior promises made between the layers of hosts and tenants, described
below.

At each scale of agency, one can imagine creating a ‘compiler’ from a domain
specific body language to a more explicit pattern-generated explication of meaning
for the lower level components.

βM → βM′ + βM (7.102)

2. Determine the conceptual head of the organism, from input/output flow

The head of the organism is now the application-user interface (see figure 7.41).

3. Describe segmentation or tenancy/sharing relationships

There are two layers of tenancy:

(a) Application users are tenants of the application platform.

(b) The application is a tenant of the infrastructure platform.

The tenancies are based on approximately the following trades. For the user-
application tenancy:

R = application account login

C = user identification credentials(money?)

f(C,R) = application functionality (7.103)

and for the application-platform tenancy,

R = platform login by application

C = application identification credentials(money?)

f(C,R) = pay by use computer, storage, network resources(7.104)

Maintainers of the application, and maintainers of the infrastructure on which the
application resides will make different choices, depending on what semantics they
wish to expose.

At the level of computers, network, and storage, the picture might look something
like figure 7.43. The infrastructure is composed of three types of agent: machine,
storage, and network, which make promises accordingly. Applications are thus
tenants of the platform infrastructure, and the main resources are represented the
infrastructure scale in figure 7.43:

7.11. APPLICATIONS OF MULTI-TENANCY 435

user 1 user 2

app 3

computation

network

storage

app 2

Figure 7.41: The application-platform interface exposes the resource knobs needed by applica-
tion.

4. Explain the role of spacetime phase (solid, gas, hybrid, etc)

From the application perspective, this is a single atomic agency, ready to bind to
a user in a gaseous state. Inside the application, the state of the interior depends
on the underlying infrastructure that powers the application.

The agency scales of interest are:

User : A = {application,user} (7.105)

Application : T = {computation, storage, network, namespace,

application, user} (7.106)

Infrastructure : M = {process container, disk, router, application,

box, computation, storage, network, namespace,

interface, names/addresses, application, user}(7.107)

Notice how, when increasing levels of detail, the higher levels are not replaced by the
lower levels, since they still contain unique information (see section 5.8.13). Also, here
I have introduced a semantic category scale ‘box’ to symmetrize over the resource
providers that are interconnected by network channels (see figure 7.42).

Box : A = {computer, storage, router, interface} (7.108)

436 CHAPTER 7. SCALING OF AGENTS AND THEIR PROMISES

In addition to these ‘physical’ agencies, there are other more abstractly defined agencies
at play within an information system.

• Names and addresses of machines and storage (IP/DNS addresses), for use by
tenant name-services. These are private per application.

• Data from machines and storage, for use by tenant networks.

• Transport of data, for use by computer machines and storage (also represented as
superagency ‘box’).

• Directory service lookups, for use by computers and storage, in order to locate
others in their private network.

interface 1

interface 2

net 2

net 1

ns 2

ns 1

computation

storage

routing

name/address
box

Figure 7.42: The network bindings to resource containers in a cloud computing instance. A
box encloses private resources and interfaces create channels for networks to pass through from
interior to exterior and vice versa.

The network binding to a resource agent has the form of a tenancy also (see figure
7.42), as a process container might be able to bind to multiple networks, in principle.
An application might choose to branch its logic into multiple private channels, just as it
chooses to branch sub-functions into private branches. In this reverse viewpoint, like in
the previous example, applications can be considered to form private tenancies on top of
the common spacetime, by using the intermediate agencies of the spacetime as proxies.

IT applications share a common infrastructure, provided for all applications by
mutual cooperation. This forms a semantic spacetime, which is entirely interior to what
we may call Application Space. Each application creates its own private world, as a
tenant of the application itself.

7.12. ABSTRACT AGENTS, AND KNOWLEDGE MODELLING 437

net 2

net 1

box 1

s1

s2

s3

r1
r2

r3

box 2

network

app 1

c1

c2

c3

namespace 1

namespace 2

Figure 7.43: A partial IT infrastructure network, supporting multi-tenancy. Encircled clusters
of agents are superagents show the tenancy scale. Inside these is the infrastructure scale: filled
circles are computer nodes, unfilled circles are storage nodes, and squares are routing nodes.
Network terminations at the box level are distributive to their constituent members.

Applications may thus be viewed as ‘atomic’ superagents, either locally or globally;
thus, from a promise perspective, it is irrelevant whether the architecture is monolithic
(implemented inside a closed space) or distributed (without fixed boundary). The promise
abstractions are identical in both cases; the only difference is one of scale.

7.12 ABSTRACT AGENTS, AND KNOWLEDGE MODELLING

So far, most of the agencies we’ve discussed have been real entities, in a physical
spacetime. It is also possible, even common, to construct entirely virtual ‘knowledge
spaces’ of a more abstract kind, whose very structure is a representation of its semantics.
This forms a contextual introduction for the general matters of chapter 12.

438 CHAPTER 7. SCALING OF AGENTS AND THEIR PROMISES

7.12.1 CLASSIFICATION, CATEGORIZATION, AND DISAMBIGUATION

OF TENANTS

The branching of names into taxonomies is closely allied to the way narratives and
storylines branch in logical reasoning.

Example 220 (Namespaces and hierarchy). The subsections in this section about tenancy
form a hierarchy under the namespace of multi-tenancy. Trying to untwine and separate
the concepts in to identify what is common and what is independent is a tricky challenge,
which can quickly descend into a exercise of listing every related concept one can imagine.
Partially ordering these to account for dependencies is a further challenge. This is one
of the issues we struggle with when organizing information and representing knowledge.

Classification does not only apply to idea, but also ideas we have about physical
entities. Hence the power of a semantic space lies in making the distinction between pure
information and information about a separate entity moot: in both cases the information
has to be encoded by something physical, whether in the thing itself or in a proxy thing
elsewhere.

Example 221. Exclusive clubs are one thing, but categorization of tenants leads to
explosions of new agency:

• Premium customers

• Schools for separate sex, race etc

• Cabin classes on airlines (economy, business, first class, etc)

• Car/truck parking

• Taxonomies of species or subject categories.

• Periodic table of elements.

• You can share a public bathroom, or you can have a private one

Multi-tenancy is a bridge between the understanding of resources and the differential
categorization of knowledge into concepts.

7.12.2 THE ECONOMICS OF IDENTITY SCALE: BRANDING

Consider the example in figure 7.44, logical reasoning creates a natural branching process
that subdivides agencies into categories, often from a reductionist standpoint. Conversely,
category labels act as logical hosts that unify similar contributors under a common label.

7.13. SUMMARY OF SCALING ISSUES 439

A book, such as an anthology of articles, is an aggregation of chapters, where the space
R is rented out to chapters for text C. The book provides a vehicle for the chapters to be
marketed under a common brand. In the same way, authors come together into categories
of fiction, poetry, biography, etc, and the physical exemplars of the books share the same
category, each contributing something to occupy the hosting of the category as a ‘market
brand’. The brand category develops relationships with an audience at a different level
or scale than a single book or author can, hence there is a value to the hosting. This is
sometimes called the economics of scale.

host

chapter 1

book

chapter 2

tenant 2

tenant 1

fiction

books
author 1

author 2magazines

R = +space

C = +text

C = +textC = +copies

R = +category−
representation

Figure 7.44: Orientation of host-tenancy roles. With host-ness to the left and tenancy increasingly
to the right, we see that it is not always possible to think of tenants as being simple isolated
‘things’, especially when the promises they represent are more abstract. A tenant shares some
space in a host, but what kind of space? A branching process might result in new tenants (+), or
new hosts (-).

7.13 SUMMARY OF SCALING ISSUES

1. Scaling of the ability to discover information and promised services.

2. Exterior promise not kept.

440 CHAPTER 7. SCALING OF AGENTS AND THEIR PROMISES

3. Interior promise, supporting exterior promise, not kept.

4. Loss of agent transparency at scale (missing directory).

5. Distorted propagation of influence over distance (Chinese whispers).

6. Promise throughput inadequate.

7. Promise collaboration semantically deficient for the task, boundary conditions, or
scale.

8. Agent weakness leading to node failure, with avalanche failure.

9. Promise takes too long at scale, because transmission scales differently to load.

10. Increased density of faults, leading to threshold ‘critical mass’ effect.

11. Accumulation of delays and uncertainties in multi-agent propagation.

12. Interference and diffraction of promises along different paths and cycles.

13. Unexpected (loss of) percolation of influence at higher density of agents or
interactions.

14. Force density effects, attraction and repulsion of polar promises and bindings.

15. Scaling of comprehension (assessment), i.e. inability to serially process informa-
tion from a bulk region.

16. Scaling of ‘agility’, inertia caused by the relative change in efficiency with which
promise propagation occurs at scale.

17. Scaling of response to mass ‘events’, i.e. arrival processes (serialization).

18. Scaling of impact, i.e.

Impact =
Affected agents

All agents
. (7.109)

19. Scaling of a ‘fault surface’ or ‘attack surface’ relative to system size.

20. Scaling of feedback, leading to (de)stabilization, at short range or at long range.

21. Amplification of small errors into large ones by unstable branching.

CHAPTER 8

SCALING OF PROCESS AND

WORKFLOW

We can consider the various changes to promise-keeping systems independently of each
other, in the time-honoured tradition of considering ‘orthogonal’ or independent variables
one at a time. The concept of ‘work’ has both quantitative and qualitative connotations.
Workflow, or ‘throughput scaling’ is a dynamical issue: it’s about how we count the
occurrence of outcomes with constant semantics, and is analyzed by characterizing the
quantitative output of a system as a function of input (usually a task). The semantics of
workflow are sometimes described by graphs or flowcharts.

Workflow may be divided into a number of process trajectories. Each workflow
trajectory is serialization of effort, a one dimensional (temporal) view of a system—a
queue. So—just as in calculus—we can seek to examine the behaviour of a multivariate
(or multi-promise) system by keeping some variables constant as we vary others. In this
way, we retain the ability to use familiar tools for orthogonal matters of semantics and
dynamics.

The ability of a system to complete tasks—or keep the promise of outcomes—
depends on the extent to which the task can be broken up into independent streams, which
can be completed independently (i.e. interleaved in series or in parallel), and recombined
into a coherent whole. Thus the topology of the system and its communication channels
play a role. Some simple ideas about scalability can be understood using the flow
approximation of queueing systems, in which a promise kept involves a continuous
stream of data, observations, changes, etc.

441

442 CHAPTER 8. SCALING OF PROCESS AND WORKFLOW

8.1 DISTRIBUTED PIPELINES: FORCE DRIVEN WORK

The classical approach to industrial work is to feed material into a queue and to process or
transform it in some way. When this becomes a regular task, it takes on the character of
a production line. In IT, commonplace examples include the processing of data analytics,
image rendering, compilation, software packaging, billing, even mass e-mailing. In some
cases these processes or ‘pipelines’ are initiated in response to an independent process
of curated changes committed by pushing a button, such as in a versioned software
deployment model. In others, there are triggered by continuously arriving events that
may be accumulated into batches. The optimization of a pipeline may depend on several
factors, economic as well as the structure of dependencies.

For data processing, a significant point of departure occurred when single monolithic
systems were replaced by plural distributed systems at much greater scale. This brought
the complexity of distributed systems concepts into the mix, with all their attendant
indeterminism.

The tendency for many is to think of a distributed pipeline as a single deterministic
Petri net[DA94, MMS85] (i.e. a directed, mainly acyclic network of queues[Kle76,
GH98, Buz73, Nel95]). But, in a distributed system, there are many complex and
overlapping influences at work that make non-determinism unavoidable. There are two
viewpoints:

• Triggering or ‘ballistic’ transactional processing model, with freely branching
push semantics (see the detailed discussion in [Bur13a], for instance).

• Polled and voluntary processing with batched data collection, based on predictable
pull semantics.

These two approaches may not be as different as casual inspection suggests, if one
adjusts the timescales for sampling/polling to be very high, they behave in a similar
way. However, in the worst case, a freely branching process, driven unconditionally by
event arrivals, is essentially an uncontrolled explosion, which could consume unbounded
resources. The ability to regulate flow depends on a careful understanding of ‘pull’.

8.2 CONTINUITY AND DISCRETIZATION

To protect against its effects, an obvious strategy is to stabilize execution, by discretiz-
ing time and work into batches (chunks) that have a stability of their own, averaging
away random variables. Further, principles for process safety, avoiding contention and
uncontrolled repetition, in the scheduling of parallelized work across shared resources
have been in use for decades [BS97], forming a basis for safe execution of tasks, with

8.3. EVENT DRIVEN SYSTEMS 443

convergent outcomes[Bur04b]. The present opportunity of the cloud era is to absorb
these well known control structures into orchestration schedulers, of which Kubernetes
currently represents the state of the art[Bur15b], and build on them as basic reliable
properties. With a platform that promises these basic properties, we can treat pipelines as
an end-to-end delivery problem based on trusted intermediaries[BB14a], without getting
bogged down in too many technicalities.

Example 222 (High level pipeline promises). There are several aspects to a data pipeline
we have to consider:

• Processing architectures, so called Directed Acyclic Graphs (DAG), essentially
‘trees’, for specifying a process representation.

• Deciding whether updating should push or pull semantics, for how data flow. This
can potentially be optimized without user intervention, but depends principally on
the nature of the data source.

• Whether processing uses ‘windowing’ aggregation for economics and scalability
of processing.

• How intermediate caching of atomic pipeline artifacts are kept and versioned, for
optimizing recalculation or resuming broken pipes.

Figure 8.1 attempts to show some of the issues in positioning a pipeline technology
solution in data processing. There are three dimensions: on the vertical axis, we have the
timescale for process resolution, from manual button-push, to occasional batch jobs, and
all the way up to continuous operation. On the horizontal axis, the level of smartness
of inbuilt automation that takes away pain is increasing. Finally, the size of the circles
indicates how self-contained the approach is. Small circles may cost users a lot of
overhead in setting up. So the desirable solutions are large and far up to the top right.

8.3 EVENT DRIVEN SYSTEMS

Can a system truly be considered event driven? Certainly interrupts are an example of
this, so it can be done. However, detection of events cannot be achieved without a robust
and fast interior time. Interior time limits the ability to respond to events, so to some
extent this is illusory. Event driven is thus something of an illusion for the cases where
neglecting considerations of interior process scale can be argued.

444 CHAPTER 8. SCALING OF PROCESS AND WORKFLOW

bazel

airflow

cron

KOALJA

make

BEAM

"SMARTNESS" integrated

batch push

continuity

events

flink

spark

kafka

Figure 8.1: A heuristic plot of perceived effort versus efficiency involved in data processing
pipelines. Push the button batch processing ranges from manual command line start to scheduled
cron/at jobs. Make and Bazel add declarative semantics and dependency tracking to this, leading
to DAGs. Then clusters of graphs can span multiple hosts and deal with random arrivals, and
handle aggregation or windowing, from scheduled intervals to event triggered clocks. The circle
sizes represent the freedom from dependency complexity, and bigger is better for taking away
user pain.

8.4 EVENT-BASED WORKLOADS, ARRIVAL PROCESSES,
AND QUEUES

Faults and repairs do not really happen according to a constant current, though this is a
convenient simplification that helps us to gauge mean behaviour over long times. Rather,
faults occur sporadically as events. Events arrive a ‘random’ times. A constant current is
an approximation that is equivalent to a Poisson arrival process.

An arrival process is a series of random arrivals, distributed in time, with average
arrival rate λ is processed serially by a server at processing rate µ. Think of rain falling
(a random process of arrivals), and being led away down a drain. All we are interested
in, over a steady state in time, is how much rain falls and whether we can drain it away
quickly enough by introducing a sufficient number of drains (processors or servers). Thus
scalability is usually discussed as throughput as a function of load. Sometimes the input
is a function of a number of clients, and sometimes the output is a function of the number
of servers (see fig. 8.5). There are many ways to talk about scaling behaviour.

Queueing theory deals with an abstracted model of queueing. A queue is a serial
process of arrivals that is processed by a server. There are many models of queues, with
arbitrary complexity, but there are some simple conclusions that summarize the pertinent

8.5. SCALING THROUGHPUT WITH MULTIPLE SERVERS 445

results for most purposes. The simplest queueing results are for Poisson distributed
arrivals and process dispatches, but they can be generalized to other distributions. For all
the mathematics, there are two results that are important here:

1. The average response time between sending an arrival into a single queue, and its
successful processing by a single server is:

R =
1

µ− λ . (8.1)

2. The traffic intensity λ/ρ is the dimensionless scaling parameter that controls
queue behaviour.

3. For Poisson arrivals, this is called the M/M/1 queue, designating arrival/dis-
patch/servers, where ’M ’ stands for Markov process.

4. As the arrival rate approaches the servicing rate, the response time grows to
infinity very suddenly (power law scaling), and the system becomes unstable (see
figure 8.2).

5. As the queue reaches instability, the response time ceases to grow linearly and the
server CPU rate becomes saturated (see figure 8.3) as processes contend over the
shared CPU resource.

6. Thus the queue demonstrates the contention for throughput, when filling an
interval of time with random arrival events.

A single queue can only promise its best service rate, so it can only be ‘scaled up’ to
higher workloads by improving the service rate µ. However, if events can be handled
in parallel, then we can also add more agents to promise the service, at the possible
expense of making them work together. In the simplest form, queueing theory assumes
that all jobs are of equal magnitude, and the system is completely homogeneous. It is a
simple order of magnitude estimate. However, what it does is to expose the existence of
an instability, or a critical dimensionless ratio of arrivals to dispatches that causes the
linear processing of the system in time to blow up, or fail to keep its promise of a timely
completion.

8.5 SCALING THROUGHPUT WITH MULTIPLE SERVERS

We can add more servers in one of two different ways (see figure 8.4). Either we multiply
the whole system by a factor of n, i.e. have n queues with n servers, and arrivals enter
one of these at random. This is randomly chosen parallelism, called (M/M/1)n. The other

446 CHAPTER 8. SCALING OF PROCESS AND WORKFLOW

Figure 8.2: A queue behaves well when the arrival rate is far below the service rate, then it
undergoes a rapid collapse into thrashing contention.

alternative is to have a single queue being dispatched by n servers working in parallel,
so all arrivals enter the same line and are processed by the first available server. This is
called the M/M/n queue.

It is a provable assertion that the M/M/n is never worse and often faster than
the (M/M/1)n, because severs can be kept busy all the time by marshalling the flow.
However, we should not overstate the importance of this. It was shown that a simple
voluntary load balancing technique, either round robin push or voluntary server pull could
perform as well as, or better than M/M/n[BU06, BB08] in practice, since the benefits
occur mostly close to saturation. The latter is the benefit of a pull based architecture,
where the servers pull from the queue when they can. Pushing data into a random queue
risks entering a busy queue, while other queues are empty and idle.

The serial load-balancer or dispatcher architecture is a common design in all kinds of
services. It has a basic flaw which is the serial bottleneck introduced by the load balancer.
It could be avoided by direct routing of traffic to servers.131

8.6 HORIZONTAL AND VERTICAL SCALING OF

WORKLOADS

Two scaling patterns are commonly referred to when discussing workloads: horizontal
and vertical scaling. These can be understood easily from figure 8.6. If we increase

8.6. HORIZONTAL AND VERTICAL SCALING OF WORKLOADS 447

Figure 8.3: A queue behaves well when the arrival rate is far below the service rate, then it
undergoes a rapid collapse into thrashing contention.

the size of a distributable workload, we have two choices to accommodate it: either
increase the size of the container or handler (called vertical scaling) or to increase the
number of containers or handlers (called horizontal scaling). Since each serial handler
involves a processing queue, the queue length, the filling fraction of the handler agents, or
their capacity utilization, is varied to place all workload fragments into an appropriately
measured queue. This is sometimes called the bin packing problem[SKAEMW13].

We can formalize these definitions:

Definition 174 (Vertical scaling). Varying the capacity of a single agent in order to
increase or decrease the throughput of a system. The utilization is increased by adding
workload at constant capacity or vice versa, or is reduced by increasing work channel
capacity.

Definition 175 (Horizontal scaling). Distributing a workload across a cluster of agents,
of constant capacity, in order to control the utilization of agents.

The two approaches have different properties. If we now think of the handler agents
as queues, we can see that filling up the queues to an economic level of utilization,
without exceeding the queueing instability threshold is the key problem we face in
scaling systems. Moreover, we should recall that the resource sharing queues may have

448 CHAPTER 8. SCALING OF PROCESS AND WORKFLOW

(a)
(b)

Figure 8.4: Multiple servers can be introduced in two ways: (a) by replicating the entire queue
n times, and (b) by making a single queue services by n servers. Of these (b) is always has the
shortest average response time, but it introduces a bottleneck and a longer single queue.

several dimensions that scale unequally, e.g. memory capacity and CPU capacity, or
human brain capacity and physical strength.

Vertical scaling supposes the ability to continuously elastically increase the capacity
of a handler agent to meet demand. Horizontal scaling assumes that the handler agents
have a fixed commodity size, and that one simply needs to add more.

Type 2 (vertical) looks like a flexible elastic boundary, while the type 1 (horizontal)
looks like an infrastructure enlargement but this is a fiction of scale.

Example 223. In older mainframe computer designs, such as the IBM z-series main-
frames, redundant CPU capacity could be pre-installed and activated on demand to
elastically scale the vertical processing capacity of the mainframe.

In cloud computing, such as Amazon Web Services, elastic scaling refers to the
automated ability to add more horizontal server capacity. Because the infrastructure is
prefabricated, this can be made to look effortless and like a scaled version of vertical
scaling approach. The difference lies in the hidden interior details of the superagent, such
as whether the network communications bus scales without bottlenecks to the workload.
In practice, IT engineers think mainly about the CPU and memory, less about the network,
meaning that elastic scaling is only elastic in some parameters, placing a growing burden
on others. This is not universal scale-free behaviour.

8.6. HORIZONTAL AND VERTICAL SCALING OF WORKLOADS 449

Figure 8.5: The serial load-balancer or dispatcher architecture is a common design in all kinds
of services. It has a basic flaw which is the serial bottleneck introduced by the load balancer. It
could be avoided by direct routing of traffic to servers.

If we create a superagent from discrete processing elements, by drawing a boundary
around the agents in the lower right (horizontal scaling) corner of figure 8.6, and zoom
out, then the picture looks just like the vertical scaling picture next to it. So the question
of whether elasticity is a form of discrete (horizontal) or continuous (vertical) elasticity is
only a matter of total scale of consideration. These are not fundamentally different. What
is different about the discrete fixed size containers in horizontal scaling, is that the nature
of the phase transition the system undergoes is different when one is at approximately
the same scale as the handler agent containers. A phase transition is a change in a system
from one qualitative mode of behaviour to another. The freezing and melting of ice to
water are a mundane example of this. In a type 1 phase transition, there is a sudden and
discontinuous change in the behaviour of a system (e.g. from hard ice to liquid water,
with nothing in between). In a second order phase transition, there is only a smooth and
gradual shift from one regime to another (e.g. from hard butter to soft malleable butter,
eventually liquid). Once again, these are scale-dependent phenomena. As we zoom out
to a level of large enough scale, all phase changes will eventually appear to be second
order, as local regions of bulk scale take on the role of agents with different promises.
As always, dimensionless variables determine the universality or dynamical similarity of
the scale.

Example 224. Adding a new server to a job, or a new data centre, is a horizontal,
inelastic scaling. These cases might become equivalent if there are sufficient datacentres
to match the servers in a datacentre, i.e. the ratio of datacentres to servers per datacentre
approaches 1, but this depends on how the numbers are utilized relative to the workload.
It is the scale of the workload relative to the scale of the server infrastructure that
determines the behaviour.

450 CHAPTER 8. SCALING OF PROCESS AND WORKFLOW

Vertical Horizontal

type 1 PT type 2 PT

Workload

Figure 8.6: Horizontal and vertical scaling of an incompressible workload can be understood
simply by thinking about how we fit the contents to containers. This is sometimes called the bin
packing problem.

8.7 ECONOMIES OF PROCESSING SCALE

One of the main considerations in ‘scaling up’ operations is the idea that resources
can be saved by consolidating (recentralizing) certain promises. This is worth some
words of explanation, as both IT and economics texts misrepresent this in various ways.
Economies of scale are practical adaptations that are ‘illusory’ in the following sense:
they are about the reduction of waste, not about the amplification of intrinsic capabilities.
When we see superlinear scaling (see sections from 5.15), this has to come about from
the compressibility of inefficiency, because there is no free lunch.

Figures 8.7 and 8.8 attempt to illustrate how sparsely used infrastructure can be
compressed by consolidation. The demand arising from four agents that are underutilized
can be handled with approximately the same efficiency by a single agent with higher
utilization, provided we do not get close to critical utilization of the single agent. This
explanation is borne out by studies of the scaling in metropolitan environments[BLH+07,
Bur16b].

For a deeper microscopic understanding of this we need to look at queueing theory
in section 8.4. For now, these figures capture the intuitive picture quite well. Economies
of scale transmute wasteful horizontal scaling into vertical scaling, which has a critical

8.7. ECONOMIES OF PROCESSING SCALE 451

Figure 8.7: Packing or workload compression is the flip-side of queueing theory.

threshold limitation. The classic S-shaped curve on the right of figure 8.8 shows how
output can be increased as a function of utilization (or equivalently dependency on
demand load) up to a limit, at which point no further output can be mustered by the
system. What this simple diagram shows conceals the interior trauma that happens to
an agent as it approaches this critical threshold. This is a subject we need to explore in
some detail in this section.

Example 225. The bin packing of algorithms used by large scale resource managers
attempt to optimize economies of scale by filling vertically to capacity, while keeping the
utilization below the instability threshold.

Figure 8.8: Packing or workload compression is the flip-side of queueing theory. Now the
outer boundary can grow without the inner dependency growing in scale. This is an economy
of scale. If we think of the dependency as the reference scale, then the size of the whole scales
superlinearly, more than in proportion to the size of the dependency.

Economies of scale are about compressing spare capacity. If we are lucky, systems
can grow cheaply without hitting utilization limits. Consolidation of agents is a form
of data compression in information theory . If we improve infrastructure along side

452 CHAPTER 8. SCALING OF PROCESS AND WORKFLOW

increased consolidation, then we can achieve so-called superlinear scaling, in which
the efficiency gain appears to grow faster than the number of agents involved. This is
because increasing the number of agents must lead to linear scaling, while compression
of workloads adds to the gain. The result is the appearance of amplification by better
utilization.

8.7.1 AMDAHL’S LAW FOR PARALLEL PROCESSING

σ πο

time

Serial

Parallel (P=6)

Figure 8.9: Representation of Amdahl’s law. A typical task has only a fraction that is paralleliz-
able. The serial part cannot be sped up using parallel processing or load balancing. Note that
one is not always able to balance tasks into chunks of equal size, moreover there is an overhead
(shaded) involved in the parallelization.

Another order of magnitude estimator is Amdahl’s law[Amd67] Amdahl’s law,
named after computer designer Gene Amdahl, was one of the first attempts to charac-
terize scalability of tasks in High Performance Computing, in relation to the number
of processors[Amd67]. It calculates the expected ‘speed-up’, or fractional increase in
performance, as a result of parallelizing part of the processing (load balancing) between
n servers or processors as:

S(N) =
tserial

tparallel
=

T (1)

T (N)
(8.2)

Suppose a task of total size σ + π, which is a sum of a serial part σ and a parallelizable
part π, is to be shared amongst N servers or processors and suppose that there is an

8.7. ECONOMIES OF PROCESSING SCALE 453

overhead o associated with the parallelization (see fig. 8.9). Amdahl’s law says that:

S(N) =
σ + π

σ + π
N

+ o
. (8.3)

In general, one does not know much about the overhead o except to say that it is positive
(o ≥ 0), thus we write

S(N) ≤ σ + π

σ + π
N

. (8.4)

This is usually rewritten by introducing units of the serial fraction, f ≡ σ/(σ + π), so
that we may write:

S(N) ≤ 1

f + (1−f)
N

. (8.5)

This fraction is never greater than 1/f , thus even with an infinite number of processors
the task cannot be made faster than the processing of the serial part. The aim of any
application designer must therefore be to make the serial fraction of an application as
small as possible. This is called the bottleneck of the system.

Amdahl’s law is, of course, an idealization that make a number of unrealistic assump-
tions, most notably that the overhead of sharing a task between a number of equivalent
subagents is zero. Overhead is introduced by dispatchers or intermediaries. Also, it
is not clear that every task can, in fact, be divided equally between a given number of
processors. This assumes some perfect knowledge of a task with very fine granularity.
Thus the speedup is strictly limited by the largest chunk (see fig. 8.9) not the smallest.
The value of the model is that it predicts two issues that limit the performance of a server
or high performance application:

• The serial fraction of the task132.

• The processor entropy or even-ness of the load balancing.

Amdahl’s law was written with high performance computing in mind, but it applies also
to load sharing for any kind of network services. It applies to superagent scaling in a
promise model, up to the assumptions mentioned. If one thinks of an entire job as the
sum of all requests over a period of time (just as drain-water is a sum of all the individual
rain-drops) then the law can also be applied to the speed up obtained in a load-balancing
architecture such as that shown in fig. 8.5. The serial part of this task is then related
to the processing of headers by the dispatcher, i.e. the dispatcher is the fundamental
limitation of the system.

454 CHAPTER 8. SCALING OF PROCESS AND WORKFLOW

Comment 16 (Current approximation). Another way of looking at Amdahl’s law in
networks has been examined in [BC03, BC04] to discuss centralization versus distribu-
tion of processing. In network topology, serialization corresponds to centralization of
processing, i.e. the introduction of a bottleneck by design. Sometimes this is necessary to
collate data in a single location, other times designers centralize workflows unnecessarily
from lack of imagination. If a centralized server is a common dependency of n clients,
then it is clear that the capacity of the server C has to be shared between the n clients,
so the workflow per client is

W ' C

n
. (8.6)

We say then that this architecture scales like 1/n, assuming C to be constant. As N
becomes large, the workflow per client goes to zero which is a poor scaling property. We
would prefer that it were constant, which means that we must either scale the capacity C
in step with n or look for a different architecture. There are two alternatives:

• Server scaling by load balancing (in-site or cross-site) C → Cn.

• Peer to peer or mesh architecture (client-based voluntary load balancing) n→ 1.

8.7.2 GUNTHER’S UNIVERSAL SCALABILITY LAW FOR

PROCESSING

devices

repairman

Figure 8.10: The machine repairman model is a queue where N parallel producers of traffic are
handled by a single queue for repair.

In a similar vein to Amdahl’s law, there is Gunther’s Universal Scalability Law[Gun93,
Gun08], which was proven to be derivable from a Machine Repairman model assumption
(see figure 8.10). Like Amdahl’s law, it assumes that the processing is due to multi-agent
processing, and is careful to define scalability rather than scaling. It generalizes the

8.7. ECONOMIES OF PROCESSING SCALE 455

service capacity speedup function S(n) there by adding the cost of coordinating the n
servers in the service pool, which is of order n(n− 1). This corresponds to the overhead
term in 8.3.

S(n) =
n

1 + α(n− 1) + βn(n− 1)
(8.7)

In principle there could be higher order terms too, but these become decreasingly relevant
to performance (they may affect semantics). For β = 0, this reduces to Amdahl’s law.
The denominator terms describe, a constant term that scales with the parallel concurrency
of the numerator; an order n term, with coefficient α, which describes contention between
the servers; and an order N2 term, with coefficient β, which describes consistency
(coherency) and network coordination between the parallel servers133, i.e. the cost of
equilibration of cached data (see figure 8.11). We see sub-linear scaling due to the cost
of coordination.

α = 0, β=0 α > 0, β = 0 α > 0, β > 0

(a) (b) (c)

Figure 8.11: The Gunther universal scaling law for its control parameters. (a) linear scaling,
(b) cost of sharing resources and diminishing returns from contention, (c) Negative returns from
incoherency and the cost of equilibration.

Interestingly, superlinear scaling has been identified with negative values of α the
model. These negative values are effective values in the scaling relation that are fed by
recovery of an inefficiency elsewhere134. The finiteness of system resources seem to
indicate, however, that initial superlinearity may have to be paid back with a quadratic
term later, which indicates that the superlinear graph must cross back into a sublinear
and eventually degrading performance cost for large superagent clusters. Thus allowing
large superagent scaling in a system could itself be a design flaw135.

456 CHAPTER 8. SCALING OF PROCESS AND WORKFLOW

8.7.3 EFFECTIVE POWER LAW SCALING FROM AMDAHL’S AND GUN-
THER’S LAW

The Amdahl and Gunther scaling relations are workload scalings, not universal scaling
relations. Let’s consider how we could derive an approximate universal scaling relation
from these. This cannot be exact, since universal scaling requires a continuum description,
rather than a discrete agent model. Nonetheless, it’s interesting to probe the matter from
a scaling perspective.

The focus on relative ‘speed up’ is a point of view that is mainly of use in parallel
computation. If we want to know how the time fraction (speed up) scales for as a function
of the number of processors N , then we can compare N with γN . Then, we can write,
for γ > 1

T (γN)

T (N)
=

σ + π
γN

σ + π
N

(8.8)

= 1 +

(
1
γ
− 1
)

π
σn

1 + π
σn

. (8.9)

Let δ = D
D+H

, whereD = 1 andH = π
σn

, then, approximating as a binomial expansion,

T (γN)

T (N)
= 1−

(
γ − 1

γ

)
δ. (8.10)

'
(

1−
(
γ − 1

γ

))δ
. . . (8.11)

' γ−δ. (8.12)

Thus we have an approximate power law fit for large N compared to π/σ, and we can
write

T (N) ' T0N
−δ. (8.13)

i.e. there is a marginal relative economy of scale for small N , which decays to an
essentially scale invariant constant result. If we allow, like Gunther, for the presence of
equilibration, or mesh coherence effects, then we could use the form

T (N) = σ +
π

γN
+ κN, (8.14)

where κ represents linear time take to poll each of the worker agents. This is the case
where replication and consistency are required. With this extra term, we have

T (γN)

T (N)
=

σ + π
γN

+ κγN

σ + π
N

+ κN
(8.15)

= 1 +

(
1
γ
− 1
)
π
σ

+ (γ − 1) κ
σ
N2

1 + π
σ

+ κ
σ
N2

. (8.16)

8.8. DATA PIPELINES AGAIN 457

Now the behaviour doesn’t separate cleanly, and there are two regimes of approximate
power law scaling, with something more messy in between. Using the same procedure
as before, we get an anomalous term for κ 6= 0:

T (γN)

T (N)
'

(
1−

(
γ − 1

γ

))δ
+

κ(γ − 1)N2

π + σN + κN2
(8.17)

' γ−δ (κ� σ,Nsmall) (8.18)

' γ (κ > 0, N large) (8.19)

(8.20)

So for large N , with κ > 0, we have simply

T = T0N, (8.21)

i.e. the scaling cost becomes linearly worse with increasing size.
When we compare these results to a spacetime scaling, it will become apparent that

this takes the approximate form of a scaling law in a one-dimensional spacetime D = 1,
with Hausdorff dimension H = π/σn < 1. This indicates that a serial workflow, with
some parallelism, is essentially a one dimensional problem, with some fractal complexity
in its trajectory due to parallelism136. Interestingly, as the parallelism increases, the
duration of the fractal dimensionality shrinks to nothing. Thus the large N limit for serial
processing tends to squeeze the degrees of freedom in the system. We can compare this
result to the case of general spacetime involvement in section 5.15.

What kind of promises should agents make in order to support expectations?

8.8 DATA PIPELINES AGAIN

We want to study the composition of different pipeline use-cases to abstract necessary
and sufficient promises its components need to keep. We’re interested in defining the
distinct configurations and characteristic for what is essentially a network of queues,
based on messages sent from senders S to receivers R, in the topology of a directed
acyclic graph (DAG).

8.8.1 TOPOLOGY OF WORKFLOWS

Users want to focus on an outcome storyline with their processing, and suppress concerns
that are not germane to that narrative. All reasoning and programming is essentially
storytelling, which is why it is important to daily business—we want to keep the story they
are trying to sell in focus, and not be drowned by technicalities of modern infrastructure.

458 CHAPTER 8. SCALING OF PROCESS AND WORKFLOW

Although we call it a pipeline, the structure of a workflow is not necessarily a linear
chain, but may have branching points and confluences. Even the simplest DAG ‘storyline’
has a tributary structure, like a river accumulating inputs from multiple independent side
channels (see figure 8.13):

Dataverse Dataverse

query

material

views

continuous eventsevent

cache

user query user query

A A

(a) (b)

Figure 8.12: Data ‘pipelines’ may work in one of two modes: (a) a direct query (a downstream
agent imposes a request) to upstream distributed data sources, with latent response (like intention-
ally fetching water from a well), or (b) in the context of a continuously updating stream (promise)
imposed by upstream, received into a cache are always available (unintended rain collection into
a reservoir). In both cases, to unlock a flow, users initiate a data query from a programming API
to move the workflow narrative forward.

That’s because every stage relies on dependencies, like the software, execution
platform, and helper services (storage, DNS, etc). These all impact the result to some
degree. In the weakest case, they may simply add to latency. In the worst case, they
might affect the nature or semantics of the outcome, contending through covert channels
of shared resources.

8.8.2 INTENTIONAL AND UNINTENTIONAL SOURCES

Data collection is one of the central constraints on a pipe. The material that goes into a
pipeline may arrive involuntarily (unintended like rain), or it may be collected voluntarily
(intended, like fetching water from a well), see figure 8.12. So, there are two ways to
initiate work:

• Intentional workflow (scheduled workflow)

8.8. DATA PIPELINES AGAIN 459

• Unintended workflow (random event stream processing) similar to a ‘service’137.

We tend to focus on the DAGs in scheduling, because the DAG tells the storyline,
and follows the intent. But it is not the whole story. There are service dependencies
along side, which (in some sense) are even more critical as they must be highly available
and changes may conceal influences on the result that become unplanned and unintended.
Classic examples are DNS, storage, etc. (see figure 5.248). These side channels usually
dominate the management task in deploying a data processing job.

8.8.3 STAGING AND CACHING INTERMEDIATE RESULTS

As data ‘events’ enter a system, they undergo a sequence of operator transformations
resulting in intermediate output states that become the inputs for the next stage, fol-
lowing the DAG (see figure 8.13). These intermediate results form checkpoints in the
computation, and can be cached for repeated use. Any kind of intentional search for
criterion matching will lead to a significant delay. Some of these intermediate stages

D1 D2 3D

J (D)
1 1

J (D)
2 2 J (D)

3 3

data in build out

source

training, lookup

sw update pod change

Figure 8.13: Channels and side-channel change. The flow of inputs in a pipeline is a river with
tributaries, and each stage is a subcluster.

(as mentioned in figure 8.12) may be reusable for updates and fault repair. It allows
processes to be picked up from where they left off, rather than being started again from
scratch, following an interruption138.

Buffer caching also brings greater regulation of the stream by allowing stages
downstream to pull work from the pile at their own rate (as the rain comes in, it fills up
cascading wells that are empties according to a scheduled process, restoring an artificial
determinism to the computation). Formally, the sequential processing makes these cached
versions into a queue, but it might not be a strictly ordered queue (a database of arrivals
is sufficient). A pull approach can also be used to query the initial sources in some cases,

460 CHAPTER 8. SCALING OF PROCESS AND WORKFLOW

e.g. IoT devices at the edge of the network, can be polled rather than expecting them to
push data according to an awkward perception of ‘realtime’, forcing network congestion.
So, for result retrieval, there are two architectural choices (see figure 8.12),

• Poll

• Accept,

which represent different uses of a common caching strategy as an intermediary store.

8.8.4 TIMESCALES IN COOPERATIVE CHAINS AND PIPES

Every system’s behaviour is constrained by its intrinsic timescales. Figure 8.12 defines
two timescales:

• If users make explicit requests, from downstream to the source, then updates are
requested on demand (which defines a timescale of user interest).

• Alternatively, the source events might drive processing updates on their schedule,
imposing them without forewarning (which defines another timescale).

Push from upstream and pull from downstream (advanced and retarded boundary con-
ditions) represent different agencies, with different intended schedules. So there are
already multiple timescales on our radar:

• ∆E, the interval between events and data changes at source.

• ∆U , the interval between user requests.

and in between there are many more characteristic timescales that relate to the processing
of different stages and dependencies. These timescales get distorted by processing for
many reasons. The most common reason is the time it takes to fetch or compute a result
from the data.

In all pipelines, there are two sets of ‘users’ for the pipeline (input suppliers and out-
put consumers), and processing may be driven by actions from both ends (see figure8.12)
e.g. in a build pipeline, commits might be batched for compilation once per day, but that
could be accelerated if some user requests a latest image. Some examples of how these
two models look in terms of technology implementation are shown in the table below.

CASE SAMPLING PROCESS CACHE RESULT QUERY

SENSOR IOT POLL SENSOR/GW DB (NO)SQL
CD BUILD COMMIT CHANGES DOCKER/HELM START INSTANCE

ML TRAINING TRAINING PROCESS PUSH ANN/DL PIPE MATCH QUERY

8.8. DATA PIPELINES AGAIN 461

8.8.5 ARRIVAL PROCESSES AND EVENTS

Using a minimal amount of promise theory[BB14a] we can state and describe specifi-
cations of the system, in terms of a collection of agents that make certain promises to
one another, in order to apply basic principles of distributed information and understand
scaling, and verify their completeness.

Let Ai be a collection of agents capable of data processing. We shall sometimes
refer to agents by the roles Si and Ri for sending and receiving messages respectively.
Subscripts i refer to different agents or system components. Subscripts n will refer to
different samples or messages, at different times.

To characterize the arrival of data, from a set of sources Si, we imagine that a number
agents with independent intent feed data to one or more receivers. There are two ways
this can happen. The first is by imposition:

Si
+Di−−−−−→ Ri, (8.22)

or ‘push’ of data Di from the source, leading to unpredictable (involuntary) arrivals. The
second, alternative approach, is for an agreed delivery time to be promised:

Si
+Di−−−→ Ri, (8.23)

according to a promised schedule.

8.8.6 TIME MEASUREMENT AND SO-CALLED ‘REALTIME’

Before we can begin to talk about ‘realtime’ response, we have to be clear about whose
time we are talking about. A distributed system is full of clocks that tell their own time.

System time is marked by changes of state, in the system state machine. The pipeline
model described thus far leads to three distinct definitions of system time:

• ∆Ei or the event arrival interval from source Si. In an ‘interrupt’ model, a single
event E(i)n is a tick of the receiver’s clock, i.e. an entry in its log, and there
the time between events is always 1 because each event is the tick itself. If the
receiver has sampling (polling) semantics, then we can define it to sample at each
interval ∆ti according to some independent clock.

• ∆ti or source sampling interval for events E(i)n from source Si, according to
an independent interior clock of the receiver (e.g. input buffer for channel i). By
Nyquist’s law, ∆ti ≤ ∆E(i)/2 in order to capture the events.

• ∆T is the aggregation interval, or the time between samples of the input channels.
If there are N stream channels, then by Nyquist’s law, ∆T ≤ ∆ti/2N in the

462 CHAPTER 8. SCALING OF PROCESS AND WORKFLOW

ideal case of no loss, where all channels are sampling at the same rate and are
approximately balanced. If events are sparse, according to T ’s clock, then it can
get away with sampling at a slower rate to resolve arrivals.

The processing rates of the agents sending and receiving data need to scale according
to their ability to respond. To avoid data loss, Nyquist’s theorem tells us that we we need
to ensure approximately:

∆T � ∆ti � ∆Ei, (8.24)

for the pipeline’s relative timescales.
When we talk about ‘realtime’, we expect to be talking about ti, but we can only

describe T , so we have to aware of the latency ∆Ti on each of the channels, which might
vary with T in a non-linear way. So the best notion of ‘realtime’ processing we can give
is

Definition 176 (Realtime pipeline). A pipeline in which timescales satisfying the in-
equality (8.24) and with bounded latency of the order

|B|
µT
∼ 1, (8.25)

where |B| is the data size of an average batch B, and µT is the processing rate in data
per tick of clock-time T .

Note, this tells us something about the overhead incurred by not batching data. Suppose
there is an approximately constant latency per batch. if the batch is small, we need to
collect more and this there is greater percentage of overhead139. If the batches are large,
the overhead is small, but the data may lag behind what we expect might be ‘now’ at
the sensory end of the dataverse. At some critical batch size, the cost of data collection
crosses a threshold at which there is no point reducing batch sizes because the overhead
limits the rate at which they can be collected. So latency or overhead are the fundamental
limitation of ‘realtime’. Latency starts with sensors, and is added to by network latency,
and collection processing latency. The former is not under our control, the latter can be
managed to some extent.

8.8.7 DYNAMICAL SCALING: CONVOLUTION OR CONFLUENCE OF

STREAMS

Systems scale vertically and horizontally. We can’t assume that the intervals between
arrivals are balanced across parallel channels in their average properties, or congruent

8.8. DATA PIPELINES AGAIN 463

in their general pattern of arrivals. Using the timescales above, we can define an arrival
process as a sampling, polling, or collection buffer. We assume a set of finite messages
D1, D2, . . ., which are what we call ‘data’. These may be considered independent, in
the sense that they make independent promises, describe independent facts, or have
otherwise independent intent, so that they can be processed without dependency on any
other messages.

Data transmission involves the binding of two dual processes: arrival and sam-
pling. The data arrive as events E1, E2, . . ., etc, which collectively constitute an arrival
process[GS01]:

Definition 177 (Arrival process). LetDn be a finite, independent data message, imposed
from a sender S onto a receiver agent R:

S
+Dn−−−−−→ R, (8.26)

A sampled random variable that forms a distribution of interarrival times
∆t1,∆t2,∆tn . . ., over jobs or messages Mn, where ∆tn are measured in ticks ∆t of
the interior clock of agent A.

and need to be sampled or observed and accepted:

Definition 178 (Sampling process). We assume that the receiver agent promises to
receive and accept the job requests:

R
−D−−→ S. (8.27)

If this promise is persistent, and is kept at a regular interval ∆t, it may be called a
sampling process, with Nyquist sampling rate 1/∆t.

Arrival and sampling processes must coexist for there to be data transfer.

8.8.8 JOBS AND BATCH JOBS

Let J() be a job function that computes a result from data D. A (primitive) job can be
defined as single event, i.e. given a sampled arrival Dn:

464 CHAPTER 8. SCALING OF PROCESS AND WORKFLOW

Definition 179 (Job). A job is an execution of the transformation function J(D) that
depends on the arrival of Dn

A
+J(Dn)|Dn−−−−−−−−→ A′, (8.28)

where we use the standard notation for conditional probability and promises |Dn to indi-
cate dependency. The processing time to absorb the data Dn may be written TP (J,Dn)

ticks of R’s clock. In queueing theory language, this relates to the average service rate
µ ∼ 1/TP .

By the conditional promise law, this conditional promise can only be realized in the
presence of a counter-promise to accept the data from its source:

A
−Dn−−−→ S, (8.29)

The scaling of the throughput follows the Universal Scaling Law (an extension of
Amdahl’s law for queues)[Gun93, Gun08].

8.8.9 IMPOSITION AND PROMISE SEMANTICS

If data sources can promise data in a predictable way, this allows delivery promises to be
kept and for certainty (predictability as a service) to propagate along the chain. When
data are imposed at ad hoc intervals, they do not arrive with a predictable schedule, and
we cannot make any promises about delivery.

Lemma 42 (Imposed arrivals). If data sources make no promise about data delivery,
the receiver cannot promise when it can complete its job, i.e. the ability to make a
conditional promise

R
+J(D)|D−−−−−−→ A (8.30)

without a promise about the condition is impossible:

The proof follows by the conditional promise law[BB14a], since the receiver cannot
promise when it will receive or accept delivery, and cannot promise the results itself:

Missing: R
−Dn−−−→ S (8.31)

Missing: R
+Dn−−−→ S (8.32)

and thus cannot quench the dependency in (8.30) in any way140.
Push driven systems are sometimes associated with reactive or event driven systems—

though this can be misleading (see section 6.7.1). Pull is the fundamental sampling;
it requires active polling of the queue. It optimizes message transfer according to the
downstream capabilities.

8.8. DATA PIPELINES AGAIN 465

8.8.10 SEMANTIC SCALING OF DATA: BATCH AGGREGATION

Dynamically aggregations always involve coarse time graining, but time is not the only
variable by which to aggregate data. Specific semantic queries, based on intent, may use
any key or label attached to data in a stream to sort and collect. The formation of batches
is therefore a semantic issue, not only a dynamical one.

Definition 180 (Data frame). A data ‘point’ may actually be a vector, matrix, or general
tensor of values, acting in the role of a single event, whose schema has a particular type
label. (Something like a ‘particle’ in physics.)

Definition 181 (Distributed data frame). A data frame that is physically represented
across a distributed collection of nodes with private memory.

The scaling of data from a single point or event arrival, into to a stream is key to the end
to end delivery of data through the pipeline chain. The atomic unit of data is an event
Dn.

Definition 182 (Batch of data). A finite collection of data messages (events), identified
by ‘name’, i.e. some unique label, e.g.

B = {D3, D6, D9}. (8.33)

Traditionally, the term ‘batch’ has conjured the idea of a large amount of data that takes
many hours to process, but the size of a batch need not be limited to large sets. The size
of a set is a variable that can be optimized on any number of criteria. Micro-batches are
common in streaming engines because they bring additional simplicity and a reduction
of overhead, or because they help to avoid out-of-order delivery.

We could plausibly define a batches as aggregations based on different criteria, e.g.
the result of a SQL query set, or a collection of arbitrary events up to a minimum length,
in general computations need the specific promises made by the data. For example, it
would not be appropriate to muddle data semantics together in the same stream, e.g.
accept climate data in order to draw conclusions about consumer shopping habits. The
names of data packets, in the broad sense, label what they promise, and these refer
to separate channels. Multiple channels may share common dynamical resources, but
maintain semantic distinctions.

Definition 183 (Batch Job). A batch job is an execution of the transformation function
J(B), on a data batch B:

S
+J(B)|B−−−−−−→ A = S

+J(D1,D2,...)|D1,D2,...−−−−−−−−−−−−−−−−→ (8.34)

466 CHAPTER 8. SCALING OF PROCESS AND WORKFLOW

A batch job may or may not be sensitive to the interior structure of B. In other words, the
function J() might operate only on the aggregate of the data, or it may need to preserve
the interior order and structure of the data in some way to compute its result. A very
simple batch job is to aggregate data according to a particular label, e.g. by name, by
location, etc, and return a representative value such as an average.

The criteria for collecting data points together into a batch can be based on any
semantic label, used to distinguish them. Note that a batch job embodies the intent to use
a specific set of messages, which in turn assumes that the set can be identified uniquely.

Some functions, such as averages, may be implementable and incrementally up-
datable, on any size of data batch. One might be able to show that their asymptotic
behaviour will not be dependent on the order of arrivals. This is not true of all functions,
however (see section 8.8.12).

8.8.11 SCALED FORWARDING, BY WINDOW AND BATCH

Once data have been aggregated according to some semantic label, we need to ask: when
is a sufficient amount of processing complete, in order to trigger the next stage of the
pipeline? This is a windowing policy question. Each stage may have a criterion for
completeness χi, which is equivalent to a batch size |B| at each stage. The minimum
batch sizes at each stage may be quite different. This also depends entirely on the nature
of the batch functions Ji.

At the source edge of the pipeline, each ‘sensor’ event triggers a response from
the pipeline receivers, but this event-by-event response will not scale effectively (or
semantically) over long times or aggregated over many sources. In most cases, an
meaningful update to a pipeline result will depend on a minimum amount of new data.
Some threshold policy is required to make this ad hoc choice.

Rephrasing the question: each chain is an ordered set of prerequisite dependencies.
As we aggregate batches, we need to define what constitutes a tick of the pipeline’s next
clock. Note, each aggregator needs to be significantly faster than its predecessor’s output
schedule, but since this is not sustainable, the outputs of aggregated data need to ‘save
up’ or buffer events so that they can be outputted collectively as a single event to the next
stage, usually with some data summarization.

8.8.12 ORDERING OF ARRIVALS AND BATCHES

If functions are symmetrical in their arguments, there is no particular need for in order
delivery; such jobs therefore form a Markov process[GS01]. However, if the order of
data matters to computation, because the function is non-linear, then a total ordering (sort)
function O(·) may be implied to the aggregation of data. Since this requires buffering, it

8.8. DATA PIPELINES AGAIN 467

limits the rate at which results can be promised.

S
+J(B)|B−−−−−−→ A = S

+J(O(D1,D2,...))|D1,D2,...−−−−−−−−−−−−−−−−−−→ (8.35)

Labels based on ‘arrival times’ (according to the receiver’s clock) cannot necessarily
be attributed any significance, since there is no causal relation between arrival time and
intent on the part of the sender. The ability to meaningfully order events on a single
clock depends on the kind of source represented by the previous stage in a pipeline: from
a direct sensory source, to a parallelized processing cluster. The former represents a
definite source of causal ordering, while the latter could be shrouded in entropy. Arrival
order is not an invariant property, the ballistic approach is the root of uncertainty, along
different paths.

• In general it only makes sense to preserve the order of events recorded at a single
point in the network. In some cases, it might make sense to arrange for a shared
clock service for a number of agents that belong together, and are approximately
collocated, and define the order by the shared clock time of the cluster (see figure
8.14).

Figure 8.14: Is there a single clock whose time can be called representative for all subprocesses?.

• When data are aggregated into a single cache, such as a database, the order or
data may be lost. The arrival times at the database can be used to order them as a
single stream. Or, if there are already ordering labels on the data, these can be
labelled additionally with the module from which the data are sourced, to keep
independent clocks separate.

• The sensitivity of computations to ordering discrepancies and inaccuracies de-
pends entirely on the nature of the transformation function. The order of data

468 CHAPTER 8. SCALING OF PROCESS AND WORKFLOW

arriving from sources that are meant to be compared congruently, such as transac-
tional changes, weather, and other causal models, will be most expensive to define
correctly. In scaling computations, the most resilient computations will be those
that converge to a single attractor, without a strong dependence on order.

When searches, either from a cache, or applied directly to remote sensor gateways, are
curated into a log or file stream, the streams should be kept separate, as they may have
different latencies, clock calibrations, and so on.

Data are effectively engaged in a race from sources to collectors. In a parallel cluster,
slow nodes might lead to an effective reordering of arrivals, and behave like late data.
So chaining along different paths can distort apparent causation. This is why we need
desired end state with conditional dependencies. One could try to measure the relative
ordering of events at the input, and preserve this throughout a distributed computation.
However, this is not a trivial matter, and inevitably leads to queuing and latencies, which
could themselves become unstable. Approximations based on best-effort synchronization
of clocks are often used. This is only meaningful if the ‘real time’ data source is localized
in space.

8.8.13 SCALING OF ORDER AND CHAOS

Scaling theory (coarse graining) tells us that scaled macroscopic outcomes should
not be sensitive to the precise spacetime properties (including the order) of events
at the microscopic level. An exception may have to be conceded for highly non-linear
computations where sensitivity to small variations does not average out and decou-
ple, indeed they may be amplified. However, in that case, we have an intrinsic in-
stability (deterministic chaos), and only a policy choice can resolve a definition of
correctness[LLG+09, LGZ+14, ABC+15], by trading off sensitivity against speed, ac-
curacy, with no guarantee of certainty.

8.8.14 WINDOWS AND BATCHES

A discretization of time is often referred to as a window. Windows can be defined
according to a variety of semantics, e.g. they may have a fixed schedule (calibrated to a
reference clock) that covers the entire timeline in batches, or they can slide along as new
events arrive, so as to maintain a fixed amount of data that always includes the latest.

Definition 184 (Window process). A collection of data events, ordered according to
their arrival in a single queue Q (see fig 8.15), beginning at some

8.8. DATA PIPELINES AGAIN 469

E(1)
3

E
(3)

3 E
(3)

5E
(3)

4

E
(2)

1 E
(2)

2

E(1)
4E(1)

1
E(1)

2

E(1)
1

E
(2)

1 E
(3)

3
E(1)

2 E
(2)

2

E(1)
1 E

(2)
1 E

(3)

3

Batch

Figure 8.15: The aggregation of events into a stream may have ambiguous semantics, especially
when there is aggregation from parallel sources. There are three distinct versions of time on the
inputs, and a aggregated time stream at the output. The windowing concept has to take care of
this, especially if the stream promises ‘ordering correctness’. A queue cannot have simultaneous
events, but it can label consecutive events with a coarse grained time. Some number of events
from the aggregate stream constitutes a ‘batch’ to be processed as a unit.

8.8.15 COMPLETENESS

Does the receiver of the data have a complete set of its dependency requirements to
propagate a result? If a result can be computed for every arrival, then every input event
can propagate independently through the pipeline. This might be expensive however,
e.g. in the case of a blockchain transactions are deliberately accumulated to a minimum
window size (called a ‘block’) before computing the resulting hash, because it would be
prohibitively expensive to recompute for only a single transaction. See figure 8.16 for
some alternatives to defining windows.

Scheduled

"Sessions"

Sliding window

Figure 8.16: The framing of data batches or windows in sampler time.

470 CHAPTER 8. SCALING OF PROCESS AND WORKFLOW

8.8.16 “CORRECTNESS”

Correctness is a matter for interpretation. Like responsibility, it is up to the recipient of a
result to assess correctness, as it has no invariant meaning. Some papers seem to assume
correctness tacitly means order-preserving. Completeness, accuracy, order preservation,
absence or presence of features, could all be considered measures of correctness.

Each data arrival constitutes a new versionable change. The batch/windowing
policy determines which are treated as separate versions, and which are part of a bulk
update. Pipelines therefore promise ‘versioned’ data results, based on versioned input and
dependency-versioned processing, through a number of stages (see figure 8.13). If there
are lots of data, we may need parallelism to divide and conquer, e.g. like Map-Reduce,
so the stages may be multiple sub-clusters, like a chain of scaled services.

8.9 SMART HUMAN SPACES

We’ve spent a lot of time focusing on principles and analyses, using examples from the
world of technology—yet, some of the most enduring and important systems of our age
lie in our communities, from buildings to workplaces and cities. These are the very
fabric on which society rests. In recent years, the concept of ‘smart buildings’, ‘smart
cities’, and even ‘smart homes’ have arrived, with an emphasis on employing data driven
features to enhance traditional services. Smart building designers (architects) have come
somewhat further, utilizing new techniques for energy saving by integrating human and
mechanistic processes under a common aegis. We can generalize all of these under the
banner of ‘smart spaces’, and even as examples of semantic spacetime.

Smart spaces can, in principle, be imagined at any scale, from microscopic mate-
rials, smart molecules and disease technology, to urban spaces and even entire global
economies. The challenge to extend ‘smart design’ is to adapt equip them with the ability
to promise time-varying adaptation. There are two visions one might imagine for ‘smart
spaces’ :

• To enhance the experience of people living in or around smart spaces.

• To create autonomous, specialized functional spaces (like factories, farms, or
organisms) that are more self-sufficient.

In either case, the meta-goal is to bring a positive benefit to society at large. However,
we have a choice about what this means. It could mean a community of smart individual
units (putting individuals first), or it could mean a smart superagent, i.e. a scaled singular
unit (putting the city first). The preference for either of these is often cultural. In ‘Western
civilization’, individual benefit is the overriding focus, whereas in ‘Eastern civilization’

8.9. SMART HUMAN SPACES 471

the collective good is often the focus. There are many complex issues at play. The most
important consideration is the scale at which systems interact with one another. Both
viewpoints have a place, but can they be aligned simultaneously?

8.9.1 WHAT IS SMART?

Smart is a subjective assessment, of course. We give it, based on our perspective, to
things and people we feel bring us value or save us some cost, in a timely manner (see
figure 8.17). What does smart mean? Each individual observer decides whether they
experience something as smart, thus the scale at which someone observes the world
matters to their assessment.

SMART

VALUE SPEED

capabilities

functions

economics

savings

costs

context

adaptation

search

scaling

parallel

cooperation

prediction

preparedness
on−demand

3d printing

LOCAL

MIXING AVAILABILITY

NON−LOCAL

Figure 8.17: What is smart? A mixture of timeliness and fitness for purpose.

We perceive things or processes as helpful only relative to a context, i.e. are they
fit for present purpose? The use of context implies that sensing of context is involved,
and some feedback, influence or decision that is based on the result. A thing or process
acts arrives ‘just in time’ to be useful in that same context (too late is not smart). Smart
may also mean efficient, to the point, i.e. concise, ‘not too much noise’. The final point
concerns diversity. Diversity can offer different contexts for self-service adaptation. In
a community or ecosystem, multiple competing agencies can evolve, and not all their
functions and services will be assessed as fit for every purpose. As environments fill up
with competing offers, too much competition could bring contention and become more
of a burden than a help.

So, what makes a space or a city smart? From a Promise Theory view of the world,
we always ask:

1. What or who are the operational agents involved?

472 CHAPTER 8. SCALING OF PROCESS AND WORKFLOW

2. What promises do they make to one another, in what context?

3. What are the important scales for their interactions?

Scale always plays a key role in the understanding of systems. Traditionally we think
of cities and geographical communities, but with modern communications, this is a
less obviously useful definition. When a city’s resident moves beyond its geographical
domain, does he or she leave it behind, or carry it with them? In other words should we
say that a city is a sum of agents (fixed or mobile) or of places? For mobility, the concept
of self-service infrastructure (see section 6.8.2) is a key theme in enabling agents within
a space to be autonomous, to save time and eliminate dependencies that slow down ‘Just
In Time’ experience. This is both more direct (less distortion of intent) and quicker.
There also has to be a balance between focus and variety. Intent is focused. If there is
too much variation (noise) it washes out the ability to focus on a specific intent. This is
related to the issue of modularity.

8.9.2 SMART SPACES AS SYSTEMS

There is a lot of evidence that what happens in cities and spaces has universal charac-
teristics at different scales, and may even be described in terms of knowledge based
patterns[ea77]. Analysis begins—as always—by asking: what are the significant pro-
cesses for functional behaviour in a space? What agents (people, things) are in play, in
the space we are studying, at the scales we care about? What promises are made by each
agent? How do the spaces affect or arrange for economies of scale? How does the space,
as a whole, support innovation? What are the characteristic timescales, the dependencies,
and network relationships allow them to happen? Transportation? Communication? How
is knowledge represented in the space? What can the space learn about itself and about
its surroundings? Where do we consider its physical and semantic boundaries to lies?
The usual hypothesis is that smart spaces are a result of good use of information and
knowledge. Knowledge can be stored in several ways and at all scales, from the relative
positions of buildings where people to collaborate, to the patterns of wear in a park lawn,
to the writing in books141 Smartness may lie in hardware or software (and their ability to
address timescales), in design, in persistent structures (like buildings), or in persistent
culture.

Example 226 (Smart space agents and scales). Agents, which make promises, are
functional entities that can operate at any scale. All agents are proxies for human intent,
but the human intentions may be represented and enacted, in situ, by arbitrary THINGS:
People, Machinery, Systems and processes, Buildings and structures, Transport systems,
Animals, and so on. Each of these acts relative to its environmental interaction scale.

8.9. SMART HUMAN SPACES 473

Example 227 (Learning versus canned solutions). To make a space smarter, with the
aid of technology, we need to ask: how do we embed a technology, at the right place, at
the spacetime scales of the processes that can bring value ‘just in time’? i.e. Location,
timescale, function (cached/canned/productized decisions).

Regardless of whether we want to think of a coherent space as an organism or a
community, a space is a theatre in which activity takes place (e.g. a city is where human
activity takes place); it is a catalyst for activity, and a framework for human purpose.
Only when we step aside, as observers, does the occupied space become an organism for
independent activity. We can imagine such independent spaces within the boundaries
of a city too, e.g. factories, wildlife preserves, etc. The boundary of a system is not
necessarily the same thing as the boundary of the region it occupies142. What’s common
to all of these cases is the idea that each space fulfills functional roles. A good place to
start is to look at what emergent processes and functional roles occur in cities (and their
smaller spaces).

8.9.3 PURPOSE OF A SPACE

No space, home, or city is an island, nor does it exist in a bubble. External, environmental
forces shape cities and other spaces as much as what happens within them. Specialized
curated spaces bring together agents as systems, in functional ways, for combinatoric
effect—relative to their environment and context. Any large space forms a mosaic of
subcultures, which develop their own languages, jargons, habits, etc. The size of these
is shaped by the Dunbar hierarchies[Dun96, ZSHD04]. Why do communities form?
Reasons to cluster together, in networks, begin with self-protection (safety in numbers)
but extend to innovation and trade:

• Shelter, security, protection, minimize contact or risk perimeter143.

• Supply and demand of traded goods and services with outside.

• Economics of resource sharing and specialization (optimization)144.

• Stability: mixing and redundancy and robustness.

• Mixing: putting agents together as a marketplace for trade (including ideas)145 .

Resources may come from outside a space (e.g. the region around a city), and waste
is dumped outside it. The ability to grow and streamline operations on demand (from
within and without) is important to any organism or community. This requires functional
scalability, i.e. the freedom to change the size of a system without altering its function.
It is sometimes assumed that shared resources must be centralized, or made into ‘silos’

474 CHAPTER 8. SCALING OF PROCESS AND WORKFLOW

(which are convenient for productizing and branding identity), but smarter systems
based on distribution and Just In Time delivery may do a better job. We should also
note that centrality is scale-dependent. That which is central at one local scale may be
decentralized at a wider scale (see figure 8.18).

app 2

app 1

slow / narrative

knowledge space

fast / reflex

contact space

lights

heating

sensors/actuators

sensors/actuators

knowledge app 2

app 1

slow / narrative

knowledge space

fast / reflex

contact space

lights

heating

sensors/actuators

sensors/actuators

W
S1

W
S2

W
S3

Figure 8.18: Applications may live close to the edge, or in a more central place, to fit with
the fast reflex responses, or the slow knowledge based coordination. The right hand side shows
separate workspaces overlaid, with applications, sensors, and physical regions integrated inside a
virtual perimeter.

8.9.4 DISCOVERY AND CONNECTIVITY

Parts of a space may benefit from being close together. How agents find one another is
the basis for how they can collaborate. There is both static design, and there is mobile
collaboration. If a part of town is the nightlife/shopping, etc, it benefits from being
clustered into only a few districts. This is a static longterm planning decision. Food
trucks, circuses, raves, festivals, etc, can coordinate and organize for mutual benefit.
Information technology has a clear role to play in exposing such services146.

Example 228 (Virtual proximity, constraint or autonomy?). If we are tied to a specific
location, we are dependent on agents perhaps unnecessarily. Virtualization of services
frees agents to interact without being tied to a location. Applications and services are
increasingly available to us on our personal electronic devices. Although we expect
the nature of the interaction to evolve over time, this tele-presence facility is a great
time saver. We take it for granted that these agents will be enhanced by software, but
exploiting information can be done in many ways—even by being in the right place at the
right time. Communities and sub-communities form virtual boundaries within a city, and
districts, e.g. Chinatown, shopping districts, suburban communities, clubbing areas, etc.

Example 229 (Smart taxation). Many taxation and personal health issues are connected

8.9. SMART HUMAN SPACES 475

to our place of residence. What happens when we are no longer within our home geo-
political domain? This suggests the need for global digital taxation protocols between
countries, supporting micro-payments.

Example 230 (Interaction scale). At what scale should a city enable interactive learning
and resource sharing through communication? Between residents? Between companies?
Between cities? All of these scales can benefit, but they are distinct.

8.9.5 PARTICIPATION: A SENSE OF PURPOSE

Automation makes a society efficient and relieves humans from the burden of emulating
machinery. But, as humans, we need to be involved in the stages we care deeply about.
We would not want a machine to pick up a new born baby, or prepare a special meal
for friends, without direct supervision. It is not possible or practical to program all the
individual concerns into a simple instruction set. Participation favours dignity, which
favours self-worth and human happiness.

Promises on a societal scale that help to bring about participation are: inclusiveness
and transparency in politics and governance; comprehensible laws, rights, and civic
governance; public services and help desks and service oriented government.

Citizens may not need physical proximity, but we know well that when there is an
empathy barrier (like a windshield or telephone) between us, many misunderstandings
and upsets occur.

Example 231 (Transparency or action?). In China, for example, government is not very
transparent, but the users of government can report problems as ‘bugs to be fixed’, and
prompt solutions may be offered. In the West, there is greater transparency but often little
response to complaints once a choice of government has been made.

As we move into a future where the basis for employment and purpose is undermined
by our own success at innovation, we need to rethink how our living environments
support our emotional needs, not only our physical requirements. Smart cities of the
future might be more like smart exhibits, encouraging participation. Cultivating a sense
of dignity. We don’t need physical proximity, but we know well that when there is an
empathy barrier (like a windshield or telephone) between us, many misunderstandings
and upsets occur.

Example 232 (Global citizens). The world is globalized, but taxation is localized. This
causes many difficult issues for travellers and for governments. The ability of pay
electronically in multiple currencies, and relative to what services we consume could
simplify the fair redistribution of wealth considerably. Taxation as a service rather than
an obligation glued together by complex treaties.

476 CHAPTER 8. SCALING OF PROCESS AND WORKFLOW

Example 233 (Wealth redistribution). What markets value is not necessarily what society
values, so some processes can be independently self-sustaining; other desirable features
of society need to depend on the support of high earners. Rechanneling of funds, by
policy, is thus a part of a stable collective society. This is the philanthropic purpose of
taxation. Smart taxes can also have a stabilizing effect on fickle markets.

Some issues of smart adaptation can be carried with us as individuals, no matter
where we might be, while other issues are tied to a location. Systems and processes take
advantage of what they can when they can.

8.10 POWER CONSUMPTION

No system can exist in the physical universe without exchanging energy amongst its
components and expending work. In spite of the theoretical possibility of so-called
‘reversible’ machinery that—in principle—doesn’t dissipate energy, the reality is that
not all the activity within a system can be harnessed for a functional purpose. That said,
some technologies (including Information Technology) operate quite brazenly on the
ability to dump electric current to ground, where it ends up as waste heat.

A direct analogy is the way manufacturing relies on disposable materials, like
plastics and paper packaging. When a system is designed to consign part of its energy
and material to the garbage dump, there is a potentially missed opportunity to recycle
that loss. Loss is a thermodynamic reality, but it can be handled well or poorly.

For so-called RC networks, or resistive-capacitive systems, which dominate elec-
tronics, power can be calculated approximately using the basic proportionalities. Where
computers and human systems exchange information, electronic systems work by ex-
changing electric charge Q. This is related to the capacitance C, or storage capacity, and
the voltage V impetus V , by:

Q = CV (8.36)

Current is a flow of charge:

I =
dQ

dt
= C

dV

dt
, (8.37)

and voltage and current maintain a steady state through resistive materials in the relation,

V = IR, (8.38)

which is known as Ohm’s law. Voltage is the source impetus that drives change in
a circuit, and its time dependence can be represented by a Fourier superposition of
frequencies:

V (t) =

∫
df V (f) exp(2πift). (8.39)

8.10. POWER CONSUMPTION 477

For a single frequency (an unusual, but simple case), this is just

Vf (t) = V0 sin(2πft). (8.40)

Finally, the power (which is energy dissipation per unit time) is given by:

W = IV = I2R ∼ f2RC2V 2 (8.41)

∝ f2 (8.42)

There is not single frequency, but a distribution of different frequencies. The larger
the content of high frequency changes, the more energy is converted into heat, through
resistive heating (friction). Now, information technology works by switching energy
stored in capacitances from 0 to 1 at the frequency determined by the CPU’s operating
frequency. Today, this switching rate is of the order of Giga-Hertz or 109 switches per
second. What this means is that, when information technology is computing something,
the power consumption is approximately proportional to the spectrum of frequencies at
which information changes.

Example 234 (Power consumption in a human). Being alive involves a heartbeat, and
a minimum rate of heartbeats ticking over. So our bodily functions expend energy on a
scale of hundreds of Watts, and we have to feed ourselves to maintain this. The faster
our hearts beat, the more energy we convert into heat, and the more energy we have to
consume. The eat we produce heats up our houses and workplaces, and is ultimately lost
to the atmosphere.

Example 235 (Power consumption in a datacentre). In a rack of computers, power
consumption starts at a basic and constant level just by switching on the computers—
having them tick over like an engine or heartbeat. This is quite a high cost, and any
additional processes tend to be small corrections to that initial cost Each time we start a
process that alters memory, we generate heat that grows as the square of the frequency
of change. All running programs therefore generate heat. The more computers doing this
in parallel, the more heat grows in proportion to the number of processes. Multi-core
computers have the capacity to generate heat faster, and thus consume and waste energy
faster. Modern datacentres can power off or suspend computers to reduce the baseline
cost drastically.

From the relations above, we can see how to reduce energy wasted by processes. If
we don’t change stuff or data configurations in storage C = 0, then there is no need for a
current or a workflow. If we reduce the speed of change f , we can save a lot. This is why
many CPUs allow frequency scaling today in low power modes. But these reductions are
not easy. Even passing data through a network costs energy because the data don’t just

478 CHAPTER 8. SCALING OF PROCESS AND WORKFLOW

flow freely like waves through the atmosphere, they pass through switches and amplifiers
all of which involve temporary storage or dissipative switching. Keeping or assessing
any promise,

S
±b−−→ R, (8.43)

involves energy too, due to the sampling of the outcome state, to know whether or not the
promise has been kept. The faster this sampling rate (or Nyquist frequency), the more
energy grows as the square of the frequency.

Example 236 (Radical system redesign). There are many ways in which one could
imagine saving power in computer infrastructure. Avoiding data transportation by using
computation that’s close to the source of the data, is one way. This is so-called ‘edge
computing’. Using optical technologies that avoid resistance R = 0 is another. Optical
switching and computation is a technology that is developing slowly but surely. Replacing
all present computer designs with optical computers in the future might (or might not)
decrease the wasted heat. This is hard to judge, as we know that energy has to be
dissipated when work is done—unless it can be stored in very large reservoirs, which
are potentially expensive and impractical. This is one reason why we dump waste into
oceans and into landfill—these are reservoirs that are cheaply available. The problem is
that they are not isolated, so there are side effects.

Today, most heat generated as a byproduct of activity, especially computing, is simply
wasted. In the most advanced factories and datacentres, waste heat may be captured
by liquid pipes designed to store the heat and use it for something else. There is no
difference, in principle, between a power station that captures heat energy from coal
or oil, and pipes collecting heat generated by second order processes in factories and
datacentres—only the willingness to handle the waste responsibly. None of our mobile
phones, television sets, cookers, or coffee machines have any such ability to capture
and use their wasted heat energy. The initial cost of doing so is generally assumed
to be higher than what businesses might recapture by doing so. In other words, the
financial incentives for efficiency are low. This contributes, amongst other things, to the
Information Technology industry as being one of the largest energy consumers in the
world—exceeding even the transport sector (air travel, shipping, etc). Awareness of this
energy cost is not widespread, and the may layers of virtualization we rely on the create
the magic of technology makes it difficult to appreciate for end users.

Efficiencies of scale are possible, as in the discussions in earlier chapters, but these
are rather complex. Moreover, as technologies become more efficient (and thus cheaper)
it often drives greater usage, which counteracts the savings. This is sometimes called
Jevon’s paradox.

8.10. POWER CONSUMPTION 479

Example 237 (The utilization argument). One of the arguments for cloud computing is
that by packing as many processes into computers as possible, so that none are idling,
none of the basic cost of ticking over is wasted. This leads to a reduction is waste. This
is only an argument for greater efficiency, not for less waste. A similar argument is
used by airlines and shipping, for packing planes and ships as full as possible to extract
maximum use from the unavoidable cost of waste.

The difference between making the most of unavoidable waste and reducing energy
waste altogether is a difficult one, partly because human activity is proportional to the
growing population as well as to our living standard and growth of the economy. The
modern capitalist economy is basically a pyramid scheme that needs constant growth to
make sense, so our very raison d’etre is to consume more and more energy. This systemic
issue, above all others, is one that needs serious attention in the coming years.

Centralization enables economies of scale, in principle, only by pointing to a Single
Point of Action (remedy for a Single Point of Failure, if you like), so that—if savings
can be made for the central provider—then these can be made quickly available to all
users. It’s the O(1) versus O(N) network effect in action again. But it only works if the
central provider of key services promises continuous improvement and optimization—not
merely passing on its shared costs to clients.

CHAPTER 9

FAULTS, ERRORS, AND FLAWS

Having spent some time on the dynamical aspects of processes, in the promise language
(which doesn’t intentionally suppress their semantics), it’s time to turn to process seman-
tics properly. In this chapter, I want to take the intended purpose of system components
more seriously. Not all intended purposes are designed by a thoughtful creator—some
purposes evolve opportunistically—yet, we can speak of purpose, nonetheless, as long as
we can speak of the alignment of what is offered (+) with what is used (-), then we can
speak of intentionality and purpose in an impartial manner.

The three F’s of anomalous behaviour are one of the main reasons we study systems.
Our (often unspoken) intent is to ensure that systems keep certain promises, so that they
behave predictably, we can trust them, and use their behaviours as a part of a composition
in the scope of a larger context. If promises are known and stable, it should be possible
to define and diagnose faults when they occur. The literature of fault diagnosis is broad
and varied yet little of it addresses faults formally in terms of specifications. Fault
Tree Analysis, for example, considers only system pathways that are considered to
be problematic. This is an extensive analysis pioneered, by the nuclear industry with
probability assessments used to rank failure modes.

The nomenclature of problem states and trajectories of a system remains somewhat
vague in spite of such a literature. Here, I’ll refer to ‘the three F’s’ of systems: faults,
errors, and flaws, which are concepts with somewhat different semantics.

9.1 RELIABILITY AND TRUST

Reliability is the quantitative assessment of how well an agent, on some scale, keeps a
promise. The tradition of quantitative science compels us to use numbers where we can,

480

9.2. DRIFTING OUT OF PROMISED ALIGNMENT 481

but we don’t always have data on which to base estimates of reliabilty. Promise Theory
tells us that semantics will also have a role to play in assessment. Trust is a related concept,
which is combines semantics (or qualitative judegements) with dynamical (or quantitative
judgements). In the absence of data, humans generally offer a default belief about the
trustworthiness of another agent. This is steeped in psychology—people with shifty eyes
feel untrusrtworthy, we might trust beautiful people, etc. As time an experience goes by,
successive interactions (of the (non-)cooperative game [Axe97, Axe84] adjust that default
belief up or down to form a kind of Bayesian probability of ‘learned’ experience about
promise keeping. Rumour, and other public discourse, is another mechanism by which
we update our assessments, quantitatively or qualitatively. A single piece of evidence that
is semantically important can wipe out our trust in an agent or process. . The relationship
between trust, evidence, probability, and experience is more complicated than elementary
probability theory or statistics would suggest. This means that quantitative measures of
traditional reliability are of limited value in assessing systems, across the spectrum of
possible failures. We return to this in the next chapter.

Non-human agents may also effectively exhibit a kind of trust, for example—in
adjustments to their sampling rates. When observed promise keeping seems uncertain,
an agent might increase its sampling to monitor more closely, or reduce when no change
occurs for a long period of time. It would be wrong to think of trust and reliabilty as
entirely human or machine judgements. As always, the value of Promise Theory lies in
its ability to put a common umbrella over all kinds of agent—to focus on what matters
about processes without prejudice.

Example 238 (Security terminology). In the field of computer security, the term trust
is used with a confusing meaning. If you trust something or someone, it’s a sign that
you are willing to accept it without testing it first. In security, trust is used to mean
a credential acquired by testing, i.e. a confirmation that you have already tested or
validated the promise, and that you assume it will therefore always be kept. This leads
to several confusions: first, it rejects the idea that trust is a positive cost saver, built on
relationships; second, it perpetuates a myth that trust is binary—that, once established,
trust will not be broken, leading to a false sense of security.

9.2 DRIFTING OUT OF PROMISED ALIGNMENT

The concept of drifting into failure has been popularized by Sidney Dekker [Dek11]. He
makes a simple point, which we can rephrase in terms of promises. Agents, who make
promises, may eventually come to alter their behaviour:

• An agent, on one side of a promise binding, might change its promise without

482 CHAPTER 9. FAULTS, ERRORS, AND FLAWS

informing the other explicitly.

• The fidelity of the agent, for keeping its promise, might waver.

In either case, a promise binding may—over some timescale—become compromised. If
we start with two agents, S and R:

S
+bS−−−→ R (9.1)

R
−bR−−−→ S (9.2)

then we know that the effective transfer is bS ∩ bR ≥ ∅. If either bS or bR drift away
from alignment, then the overlap between them may tend to the empty set, until finally
there is no cooperative binding at all. This is not a fault, per se, in either agent, but a fault
in their alignment—in the binding.

9.3 SEMANTICS OF SYSTEM ANOMALIES

In terms of the formalized view of promises, we can ascribe reasonable meanings to the
terms, under the general heading of anomalies.

9.3.1 ERRORS (OF EXECUTION)

An error is a term that applies to processes or actions, not to outcomes.

Definition 185 (Error (of execution)). An action or change whose outcome is assessed
not to comply with the promises it makes, by some agent.

There must be a promise, as a precondition, in order for there to be an error. The promise
defines an desired outcome, and plants a measuring stick for the outcome of the promise
to be assessed by some observer. An error of execution may or may not lead to a fault
condition, depending on the resilience of the system and the degree of detail to which it
is inspected by assessing agencies.

The theory of measurement errors[Top72, Die02] distinguishes between two types
of error:

• Random errors: Unpredictable variations in the keeping of measurement promises.

• Systemic errors: predictable biases distorting the keeping of promises. These
are often related to miscalibration of observation, relativity and misalignment of
understanding, by an observer, therefore we cannot deal with these in an impartial
way.

9.3. SEMANTICS OF SYSTEM ANOMALIES 483

It is known that human-related variations are often Gaussian, or normally distributed,
but other system influences lead to variations that are often asymmetrically distributed
[BHRS01].

9.3.2 AGENT ACCURACY OR FIDELITY

From the notion of an error, we can define a general term for the reliability of an agent,
in carrying out actions related to promise keeping.

Definition 186 (Agent fidelity (accuracy)). The degree to which an agent performs
actions predictably, and in keeping with promises, i.e. without error.

In this form, it no longer matters whether the role is played by a human of a machine: an
agent (whether human or machine) that makes frequent errors may be said to act with
low fidelity, as it is not able to keep its promises, even though it intends to. Moreover,
by grounding the assessment with a specific promise, we help to eliminate room for
speculation about intended outcomes.

9.3.3 FLAWS OF DESIGN (FITNESS FOR PURPOSE)

We must also consider the notion that a promise itself was ill conceived, i.e. it was
assessed to be of low value, relative to the goals of the system.

Definition 187 (Design flaw). A promise that is assessed to be inappropriate for the
intended outcome, mistaken in its aims, or misaligned with collective goals, by some
agent.

We sometimes talk about a system being ‘fit for purpose’. This does not necessarily
mean that its intent was misplaced, but that the model of promises was incomplete or
insufficient to cover the dominant expectations and eventualities.

Comment 17 (Expecting too much). With the exception of errors of execution, which
we may ascribe to low fidelity of component agents, errors occur often for the simple
reason that our expectations exceed the quality of our intentions. In other words, we tend
only to form appropriately detailed expectations about what ‘should have been intended’
only after the horse has bolted (post hoc), when it is too late. Thus we can still learn
from failure.

As systems operate, in unpredictable environments, the number of possible states
they can occupy grows, by interaction with the environment, to areas where agents have
not made promises. Thus agents find themselves without guidance. In other words,
systems are incompletely specified, or work on incomplete information.

484 CHAPTER 9. FAULTS, ERRORS, AND FLAWS

9.3.4 FAULTS (ANOMALOUS STATES)

Faults are conditions or states within a system that do not match our expectations, or
comply with their promise.

Definition 188 (Fault). A state or condition, in which the system does not match the
promised or desired state. This leads to unfulfilled expectations. In other words, a
condition in which an assessment (sample) of the system fails to keep its promises.

A fault may be arrived at by an error of execution, or in the absence of error because of a
design flaw. We might never make something truly fault free, because design flaws can
always be hard to foresee. There is thus a strong practical need to build systems that are
fault tolerant, rather than fault free.

Definition 189 (Fault tolerance). An agent may be called tolerant if it continues to keep
its promises, within acceptable tolerances, even though it depends on promises from
other agents, that may or may not be kept.

Note that, once again, without a prescribed set of promises for an intended state, there is
nothing to define when a fault has occurred147.

Example 239 (Buffers for absorbing variation). Faults propagate when agents that
depend on them are affected by them. Buffers are a way for agents to absorb variations.
Buffers are used in mechanical systems (fenders, air cushions, etc), in financial systems
(cash flow buffers for unexpected expenses), in allowed leeway for systems in motion,
and so on.

The occurrence of system faults is an extensive and involved topic that is the sub-
ject of whole texts (see, for instance [Nat98], [HR94], [NRC81] and [SS03], [DH06]).
System faults fall into three main categories, by source:

• Random faults: unpredictable occurrences or freaks of nature, usually distributed
in a random fashion, leading to an incorrect outcome.

• Emergent faults: the system exhibits semantics that it was not designed to promise.
These usually come about once a system is in contact with an environment, or
through intra-networking at scale.

• Systemic faults: faults which are repeatedly caused by logical flaws of design, or
insufficient specification.

9.3. SEMANTICS OF SYSTEM ANOMALIES 485

Comment 18 (IEEE standard anomalies). The IEEE classification of computer software
anomalies ([IEE]) includes the following issues: operating system crash, program
hang-up, program crash, input problem, output problem, failed required performance,
perceived total failure, system error message, service degraded, wrong output, no output.
This classification touches on a variety of themes all of which might plague the interaction
between users and an operating system. Some of these issues encroach on the area of
performance tuning, e.g. service degraded. Performance tuning is certainly related to the
issue of availability of network services and thus this is a part of system administration.
However performance tuning vis of only peripheral importance compared to the matter
of possible complete failure.

Many of the problems associated with system administration and maintenance can
be attributed to input problems (incorrect or inappropriate configuration) and failed
performance through loss of resources. Unlike many software situations these are not
problems which can be eliminated by re-evaluating individual software components. In
system administration the problems are partly social and partly due to the cooperative
nature of the many interaction software components. The unpredictability of operating
systems is dominated by these issues.

9.3.5 DISCOVERIES (CLASSIFICATION ANOMALIES)

Does this cover everything? No: what if we have not had the foresight to even make
a promise, because we weren’t expecting an issue? In this case an outcome is merely
something that we identify ad hoc, with a lack of understanding or incomplete information
about the system. A fault is then a design flaw—an oversight. We could call the observed
effects, events, anomalies, surprises, or even discoveries of new phenomena.

Definition 190 (Phenomenon discovery). An state of a system that was unexpected
because no promise was made by the affected agency concerning the observed outcome.

Surprises, like this, might not be possible to measure directly, since there is no a priori
basis by which to describe it.

9.3.6 THE USEFULNESS OF THESE DEFINITIONS: THE MATTER OF

DESIGN

We have the terms:

• Errors for actions that were not carried out as promised (transition anomalies).

• Faults for states we arrive at that were not as promised (state anomalies).

486 CHAPTER 9. FAULTS, ERRORS, AND FLAWS

• Flaws for the suitability of the intention itself (assessment anomalies).

• Discoveries for unexpected occurrences or outcomes that do not match any
promise (classification anomalies).

Having rigid definitions of intent makes it easy to follow a formal method, even if
the definitions are not perfect. With the definitions above, we can:

• Push all of the ambiguity around the source of flaws onto a single idea: the ‘design’
of a system that reflects its fitness for purpose. This allows for systems that are
‘complex’, where causation cannot be attributed to any single element or agency.

• Push all of the ambiguity about faults onto the keeping of promises by one or
more agents. We do not have to prejudge the reason why a promise was not kept.

• Push all of the ambiguity about error onto the fidelity of the agents within the
system. Errors may or may not be considered the ‘cause’ of faults148.

This is a highly pragmatic separation of concerns. We focus attention on issues by saying
what we mean with promises. With these definitions, we are better equipped to answer
these questions:

• What kinds of conditions can arise within a system?

• Are they desirable?

• If yes or no, were they intended, i.e. the results of errors?

• How could undesirable states be prevented or tolerated?

Key to answering this question is another question: how much coverage of a system’s
behaviour can be documented or promised? In other words, how much confidence do we
have in our ability to determine the outcome? Conversely, how much is simply ad hoc,
or even beyond control?

9.4 INSTABILITY AND THE LIMITS OF PROMISES

Stability is the perhaps the single most important notion in reliability engineering. No
matter how simple or complex a system is in its makeup, the key to predicting outcomes
is its stability. The ability for a system of any size to represent something consistently
depends on its stability.

Definition 191 (Dynamic stability). The insensitivity of a promised outcome to pertur-
bations from any source.

9.4. INSTABILITY AND THE LIMITS OF PROMISES 487

Definition 192 (Semantic stability). The insensitivity of a promised outcome to variance
in interpretation from any source.

Our ability to determine outcomes within a system can only be related to the promises it
makes only if it is both sufficiently isolated from external couplings, and it is stable to
perturbations through the remaining couplings. There are essentially two cases we have
to consider:

• A system is sufficiently stable for promises to be kept most of the time, and may
be used in a functional role.

• A system is not sufficiently stable and cannot be assigned any reliable meaning.

In the latter case, making promises seems to be futile, but there is still a role for them:
even though promises can’t be kept reliably, they define a basis set of outcomes against
which to measure and compare the system’s behaviour.

Sometimes instability is couched as a ‘complexity’ issue. In so-called ‘complex
systems’, non-linearities introduced through strong couplings (dependencies) amplify
small deviations, causing divergent or unpredictable behaviour. One can try to constrain
or protect against this divergent behaviour, but it becomes a competitive game of infor-
mation and speed149. It is unclear whether complexity itself necessarily plays a role in
disallowing stable outcomes; however, complex systems are likely to probe states that
were not anticipated or planned for, and hence one could not easily expect that promises
about them would be kept.

The existence of a documented promise enable any agent, in principle, to probe and
detect when this is happening. If single promises cannot be kept, over time, the source of
trouble is easily localized to the agent making the promise, and its dependencies. On the
other hand, a situation in which no promises can be kept (i.e. one is constantly having to
repair state) is likely a situation of major instability, at the system level, not merely bad
luck in a dud component.

9.4.1 COULD ALL PROMISES BE KEPT AND STILL YIELD

UNPREDICTABLE OUTCOMES?

Promises are not guarantees, and they may not cover all possible outcomes. Could all of
the promises offered to explain a system’s behaviours be kept, but still leave room for
inexplicable outcomes? The answer would seem to be yes, because we can only make
promises about scenarios we anticipate.

A promise could be so ambiguously or vaguely formulated that it is actually worthless,
because its outcome cannot be assessed e.g. ‘We promise to protect the public from

488 CHAPTER 9. FAULTS, ERRORS, AND FLAWS

harm’. How shall we measure this? A ‘dumb agent’ may promise to follow a set of rules
to the letter of the law, but fail to fulfill its intended goal: ‘We followed the regulations but
people still died’. In this case, the intermediary step of promising to follow impositional
rules adds to the ineffectiveness of the promises; it is easier to assess when agents promise
what they will do, rather than what they won’t do.

Consider the following examples.

Example 240. Imagine a 3 dimensional system that you measure only in a two dimen-
sional slice: you will be constantly surprised by what seems to pop out of thin air. Many
systems of agents make promises collectively, as if they were a single entity[Bur15a]. For
example, a radio, or television makes product promises about delivering entertainment,
while the individual components promise electrical properties. A box of Corn Flakes
makes a broad marketing promise from the box, representing everything inside it, while
the individual flakes make quite different promises.

Example 241. A car is a collection of parts all of which might keep their promises. The
sum of these promises does not imply the promise made by the whole, i.e. to be a car.
Could all of these promises be kept, and yet still not yield the outcome of transportation?
Imagine if the car is lifted off the ground by a crane, none of the promises are violated,
but it does not succeed in fulfilling its function of motive transport. In this case, the
reason is that there is a tacit assumption that the car will be on a road, yet this coupling
to the environment is crucial. This is an example of overlooking something that is too
obvious to mention (though tyre manufacturers might disagree).

Promises refer to qualities that are either assumed to be under our partially determin-
istic control, or stable and repeatable, in spite of noise. The challenge we face, then, is
what to do about the aspects of systems that we don’t know about, and cannot make any
kind of promise about. Systems of incomplete information are the potentially risky.

Law 3 (Fitness for purpose and incomplete information). A system of agents may exhibit
no faults, and no errors but still have unexpected outcomes.

In this case, one may only argue that the system is flawed in its (possibly designed) fitness
for assumed purpose, because insufficient promises were proposed to cover the outcome.
The proof is simple: imagine a system that makes no promise (as in evolutionary systems
without clear selection criteria). Such a system cannot have faults or errors, by definition,
as there is no standard to measure against. In this case every outcome is unexpected, for
the same reason.

9.4. INSTABILITY AND THE LIMITS OF PROMISES 489

9.4.2 CATASTROPHES, EPIDEMICS, AND CRITICAL PHENOMENA

Because interaction is the source of dependency in systems, topology is a significant
factor in promise keeping. Highly connected agents become hubs for epidemic spreading
of failure.

Definition 193 (Single point of failure (again)). Any agent within a system whose failure
to keep a promise would result in immediate propagation of a fault throughout the system,
i.e. the failure of external system promises.

Compare this to definition 129, in section 6.5.3. A single point of failure traditionally
means a special node, which, if removed or disabled, would cause a complete stoppage in
the functioning of the system. The definition in terms of promises becomes more precise.
Thus we have the associated notion of mission criticality:

Definition 194 (Mission critical (sub)systems). A subsystem that is a hard dependency
within the larger system, and whose failure would result in an immediate negative
consequences.

The aim in any mission critical system is for any fault to have a manageable impact on the
system, leading to (at worst) a temporary degradation of service rather than interruption
of service.

Propensity for fault propagation is another effect that is understood from network
science. Network centrality is a characteristic of an agent that measures its potential
for propagating influence to other agents. Percolation is another critical phenomenon,
whereby a system attains a critical density of dependencies such that it becomes possible
for information (including faults) to travel all the way through a system from end to end.

9.4.3 INTRINSIC STABILITY: CONVERGENT OUTCOMES

Instability is associated with non-linearity, or amplification of effect. The key property
for intrinsic stability, however, is not whether or not a perturbation of a system leads to a
predictable outcome once, under particular circumstances, but whether the outcome is
both reproducible and within tolerances. For this, even determinism is not necessarily
enough. We also need convergence (see figure 9.1). Convergence to a so-called fixed
point is a form of stability[Bur04a].

Convergence of outcomes is a sublinear response. This is the antidote to instability
and variability.

Example 242 (Explosion). Think of an explosion. An explosion is caused by a deter-
ministic set of promises being kept between molecular agents that are brought together.

490 CHAPTER 9. FAULTS, ERRORS, AND FLAWS

OUTCOME OUTCOME

divergence convergence

Figure 9.1: Divergence is the transition from state where the system is concentrated around a
small number of states, to a large number of states. Convergence is the opposite: a concentration
around a focused intended end state.

The system is both unstable because the outcome grows exponentially in response to the
perturbation of being ‘lit’, and yet it develops entirely deterministically. The result is
that there is too much information arriving too fast to process and contain, hence the
system is dominated by the explosion and the normal semantics are wiped out. We can
only associate stable semantics with convergent outcomes that are of finite scope (i.e.
local in some sense).

The lesson of this section is that systems, which are designed by an intentional
process, have to be designed so as to isolate and promise requisite stability, if they are to
have predictable outcomes that users can rely on. That which is not promised, with the
trustworthy intent to keep promises, is not to be depended on150.

9.5 AGENT RESPONSIBILITY, CAUSAL MEMORY

It is often said that human error[Rea90, Dek06, D9̈6] accounts for the bulk of failures
and outages. This is an empty statement, because ultimately all decisions or oversights
can be traced back to a human, making humans an easy default target. By abstracting
both humans and machines proxies simply as ‘agents’, which make promises, we shift
from a potentially prejudicial account of individual capabilities (and indeed liabilities),
to impartial roles, together with an assessment how well they are performed.

In trying to attribute blame, we have to understand that:

• Agents may or may not be acting with complete agency, unconstrained by circum-
stances beyond their control.

9.6. AGENT FIDELITY AND FAULTS 491

• The effect or ‘memory’ of an action taken by an agent does not last forever,
because system interactions mix information sources reducing their impact; so,
there is time limit on how long one might be considered responsible for a decision
or action. Complex (non-linear) systems ‘forget’ the information that was input at
some time more quickly than linear ones. Influence of an agent is scaled down by
mixing, and eventually becomes dominated by new factors.

Both of these apply to humans and machines alike. The consequence is that no single
agent, whether human or machine, has a decisive or lasting effect on total system
behaviour, in general. The impact of an agent on outcomes has to be analyzed on a case
by case basis.

From a Promise Theory perspective, whether an agent is human or not is relevant
only insofar as it implies certain capabilities to keep promises. If one is impartial, then
ultimately all that matters is whether promises were kept or not. Thus promises allow us
to maintain impartiality while incorporating more subjective and qualitative issues into
system description.

9.6 AGENT FIDELITY AND FAULTS

The accuracy with which agents are able to keep promises may depend on many factors,
but ultimately such factors do not matter to the outcomes. This is why we are able to
automate human processes using machinery. As long as they keep the same core of
promises, surrogates and proxies may be exchanged for human labour. Most processes
start out as manual human interventions, but given a sufficient understanding of the
important promises, system agents can often be replaced by proxies that make the same
promises, allowing humans to step aside.

Comment 19 (Humans, step aside and let the system prosper). The focus on outcomes
rather than imperative procedures, implicit in a promise viewpoint, means that one may
optimize promise keeping without trying to imitate the means of implementation that
would be suitable for humans.

Example 243 (Fidelity factors). Human fidelity might be affected by anxiety, stress,
eating and drinking practices that dull awareness, etc. System fidelity is ensured by the
availability of redundant backups, which are pre-integrated into the system (downstream
principle). The predicted stability of all promises (both give and take) play into the final
assessment of system fidelity.

492 CHAPTER 9. FAULTS, ERRORS, AND FLAWS

9.6.1 ACCURACY OF ACTIVE COMPONENTS (INTENTIONAL AGENTS)

It is tempting to delve into agents’ characteristics, as we think anthropomorphically.
Machines tend to offer better consistency (fidelity) in pursuit of simple unambiguous
tasks, but not necessarily higher correctness, since correctness depends on the design’s
ability to behave in advancement of the system’s major goal, in all contexts, something
that requires awareness. Humans are currently superior in adapting to contexts (expected
and unexpected). Machines do not notice changes of context unless they have been
explicitly designed to do so; also, they are not aware of the consequences of their actions.
However, we do not need to make any of these points, if we have promised outcomes in
sufficient detail. The nature of agents is in the realm of speculation.

• High fidelity agents Hi: agents which keep their promises consistently, and with
a high level of certainty.

• Low fidelity agents Li: agents which fail to keep promises reliably.

The tautological nature of these definitions shows that we cannot assume that ma-
chines will perform better than humans. Such an assessment depends on many factors,
e.g.

• Dumb machines are likely to be successful when isolated from unpredictability.
Machines are often act with high accuracy/fidelity during simple repetitive tasks,
without adaptation. Humans may be high fidelity problem solvers, and designers,
when working in short durations, within their field of expertise and interest.

• Humans are likely to be successful when interested, practiced, and well rested.
Humans are more likely to be susceptible to fatigue. Humans typically exhibit
low accuracy/fidelity agents when subjected to stressful conditions, such as those
mentioned in section 2.8, but unreliable software, hardware, or exposure of unpre-
dictable environmental interference can also make mechanistic agents unreliable,
if they fail to adapt in a situation that requires adaptation.

In between these extremes, lies a spectrum of smart cooperative systems, that are essen-
tially partnerships between humans and machines. The so-called Internet of Things is a
scenario where this will become of prime importance.

From the comments above, we see that sudden system change, outside the limits of
fault tolerances, whether planned or unplanned can bring about situations where agents
perform inaccurately, leading to propagation of errors and faults, instead of the isolation
and repair.

9.6. AGENT FIDELITY AND FAULTS 493

9.6.2 PASSIVE ASSESSMENT OF INTENDED OUTCOMES

Let’s call error and faults ‘anomalies’, or undesirable situations within the context of a
system. They are spanned by the two categories of system behaviour:

• Semantics (qualitative (human subjective) interpretation) - correctness

• Dynamics (quantitative (objective) measures) - focus or targeting

The role of Promise Theory is to make these two aspects of the system part of a common
framework, hence promises can blur the distinction between them.

Semantics always operate within the constraints of dynamics (systems cannot be
asked to do impossible things).

• Semantic (qualitative) anomalies (distortion or botching of an intended out-
come)

This is an anomaly that can be traced to a human interpretation, since it requires
cognition, and/or a specification of intent. Semantic anomalies can happen:

– By direct interaction of a human within the system. e.g. a wrong choice,
based on analysis, perhaps because the system has become too hard to fully
comprehend.

– Through the programming of intent by proxy, e.g. in software, or a machine
design-flaw, relative to its purpose.

– Unintended emergent effects identified by interpretation.

Promise theory separates promises to provide (+) and accept (-) from one another.
Semantic anomalies can exist in both:

– (+) What is offered or executed is incorrect, ambiguous, misaligned with
intent, or of the wrong type, etc

– (-) What is received is misinterpreted or misunderstood, or expects the
wrong type.

Possible alleviations to semantic faults/errors include:

– We can try to keep systems simpler, within the realm of comprehensibility.
Or we can try to take humans our of the system altogether, and remove the
need to comprehend anything except a constraint model.

– The system is difficult to trust if it is non-linear, or unstable.

494 CHAPTER 9. FAULTS, ERRORS, AND FLAWS

– Semantic averaging over multiple agents, e.g. pair programming, dual-
agents for confirmation (redundant flight computers, human supervision
(co-pilot), etc) by equivalent agents (e.g. coworkers of similar skill level).

• Dynamic (quantitative) anomalies (measurable parameters fall outside accept-
able limits)

A failure to meet performance expectations, perhaps during unusual circumstances.
Failure to meet an SLA. Reach a capacity limit in hardware or software that
throttles the behaviour, or leads to a crash. An agent misses a target and fails to
achieve the desired goal.

9.7 PROMISES AND THEIR RELATIONSHIP TO FAULTS

A promise is an intention that is documented as a tuple of components.

π : 〈S,R, b(τ, χτ)〉, (9.3)

where S is a sender of a promise, R is a receiver of a promise, and b is the promise
body, which has type τ and constraint χτ . Promises are not directly observable, but their
outcomes can be assessed, relative to the states of a given agent.

A(π) : 〈S,R, b(τ, χτ)〉 → 0, 1 (9.4)

E(π) : 〈S,R, b(τ, χτ)〉 → [0, 1] (9.5)

where 0 corresponds to ‘not kept’ and 1 corresponds to kept. The usual interpretation of
a fault is the observation that an assessment, made by some agent, A(π) = 0, or that the
average assessment over time E(π) falls below some policy threshold. But how is this
mapping made? What factors affect the assessment of a promise?

While physics and statistics focus primarily on describing change (dynamics)of
entities (particles, atoms, etc), promise theory attempts to unify three essential parts of
agents within a system: dynamics, semantics and context (see fig. 9.2). These aspects
form complementary views of system descriptions (see table 9.1)

The table and figure 9.2 lay out the essential aspects of systems along three main
axes, and their combinatorics. Promise-oriented reliability extends the expressivity and
ambitions of the statistical component models in several ways:

• It shifts the attention to successful interactions between agents, rather than indepen-
dent working state of agents. Hence it represents and acknowledges delocalization
of responsibility.

9.8. THE BASIC PROMISE FAILURE MODES 495

ASPECT COLLOQUIAL REALIZATIONS

SEMANTICS MEANING ASSUMPTION, INTERPRETATION

OUTCOME, QUALITY, VALUE,
GRAPHS, PATHWAYS, STRUCTURE,
CONSTRAINTS

CONTEXT SELECTION STATE, AWARENESS,
CONDITIONS, ENVIRONMENT,
MEASUREMENT, PHASE-SPACE

DYNAMICS CHANGE QUANTITY, CHANGE,
TRANSITIONS, SCALARS, VECTORS,
PROBABILITIES, SCALE

TABLE 9.1: THE THREE ASPECTS OF AGENCY.

• It allows us to model smarter agents that have memory and can adapt to different
contexts.

• It quantifies even qualitative aspects of system behaviour, adding dimension or
measure to the assessment of working state: how well, how fast, how according
to intent (specification)?

Definition 188 describes a fault as a condition in which the actual state of the system
does not match the promised (desired) state. In many cases, we depend not only on single
promises, but promise bindings (± neutrality) for cooperation. In other words, instead of
thinking ‘component is working’, we think: is the component playing its role to all the
stakeholders who rely on it? This does not only mean those components that are directly
connected to it, but also those, which might be far removed from it, and still rely on its
behaviours, unlike in the classical component in situ model. The promise arrows are
virtual relationships, not physical connections.

9.8 THE BASIC PROMISE FAILURE MODES

Having identified the ways to define faults and errors consistently in terms of promises,
we can consider how the failure to keep certain promises can lead to these conditions.

496 CHAPTER 9. FAULTS, ERRORS, AND FLAWS

Figure 9.2: The three aspects of systems for a unified treatment. In between context and
interpretation, lies decision-making, to guide system dynamics. Between context and dynamics,
we find the state or condition of the environment, to which we attribute semantics. We attach
meaning to change by selecting favoured outcomes, in a given context. Finally, we attribute
meaning to current state and desired change by making promises about desired outcomes, i.e. we
document what we intend.

9.8.1 STANDALONE AGENT PROMISES

Promises to self, to no one in particular, or to purely passive stakeholders who do not act
or depend explicitly on a promise, represent the simplest declarations of intent (see fig.
9.3). Such promises may assessed to be either be kept or not kept, by any agent in scope,
i.e. who knows about the promise.

Each promise acts as a local ‘measuring scale’ for assessing system characteristics
along different ‘axes’, like in a coordinate system.

Example 244. If a person promises to tie their shoe laces, brush their teeth and wash
behind their ears, then we have three axes on which to measure and compare the state of
person.

Each promise type becomes an axis for measurement: a possible degree of freedom
for agent behaviours. Assessments from kept to not kept (either on a binary or on
a continuous scale), allow us to collect data meaningfully about whether a system is
measuring up to its intended goals. Without any promise, we cannot measure the success
or failure of a system, we can only study patterns of behaviour151.

The simplest reliability question we can ask of a system is thus:

• Was any promise made relating to observed behaviour?

• Was the promise kept?

Answering these questions help to determine whether

9.8. THE BASIC PROMISE FAILURE MODES 497

S R

+b

−b
sender

receiver

Figure 9.3: Single agents may make promises to give (+) or accept (-) something from another
agent. Note that it is the sign of the promise that denotes direction of flow, while the arrow is
always the direction of intent, originating from the responsible agent

• The system is behaving as designed, but it does not currently align with its stated
goals (design flaw).

• The system is behaving as designed, but an observer’s can’t or won’t accept the
behaviour (inconsistent or mismatched promises).

• The system is behaving contrary to design (simple assessment of fault).

Promises act as calibrators for fault detection. In the traditional black box model, all of
these modes of failure (above) are random faults, and the cause of the fault is unknown.
We cannot resolve in which specific agency the misalignment with intention lies. But, by
making explicit promises that document both qualitative and quantitative constraints, we
introduce a measuring stick for the design of a cooperative system.

Example 245 (Security breach). A condition that is not easily defined as fault in the
classical theory of reliability is a security breach. In a promise system we are able to
define what specific promised condition was violated to lead to a security breach. In this
way, security just becomes a promise, and a breach is only a fault or a particular kind of
promise not kept.

Comment 20 (Monitoring and alarms). Promise keeping also applies to all forms of
measurement and monitoring for fault detection. Measuring without a stated promise is a
waste of time, unless you are a researcher or investigator in search of clues, because the
monitor doesn’t know what to look for. In most IT monitoring systems, if any promises
are made at all, they are usually ad hoc time series thresholds that are set by gut feeling,
not aligned with system design promises.

498 CHAPTER 9. FAULTS, ERRORS, AND FLAWS

9.8.2 TIMING OF PROMISE KEEPING AND ASSESSMENT, AND THE

NYQUIST SAMPLING FREQUENCY

A promiser that tries to keep its promise too late has not kept its promise, and the
promisee interprets this simply as a fault. Responding within a timely fashion might be
considered part of an extended protocol or handshake.

Using Information Theory, we can apply Nyquist’s sampling theorem, in reverse,
to infer that the information propagation density needs to be at least twice that of the
dependency sampling, in other words: in order to keep a continuous, time-varying
promise, when the promisee uses the promise at a frequency ν, the promiser will need to
ensure its accuracy at the Nyquist frequency of 2ν in order to track the changes.

Law 4 (Nyquist frequency for promise maintenance). A dependency should maintain or
update its current state at (at least) twice the rate at which the promise changes are used
as a dependency to avoid a perceived fault.

System with periodic sampling can optimize this maintenance cycle for rapid repair. This
changes the relative economics of redundant, replacement, versus repair, discussed in
chapter 11.

9.8.3 COVERAGE: BEHAVIOURS THAT ARE PROMISED AND

NOT-PROMISED

Systems exhibit two kinds of behaviours:

• Intended or promised behaviours (what we normally call agency)

• Unintended behaviours (disrupted or emergent behaviours, from environmental
noise and interruptions), which are ad hoc as there is no promise associated with
them.

So a system is either guided or not. If it is not guided, there is not much we can say about
its behaviour except by watching and trying to learn. If a system that does not make
promises exhibits apparently predictable behaviour, we might infer that it does in fact
make a concealed promise. Sometimes we believe in promises that have not been made,
and speak about emergent behaviours.

Emergent behaviours are observed behaviours that resemble intentional behaviours,
and may recognized and named, but where no promise was actually made[BB14a]. These
are typically collective behaviours, but taking into account scaled super agents, we might
not be able to tell the origin of emergence.

9.8. THE BASIC PROMISE FAILURE MODES 499

Definition 195 (Emergent behaviour). Observed behaviour, which is consistent with the
existence of a promise, but has not been promised explicitly.

In promise theory, we represent all behaviours by transition trajectories through the
possible states available to agents152. These trajectories may be largely explained to
be the correlated outcomes of promises, perhaps with corrections caused by noise or
implementation errors. The promises might not drive the trajectories, but they constrain
the observed behaviours depending on the degree to which they can be kept. This is what
we mean by reliability.

Assumption 1 (Systems are non-deterministic but constrainable). All systems should
be considered non-deterministic, regardless of their design, since they interact with
environments which cannot be predicted. Agents act non-deterministically, and they keep
and receive promises non-deterministically. Thus, they cannot be predicted precisely, but
their behaviours can be narrowed or focused into an acceptable range of values.

Non-deterministic systems experience the arrival of events or ‘random’ (non-modelled)
occurrences, some of which are acceptable to system policy and some of which are not.
Events which are not acceptable may be called faults.

9.8.4 DESIGN FLAWS RESULTING FROM MISSING PROMISES

Promises are often made conditionally, in limited contexts. Sometimes a system designer
does not make promises to cover all the possible contexts, and situations arise in which
no promise was made. Agents in the system have no guidance on how to behave. The
behaviour of the system is them undefined, and we cannot anticipate what will happen.
Generally, as the scale of a system becomes large (large N, large size, etc) then we should
expect more of these behaviours, simply because we have more and more incomplete
information.

Comment 21 (Security exploits). Many security exploits are based on the absence or
mismatch of promises covering unexpected conditions.

9.8.5 FAULTS IN COMMUNICATION

The most basic flaw in a cooperative system is the lack of a common language for mutual
understanding (lingua franca). If agents, whether humans or machines, cannot make
themselves understood to one another then it is not possible to make promises, or to assess
their outcomes. Without promises, there cannot be expectation and cooperation will be
ad hoc. Similarly, if there is only partial understanding, then errors or interpretation can
lead to faults.

500 CHAPTER 9. FAULTS, ERRORS, AND FLAWS

Comment 22 (Lingua franca). The language of a promise must be shared between the
promiser and the promisees. It need not be a spoken or written language: any kind of
symbolism that conveys meaning will do, e.g. the shape and placement of a door handle,
the form of a chair, the on/off symbol on an electrical device, standard road signs, etc.,
are all examples of languages for communicating intent.

Example 246. External circumstances may put agents into a mode where they lose
their ability to understand the language of their surroundings. For humans, loss of
comprehension gets gradually worse in high stress environments. For machines, there
can be sudden and catastrophic breakdown of understanding as a result of changing
the context of a single component, e.g. a version mismatch. Moreover, while humans
can sometimes adapt to change, machinery (especially that which is designed with the
assumption of a protected environment) is particularly exposed to error arising from
intolerance of change.

These scenarios result in a breakdown of the assumptions on which a system was
built.

• An exchange relating to a promise, which cannot be understood, cannot be
received as a promise by another agent.

• Agents may only understand part of a promise, if their dictionary of language or
terminology is incomplete[Bur15a].

• Words with multiple meanings (homonyms) can lead to misinterpretations of what
is promised.

• Shared or unstated assumptions (that which is taken for granted) might not be as
universal as one expects.

Example 247 (IT system languages). Language is a basic part of information technology.
Common languages are assumed in protocols, software versions, user experiences and
interfaces, encrypted messages, procedures, and icons.

9.8.6 SHARED ASSUMPTIONS

Trusted assumptions and implicit promises are a common cause of system design flaws.
Assumptions about what is common knowledge can allow significant compression of
communications.

Example 248 (Fuel types). If an driver (part of a car system) believes that all cars run
on petrol/gasolene, whereas a particular vehicle runs on diesel, an attempt to keep the

9.9. AGENT INTERACTIONS 501

promise to refuel the vehicle could result in a fault. If the car does not make a clear
promise about what kind of fuel it can use (-fuel), then it might bind to any promise of
type (+fuel). Today the fuel nozzle receptors for petrol and diesel are different, making
much clearer promises about what type of fuel is expected.

This is a trust issue. For example, the assumption that, once set, a system property
is immutable and is relied upon not to change could save considerable monitoring
communication. If the assumption is violated, them it becomes a straightforward failure
mode: in this case, a design flaw, since assumptions are usually not promised.

Agents do not have to all share the same language, but they need to be able to
communicate their without errors of comprehension.

Example 249 (Power supply). Across large parts of the world, the electrical power is
240 volt A.C. In the North America and Japan, it is 110 Volts A.C.. The power outlets
have very different shapes and connecters. The changes in power are sudden and often
take travellers by surprise. This has led to many destroyed electrical devices.

Example 250 (Character encoding). A document written in a character encoding such
as ASCII, EBCDIC, or Unicode is not compatible with a document written in a different
encoding, and appears to be garbage.

Example 251 (Protocol). If one takes away all punctuation from a text, it becomes quite
difficult to read, and may result in fatal misunderstandings. Take the well-known joke of
the panda who enters a bamboo restaurant with an extra comma, and comes out angry
with blood on his hands, having read: “Panda eats, shoot and leaves” instead of “Panda
eats shoots and leaves”.

9.9 AGENT INTERACTIONS

An autonomous agent does not depend on any other; it has everything it needs, and
is immunized against faults in other agents’ promises. This is the value of autonomy.
There is also value, however, in delegating to specialist services, which brings with it
dependency and risk of fragility.

9.9.1 COOPERATION FAULTS ARISING FROM NON-NEUTRAL PROMISE

BINDINGS

If we can assume language is mutually compatible, then faults can still arise from
incomplete intent. Promises have polarity:

502 CHAPTER 9. FAULTS, ERRORS, AND FLAWS

• + promises express the intent to provide e.g. service delivery

• - promises express the intent to accept, e.g. access control rights

Both are pre-requisite for the expectation of service propagation from one agent to
another.

Rule 1 (Promise graphs should be promise-neutral). Promise bindings always consist of
a (+) promise and a (-) promise:

S
+srv−−−→ R Service is promised (9.6)

R
−srv−−−→ S Service is expected, and will be used (9.7)

The promise sum is neutral i.e. ±srv ' 0.

A mismatch between positive and negative promises indicates a semantic flaw of
design or implementation. If it does not currently exist (it might be accidentally true, but
not intentionally true) then it will likely become a problem.

• No + promise: User expects a promise to be kept, but no promise was given.

• No - promise: A promise was given, but it was never used.

This provides a simple syntactic check, based on the model of promises.

Figure 9.4: A cartoon comparison between imposition (left) and promise (right). Impositions
are unexpected exterior intentions, based on presumption of state we don’t know. Promises
self-realized and local, based on locally available knowledge of state.

9.9. AGENT INTERACTIONS 503

Figure 9.5: The implication of a promise (below), as opposed to an imposition (above), is a state
of readiness rather than surprise.

9.9.2 FAULTS IN INTERACTIONS BETWEEN AGENTS

When a stakeholder or recipient R depends on the result of a promise sent by S, a system
dependency has failed (see fig. 9.6). R must assess that its expectations of cooperation,
by S, have not been met. The figure shows the contrasting cases for cooperation. The

S

R

imposed request promised service

S

R

client

server

Figure 9.6: A dependency of one agent on the promise of another leads to broken
cooperation.

bindings may be:

S
+b−−−−→ R (9.8)

R
+b−−→ R (9.9)

504 CHAPTER 9. FAULTS, ERRORS, AND FLAWS

i.e. S imposes its request for +b onto the recipient R, and R answers with a promise to
provide +b. This represents the usual tradition ‘push button’ thinking in technology. An
imposition is understood to come from outside the agent. It contrasts with the voluntary
promise relationship, where the promise always comes from within the agent:

S
+b−−→ R (9.10)

R
−b−−→ R (9.11)

i.e. S promises a service +b to R (voluntarily, and without imposition), and R promises
to accept it −b. What could be the reasons for non-cooperation for impositions? Here
are some proposed failure modes:

1. S’s imposition request was not sent.

2. S’s imposition request was not received (S and/or R were available).

3. S’s imposition request was not understood, or interpreted correctly.

4. R’s promise to reply was not made, perhaps because the imposition was not
received.

5. R’s promise to reply was made but not kept.

6. R’s promise to reply was made but not kept in time.

For promise relationships we have a symmetrical situation:

1. S’s promise to deliver was not made, or was made but not kept.

2. S’s promise was not received, or was not understood, or interpreted correctly.

3. R’s promise to accept was not made, or was made but not kept.

4. R’s promise was not received, or was not understood, or interpreted correctly.

Since promises are the sole responsibility of the agent making them, neither agent
depends on the other for the making of its promise.

• The imposition version of this has the form of a client-server system (push).

• The promise version of this has the form of a publish-subscribe (pull).

Clearly, the number of failure modes is huge compared to what we are usually willing
to invest in prevention or repair. This makes the design of systems that are fault tolerant
seem attractive both as a practical and a potentially cheaper option.

9.9. AGENT INTERACTIONS 505

9.9.3 SERIAL REPAIR VERSUS PARALLEL FAILOVER

VERSUS FAULT TOLERANCE

We have options to maintain the continuity and availability of a system: repair quickly
(within the serial queue), to failover to another supplier (redundancy), or to fail gracefully
without a result from the dependency (fault tolerance). Seeking the balance between
these different strategies is potentially a conflict of interest, representable as a type
II model[Bur04a] or strategic game. We examined some basic cases using traditional
structure function analysis in chapter 10.

There are three basic patterns:

• Modular dependency, or serial dependence of one module on another, such as
software packages.

• Replica sets, or parallel redundancy to give failover in case of fault.

• Retry, or soft failure with tolerance.

We can define these cases explicitly.

Definition 196 (Serial dependency). In a flow-based, transactional system, an error
introduced by a dependency can affect the dependent agent, and all later agents. Once
lost, information cannot be recovered. This is a high risk delegation.

Definition 197 (Redundant dependency). If a serial dependency has several alternative
sources on which it can rely, it is less likely to be in a situation where one of them is
unavailable, provided it promises due diligence in using the available services. This is a
mitigation of risk.

Definition 198 (Tolerance). In a promise-based system, an error introduced into a serial
chain can sometimes be absorbed, mitigated or eliminated by later actions, provided
authoritative (template) information suitable for error correction can be kept locally.

In the flow case, changes are relative, and we can prove that error correction is Byzantine
or impossible. In the promise or policy system, changes are absolute, and we can define
error correction by reset or zero-operation[BC11].

Example 252 (Fault tolerance - bullet proof vests). A bullet proof vest is an attempt at
fault tolerance to fault impositions. A redundant failover alternative would be to rely on
a second agent, and accepting the loss of the first. Realtime repair would be to patch up
the shot agent in time for the next altercation.

506 CHAPTER 9. FAULTS, ERRORS, AND FLAWS

The sampling rate for agents working together plays a key role in causality and error
propagation[BD07, Dis07]. All events that happen within a single sampling resolution
are simultaneous, according to the next agent in a chain, hence rapid repair can lead to
unnoticed errors. This is the approach used in memory CRC, processor errors, CFEngine,
etc. Once faults escape confinement, they cannot be undone.

9.9.4 REDUNDANT ALTERNATIVES—MITIGATING A SERIAL

DEPENDENCY

By reversing the signs in figure 6.11, we can average out unreliabilities, as one does in
data analysis by repeating measurement samples. Agents can also measure the variability
and warn about inconsistency. Unlike pure data values, semantic averaging may be
considered unacceptable, when it has not been allowed for.

U

+

−

−

+

+

−

L

L

Figure 9.7: Convergence by natural aggregation and averaging

1. The multiple sources Si all promise service +d to the intermediary, within their
accuracy tolerances.

2. Intermediary/relay I , promises to accept the values and select one, if suitable for
meeting the dependence s|d.

9.9. AGENT INTERACTIONS 507

S1
+d−−→ M (9.12)

M
−d−−→ S1 (9.13)

. . . (9.14)

Sn
+d−−→ M (9.15)

M
−d−−→ Sn (9.16)

M
+s|d−−−→ R (9.17)

(9.18)

Now I has secured sufficient redundancy to ensure that one of the promises will be kept.
However, how do we know that the sources Si are consistent? I needs a policy to select
+d from one or more of the agents, and possibly combine them. If errors are random, a
majority or average should suffice. If errors are systematic, and repeatable,

What is not clear from this simple argument is whether the two alternative sources
are exactly equivalent, or as good as one another. This is not readily expressible in a
classical component analysis; in a promise model, we have the ability to look at what
alternatives promise and measure expectations relative to those promises.

It remains up to the aggregating agent (user) to deal with inconsistencies. Even if we
work very hard to build a system that has consistent redundancy, the promises cannot
be guaranteed, so it becomes the responsibility of the selector or aggregator to keep
promises consistently even when the dependencies vary unpredictably.

9.9.5 SEMANTIC FAULT TOLERANCE BY AVERAGING - REQUISITE

DIVERSITY VERSUS REDUNDANCY

In the previous section, we considered how to bolter the reliability of a single kind of
promise. Reliability strategies may also be characterized as a form of statistical averaging
of the system dynamics. Putting all your eggs in one basket is a fragile strategy, so we
can mitigate loss by either maintaining the availability of a single promise or by offering
alternative courses of action. A mixed strategy (in the sense of game theory) is a fault
tolerance strategy based on different promises—alternative trajectories rather than a
strengthening of one.

9.9.6 SERIAL FAULT TOLERANCE: ADDING MARGINS FOR ERROR

Rather than propagating faults forwards, fault-tolerant agents can, in fact, absorb them,
providing ‘shock absorption’ for errors, and correcting them to within the limits of their
own tolerances (see fig. 9.8).

508 CHAPTER 9. FAULTS, ERRORS, AND FLAWS

S

R 1

R
2

−

−

±∆
M

+X

−X

+X’|X±ν∆

±ν∆

+X’|X ±ν∆

Figure 9.8: An error at the head of a chain of dependencies can be absorbed by increasing
accepted tolerances from ∆→ ν∆.

1. S promises service X , within its accuracy tolerance X ±∆.

2. Intermediary/relay M , promises to accept the value in the range X ± ν∆, where
ν > 1.

3. Since ν∆ > ∆, I accepts the service from S, and promises X ′ to R, hence there
is recovery from a broad range of failures.

The assumption of a dependence means that there must be limits on ν too. If M could
manage without the service from S, then why depend on it at all? Perhaps the tolerance
of no service from S could be maintained by caching past results from S, with eventual
expiry.

This shows that fault tolerant agents can keep promises, even when connected in
series, by absorbing errors and faults upstream.

9.9.7 TOLERANCE OF SERVICE INCONSISTENCY DURING

SELECTION FROM REDUNDANT PARALLEL ALTERNATIVES

The difference between agents might not simply be in performance or data (dynamics),
but also in the details of behaviour (semantics). The equivalence of the two sources
S1, S2 of a promised dependency assumes that the sources are sufficiently alike to keep
the promise needed by the intermediary I . But what if the agents have different tolerances,
accuracies or limits to their capabilities? We have to ask: how sensitive is the recipient to
exact similarity?

Related to statistical averaging of data sources for resilience, software engineering
sometimes wants to have global consistency. Dealing with inconsistencies in semantics
requires a new policy: e.g.

9.9. AGENT INTERACTIONS 509

• Picking a majority/quorum (Paxos etc) - sometimes called multi-master

• Picking the most recent value (vector clocks).

• Checksum or certificate verification and rejection

If we want system fault tolerance rather than potential for failing to reach majority
agreement, it’s clear from the foregoing example that we should tolerate inconsistency
rather than try hard to ensure it, as downstream absorption is still the most robust strategy
for keeping the total promise.

Comment 23 (Consistency). There are fundamental reasons why strong consistency is
not achievable in the general case. However, the idea of a quorum between servers, i.e.
a minimum number of sources that must agree on an outcome in order to make a valid
inference, is a popular methodology, especially in databases.

All kinds of arbitrary and artificial strategies to claim truth are used for quora: e.g.
using an odd number of servers (at least three) so that there can be a majority. None of
these guarantees that the majority result is actually ‘correct’, unless we can verify what
correct is promised to mean.

9.9.8 CONVERGENT LOCAL REPAIR

Repair is an agile method of fault tolerance. If a fault develops in theory, but has not
been tested in practice, then there is a window of opportunity in which it may still be
kept. Thus a sufficiently rapid repair can be an effective way of keeping promises. Some
systems, e.g. agile fighter aircraft, are designed to ride the edge of stability in this way,
as it affords them far greater maneuverability on a shorter time-scale than a more stable
design would.

By embedding compressed information about intended state into a system through-
out, repairs can be made in real time[Bur03, Bur04a, SW49]. If agents along a chain
experience errors that can be self-corrected (e.g. Shannon error correcting theorem,
Hamming codes, etc), a feedback loop may be applied to keep the total promise of the
system, within a time Trepair (MTTR). This requires the presence of a model (and thus
potentially an agency responsible for providing and updating the model also).

Inline repair, or agents in the chain, can be appropriate or even cheaper or faster than
redundancy if Trepair (MTTR) is less than the time it takes to acquire, aggregate and
select a value from redundant sources (see section 9.9.4).

Example 253 (Detailed balance with CFEngine). The general strategy introduced and
used by CFEngine is to keep all agents as close to a policy state as possible at all times,
then hope for fault tolerance.

510 CHAPTER 9. FAULTS, ERRORS, AND FLAWS

+

−

+

−

+ I
R

R

−

S

+repair/converge

Policy repair source

?

Figure 9.9: Convergence by feedback mitigates faults at the head of the chain, before amplifica-
tion

Comment 24 (Continual repair is continual delivery of change). Information re-injected
into the system could be:

• Fixed information: repair to original state.

• New information: course correction, repair to improved state.

The absorption of errors is the essence of system testing before release. This kind of tight
loop is the approach used in continuous delivery[HF10].

9.9.9 PARTIALLY ORDERED PROMISES

A chain or sequence of ordered promises is a fragile structure. Ordered promises form
chains of dependencies. If a single promise fails, all subsequent dependees must also fail.

9.10 FAULT PROPAGATION AND FAILURE DOMAINS

Many engineers believe that modularity prevents the propagation of faults. To isolate an
agent from a dependency one must withdraw all promises which use that dependency—
abstaining might be an effective strategy for the spread of consequences, but it also
invalidates its purpose. Locality may help to limit the propagation of a faults, if causes are
themselves modularized, and downstream clients make appropriate promises to recover
(see section 2.4.3). The term ‘fault domain’ is widely used to imply a kind of semi-
permeable membrane that prevents faults from having consequences beyond a certain
perimeter. Security perimeters (firewalls) are a common example. Such barriers may

9.10. FAULT PROPAGATION AND FAILURE DOMAINS 511

select only specific messages from a wider set, but they cannot prevent the propagation
of influence unless there is independence of the promises made by those modules.

A modular system may, on the other hand, help to localize the source of a fault if the
chain of causal outcomes leave traces in the states of agents as they propagate.

Modules are sometimes referred to as ‘failure domains’. The implication is that such
imaginary regions of a system help us to localize issues of causality. Using promise
theory, we can try to answer whether this claim has any validity. Failure containment
is about limiting the propagation of influence through a system of interest. We hope to
prevent the transmission of influence by creating so-called ‘boundaries’ of domains, but
what we really mean is interfaces that act as filters.

Coupling between modular components occurs through conditional dependency,
and dependency implies strong coupling. A change in the keeping of a promise by
one agent affects the dependent agent. To avoid such strong coupling, one may try
to disperse it by introducing redundancy (in parallel). A failure in the depender will
propagate into a failure in the dependee. Boundaries that truly isolate parts of a system
are therefore fictions of manufacturing. Once a system is assembled, it no longer
has dynamical separation. Such arbitrary contextual boundaries are always porous to
dynamical behaviour: we like to conjure the illusion of protection for our own sense of
security, but every connected system is by definition connected. Barriers might classify
certain areas, making certain promises, but few systems bother to promise what they will
not allow. True isolation would mean breaking the system’s coordination, and therefore
its cooperative functionality. Thus, the claim that modularity leads to isolation of failures
is ultimately bogus.

Example 254. The attempt to lock down computers for security has often been at odds
with their usability. The United States ‘STIGS’ security recommendations for government
and military were widely reputed to render personal workstations actually unusable.

The purpose of semantic modules is to serve as a reminder of context. The promises
made by each module offer information to those interacting with it, that help them to
adapt their own behaviour. Humans have limited cognition. We can keep in mind a
handful of things, and remember only handfuls of stack levels in a thought process.
However, the systems we build far exceed these cognitive capacities, and so we must
deliberately and modestly erect protections against our own weaknesses. This inability to
trust human comprehension under complex circumstances, especially the wider impact
of changes we make under local circumstances, it is practical to imagine ‘modules’ as
voluntarily limitations of our own causal reach: either reminding us of the limits of a
context, or trying to prevent others from imposing their own influence on us.

Example 255. When releasing a pesticide, there is always a worry that it will travel

512 CHAPTER 9. FAULTS, ERRORS, AND FLAWS

beyond the field where it was needed and lead to side effects. When antibiotics are used
in animals, there is evidence that these drugs find their way through the food chain into
far reaching parts of an ecosystem. When making a global search and replace in a
document, we may try to limit context by keeping different data of different context or
intent in different files. Search and replace does not normally traverse file containment.

Module boundaries, then, are principally to be understood as reminders of human
context. They are semantic boundaries, and semantic boundaries are not boundaries for
dynamics. If we put a fence around a single tree in a jungle, do we expect to contain
the spread of a parasite? If we draw a circle around a collection of cubicles in an office
space, or give certain members red sweaters to label them, do we prevent the the sudden
death of these coworkers from affecting the rest of the business?

Labelling of contexts, or filtering promised outcomes, leading to partial isolation
is something that depends on both the (+) and (-) promises between a promiser and a
promisee.

• A module is a superagent boundary. This does allow us to limit and define
the main interior and exterior promises. The definition of interior and exterior
promises allows us to adapt a design for weak coupling, e.g. through redundancy.

• Does modularity enable fast repair? You can replace as a hot spare, or have fast
failover, fast repair, but that is not the same as developing a solution that scales in
parallel. Architecturally (cooperatively) these are quite different designs. There is
some evidence that rapid repair has some advantages over redundant design, but it
all depends on the timescale at which you can repair the system.

• Availability (CAP or no CAP) is about a sampling rate. System time is not a
continuous quantity. MTTR is really MSTR or mean number of samples lost
before repair. So if we can work very fast to correct the flawed operational
envelope of a system faster than the sampling rate, we will never notice the bumps.
This is how fighter jets and space flights are designed. They are designed to
deal with unpredictable instability, but they have computers correcting the flight
parameters at a rate that is much faster than the perturbations they experience.

Example 256 (Semantic confusion). Does this help to localize the error? That depends
on how they are called and instrumented.

string.h

strings.h - not helpful

sys/string.h

9.11. INNOVATION WITH AND WITHOUT INTENT 513

these things were written at a time where compiler memory was expensive. So there is
also a question of optimizations intruding on semantics.

9.11 INNOVATION WITH AND WITHOUT INTENT

The capacity of a system to ‘innovate’ or invent new emergent states that were not
designed by intent appears to also be a network phenomenon. Occasionally systems
seems to invent new possibilities. We sometimes call these bugs, because the outcomes
were not intended. The term emergent phenomenon is also used.

9.11.1 BUGS AND EMERGENT BEHAVIOUR

Although engineers and designers strive to make systems keep certain promises, only
security and safety engineers usually try to ensure that certain outcomes don’t happen.
This underlines a key conflict of interest between system builders and security and safety
engineers.

Definition 199 (Bug). An outcome of a deliberately designed intentional system that
was not intended.

In the definition of a bug, we once again see that, without a promised intent, we cannot
define a bug, only a surprise. This is quite similar to the definition of an emergent
behaviour[BB14a]. Emergent behaviours are those that seem to exhibit intentional
behaviour, but for which no promise has been made.

We would expect, as the scale of an intentional system grows, its ability to behave
predictably diminishes somehow, as unforeseen pathological interactions become harder
to predict. However, rationally, this depends on the degree of interaction not on the size
per se.

9.11.2 SURPRISES: EXPLORATION AND INNOVATION

While systems often get more general and statistically predictable at scale, the opposite
is also possible. As one mixes different parts together in a network of interactions, new
phenomena occur. This turns out to be fundamental to the way ideas are generated.
Although novelty can exist at all kinds of levels of sophistication, the mechanism for
novelty is probably the same at all levels. It involves Darwin’s key observation: mutation,
mixing and selection.

To put this in a promise theory language: independent agents go off and make
changes to existing promises, then then return and recombine their efforts and select the

514 CHAPTER 9. FAULTS, ERRORS, AND FLAWS

best of the many experiments. This is branching and merging. It is sexual selection. This
form of networking is the essence of a primordial soup. Perhaps it is even how new ideas
form in a brain, we don’t really know. It is how evolution comes up with new ideas,
however: sexual mixing combined with environmental selection constraints are a form of
thinking that leads to improved processes. This is innovation.

Example 257 (Open source innovation). Open source innovation revolves largely around
versioning repositories where contributors branch off copies of the current state of an
idea, then modify it with atomic ‘commits’ to match their own experiences. Later, these
changes might be merged back into the main timeline of the software, selecting those
atoms from multiple experimental branches that seem to succeed best. This is sexual
innovation.

9.11.3 MIXING AND SEPARATION OF CONCERNS: INNOVATION AND

MUTATION

Unintended creativity is not something we always want in systems, but it can emerge at
scale. We might consider innovation a security threat to stability, or a beneficial source of
opportunity. Sometimes it is useful: this is why we build teams and companies and have
universities and centres of excellence. If you throw active agents together, new things
will emerge153. This is the essence of how creative innovation begins in a network154 .
Innovation is a balance between a promise of mutation (+) and selection (-). Intentionality
lies on top of the virtual and even physical connectivity of whatever effective network or
spacetime connects a system. Within that bound, an agent’s multi-tasking, or timesharing
determines limits on the number of interactions it can have with others. Interactions do
not always happen directly through explicit links. They can be mediated by third parties.
This is what is meant by a catalyst.

Definition 200 (Catalyst). A ‘third party’ agent whose mutual interactions with other
parties lead to an effective transfer of influence between them.

This is sometimes called a stigmergic or covalent interaction. For example, someone
knits their friend a sweater. The sweater is seen by someone as they are waiting for a bus
at the bus stop, and they ask to buy the sweater. Next week the same thing happens with
a scarf. Information has been transmitted via the catalyst of the bus stop.

Formally partitioned cells are not necessarily independent, as they compete within
shared boundary conditions. For example, cells might compete for the same resources, or
mediators and brokers might delegate shared resources. In either case, these constraints
implicitly connect otherwise intentionally separate cell networks together (weak cou-
pling). This is why security breaches are so much more likely than many expect. These

9.11. INNOVATION WITH AND WITHOUT INTENT 515

‘covert channels’ bridge networks. Promising to exclude something is difficult, because
it relies on knowledge of impositions, which are (by definition) unknowable.

9.11.4 FORCES AND SPECIALIZED ROLES

A hypothesis of promise theory is that one may define a notion of force for agents, which
is attractive when there is economic advantage, and repulsive for economic disadvan-
tage155. The formation of superagents thus comes about, for economic reasons[BF07a],
by the value of collaboration. If the promises are unconditional, superagents will be
localized. If they are conditional, the clusters are ordered and may thus be distended or
even distributed.

• Agents, which make the same kinds of promises of same polarity, tend to repel
one another.

• Agents, which make complementary (binding) promises of opposite polarity tend
to attract one another.

If the hypothesis is true, one may expect behaviours such as the following:

• Dependences are held together by promise bindings.

• Competing services tend to spread out in the system region, unless they are held
together by something more important.

• Distributed competitors, may cluster around a common dependence, such as
shared infrastructure hubs, e.g. malls, districts.

• Chains of transport agents, bound together by conditional promises, in relay
configurations.

This suggests that agents, which play the same role, will tend to move apart unless they
are held together by a promise of cooperation. In promise theory, a specialized role
characterizes a pattern of agents that make similar promises. By specializing specific
tasks to specific agents, each agent can be more focused in learning and adapting, but
acquires an additional cost of cooperation proportional to some positive power of the
cluster size.

Example 258 (Data replication and cache consistency). Consider the problem of data
replication. A specialized promise, like a database, may need to work together with
others to serve a wide area. Since they make the same type and polarity of promise, they
tend to distribute around the region. However, they also need to cooperate to ensure
that they are working together rather than against one another, with the same data.

516 CHAPTER 9. FAULTS, ERRORS, AND FLAWS

This consistency comes at the price of promising coordination. This mutual affinity for
cooperation tends to bring them closer together, so they will find equilibrium orbits,
where the promise forces are in balance. The resulting collaboration cluster of agents
may be considered a superagent.

Superagency collaboration is a short range interaction (between interior promises)
[Bur15a], in the sense that it is a direct agent to agent interaction.

Figure 9.10: The geometry of superagents may fill space in different ways. Infrastructure that
interconnects other agencies is a superagent in its own right, involving linear or approximately
linear cooperation between member agents. Under preferential attachment, agents NI tend to
cluster around the infrastructure agency, leaving a few N0 padding out the spatial volume. The
circles around the subagents may be considered infrastructure binding the agents together.

The notions of attraction and repulsion are wired into our imaginations in terms of
spatial concepts. We are used to electromagnetic and gravitational forces, like ‘pressure’,
which seem unambiguous because we observe that a very large scales, where the affinities
achieve a deterministic quality. At much smaller scales, where atoms and individual
agents interact, these ‘forces’ are less ballistic and more probabilistic in nature. A
promise model belongs at this low level scale, where forces should not be considered too
literally as if they were classically deterministic.

Even without an embedding spacetime to describe vector directionality, we can
speak of agent affinities, like the interactions described in molecular chemistry, where
spacetime plays no real role. With a physical volume to embed a graph of promise-
keeping interactions, geometry ties range to distance, but in a virtual network (which
includes transport of messages by intermediate carrier), short range interactions can

9.11. INNOVATION WITH AND WITHOUT INTENT 517

also be disseminated over a longer effective range, by adding cost or latency (such as in
telecommunications).

9.11.5 PROMISE NETWORKS THAT PERCOLATE

Specialized promises naturally lead to small molecular clusters of agent ‘atoms’. They
seldom span large areas, because promises act like short range interactions, which is
also why superagents can be considered quasi-atomic black box agents (see figure 9.11).
General survival promises are common to most agents, and pertain to the most general
kind of infrastructure in systems: power, food, air, water, etc. These are a minority of
promises that are ubiquitous.

Figure 9.11: No single type of promise binding (dark lines) leads to percolation of value in the
promise graph. However, with conditional dependency, and sufficient diversity and homogeneity,
there can still be effectively close to N2 links whose value converts into a common currency.

If we let Nτ be the number of agents that consume a promise of type τ , then we
expect the class of τ related to survival to be of the order Nsurvival ' NI , in the meaning
of the city model. For all other types, Nother � NI .

However, we’ll see in section 5.15.7 that long range interactions are also needed to
explain the scaling exponents for cities. The size of the effective network is not therefore
given by the adjacency matrix of the underlying infrastructure network, but rather by the

518 CHAPTER 9. FAULTS, ERRORS, AND FLAWS

typed promise graph.
It is useful to recall the definition of a promise network (see [Bur15a]).

Definition 201 (Promise adjacency matrix). The directed graph adjacency matrix which
records a link if there is a promise of any type τ , and body bij(τ) between the labelled
agents.

Π
(τ)
ij =

1 iff Ai
bij(τ)
−−−−→ Aj ,

0

}
∀ bij(τ) 6= ∅ (9.19)

The adjacency is the effective topology of the spacetime network, as far as the agents are
concerned. The link-occupancy of this matrix, for a given promise type, is a linear sum
whose value is generally much lower than that of the total possible mesh of interactions.
Thus, for any promise type τ ,

NI∑
i,j=1

Π
(τ)
ij = Nτ (Nτ − 1)� N2

I , (9.20)

Note that an agent can make a promise to itself too, so the upper limit could be written
N2
I .

The value-percolating connectivity or degree of a node

Πij =
∑
τ

Π
(τ)
ij , (9.21)

ki '
∑
j

Πij . (9.22)

We can also write this in terms of the direct valuation of the promises, in terms of the
actual matrix of promises πij[Bur15a]:

ki '
∑
j

vC (πij) . (9.23)

where vC is the value of the promise as calibrated and assessed by a common central
agency (see appendix B.2).

Agents can keep multiple promises, or multiple types, ‘simultaneously’ over a given
timescale T , by multiplexing their time at a rate that is much faster, i.e. � 1/T to avoid
the queueing instability. On the assumption of sufficiently sparse packing:

∑
τ

N∑
i,j=1

Π
(τ)
ij ≤ N(N − 1). (9.24)

To understand the output of a promise network, we care more about the assessments
of which promises were kept than the number of promises that were made (see appendix

9.11. INNOVATION WITH AND WITHOUT INTENT 519

B.2). Each agent assesses promises individually. and they may not agree. However, to
compare to city statistics, we may assume that an statistical bureau agency has been
appointed by the city to calibrate these assessments αofficial(πτ) according to a single
scale. Promise-keeping is an average over time. Provided the sum time to keep a promise,
for all τ , for each agent, is much less than each time interval of the assessments, we can
reduce α(π) to a frequency ‘probability’. Another way of saying this is: provided the
cost of keeping the promises is less than the budget of each agent.

These estimates are maximal. The size of a functional cluster is not really related to
any of these graphs, because there are semantic constraints. Functional behaviour is a
strict limitation, which leads to very sparse graphs. To gauge an average measure of the
total economic impact of all functional interactions, we have to assume:

• The functions are successful in driving an economy.

• The density of implicit interactions is quite high, else a given output Y will not
be represented by an average mesh density.

• There are some long range interactions that make the partially connected graph
totally connected on average, even if only at a low level.

In reality, the city might be partitioned into quite independent regions, leading to a
modular reducible form[BBCEM10]. It guided by preconditional bindings between
agents. So, if one imagines the network that delivers output Y , it may be some maximally
quadratic polynomial of NI , related to the structure function of the network.

∑
τ

N∑
i,j=1

Π
(Y)
ij = Poly(NI) ≤ N(N − 1). (9.25)

If i, j run over all the individual agents within city limits, then these matrices are sparse
and fragmented for each τ . Only with sufficient diversity of promise types will the sum
graph for a city output Y have sufficient connectivity to form a process that generates
output algorithmically. The same will be true in IT infrastructure for microservices and
library components.

We have to add an assumption of sufficient diversity in the types of promises to our
assumptions for a city, so that the average of all of them The deficiencies of certain skills
were suggested by [AHF+14] as a reason for lower than expected scaling.

CHAPTER 10

CLASSICAL RELIABILITY

THEORY

The fidelity with which agents, i.e. system components, keep their promises is one of the
classic subjects of statistical analysis. It’s called reliability theory. Although that point
of view is quite limited, many books have been written about it, and it’s important to
establish a connection with that literature and the language of Promise Theory adopted
here. In the traditional approach to reliability, a system is considered to be a collection
of components with some probability of failure. So-called structure functions are used
to replace detailed functional semantics with a bare minimum model of dependencies
between black box components. Components are assumed either to be working or not
working. Reliability is then quantified by an imagined probability that components are
independently in a working state.

In this chapter, we look at the basic construction of the classical method, and show
how it maps into promise theory, in a simplifying limit. Since we aim to go beyond the
classical results, we need to see how its generalization reduces to the same result, with
the same assumptions.

10.1 THE LIMIT OF PERFECT COOPERATION

The classical approach to system modelling was constructed out of statistical theory,
with a particular aim in mind. The idea was not that component probabilities could be
assessed individually for specific systems, but rather that they could all be modelled by
common results from generalized Poisson statistics. It is known from manufacturing

520

10.2. THE ASSUMPTIONS 521

processes, that component lifetimes often follow a Poisson distribution, and hence this
can be used to make generic predictions about likely time before a failure occurred.

Classical reliability theory is a blunt tool for making broad estimates: all details are
lumped together into a single value, represented by the structure function. Strategies for
increasing the probability of being in a working state could be addressed by reducing
dependency, or increasing redundancy of the components.

10.2 THE ASSUMPTIONS

The reliability of systems of components is traditionally studied through the so-called
structure function[Nat98, HR94]

φ(x) : x→ {0, 1} (10.1)

which expresses the variable dependence of components on one another, and an ex-
pectation of being in a working state (basically a frequency probability or reliability).
When faults occur, its value is reduced, as a component variable goes from 1 to 0. It is
computed following the basic laws of probability in series and parallel. Components are
independent, and their cooperation is implicitly encoded by the structure function’s form.
The structure function approach is characterized by:

• Maximal impartiality and suppressed semantics.

• Being generic and unspecific in its assessments.

As a consistency check on this extreme end of the spectrum of interpretation, we shall
demonstrate, in this chapter, how a promise theory view reproduces the main results of
the classical theory, before going beyond them. This helps to show where the limitations
lie.

Comment 25 (How shall we interpret probabilities in reliability theory?). Probabilities
are used in different ways. Here we are using them as estimators for the fraction of
samples over which a system is in a working state, i.e. as an approximate scale factor
for reliability. The values are not computed or measured, or even guessed normally.
One is more interested in how combinations of the probabilities are larger or smaller
for the sake understanding how the likelihood of being in a working state is affected by
combinatorics.

522 CHAPTER 10. CLASSICAL RELIABILITY THEORY

10.3 QUANTITATIVE RELIABILITY—TRADITIONAL

APPROACH

In the following sections, we repeat some of the standard results about component
analysis from reliability theory.

Given how these diagrams resemble flow diagrams for electrical components, it
is natural to think of this as implying flow, but this is somewhat misleading. For the
serialization, there is a transmission of service from left to right in each image, only
insofar as what happens at the right hand side implicitly depends on what happens on the
left hand side. However, the components’ faults are treated as independent, so the failure
of one component does not necessarily transfer additional load to another. They allow
for that kind of effect, we need to study the examples more closely. Promise Theory is
helpful here because it documents these relationships atomically.

10.3.1 CONDITIONAL PROMISE LAW (DEPENDENCY)

To compute dependencies, we need to recall the law of conditional promises. This law
defines what it means for an agent to treat promises made conditionally in a fashion
consistent with the realities of what the agent can be responsible for. An agent may only
make a promise about its own behaviour.

Dependency enables delegation and specialization, but it also brings potential fragility
to any cooperative system. Delegation is a strategy that can be used well or poorly. It is
modelled with conditional promises.

The conditional promise law says that a promise, conditional on a dependency,
cannot be assessed as a true promise unless the dependency is promised and accepted
by the promiser of the conditional promise. Thus, the promise to deliver a package by
FedEx:

Shop
+deliver|FedEx−−−−−−−−→ Customer (10.2)

cannot be assessed by the customer without the full construction:

Shop
+deliver|FedExService−−−−−−−−−−−→ Customer (10.3)

Shop −FedExService−−−−−−−−→ Customer (10.4)

Shop −FedExService−−−−−−−−→ FedEx (10.5)

FedEx +FedExService−−−−−−−−→ Shop (10.6)

(10.7)

i.e. the Shop must not only promise that it will deliver a package, but that it will accept

10.3. QUANTITATIVE RELIABILITY—TRADITIONAL APPROACH 523

the services of the FedEx agent in order to do so. This construction forms the basis of
conditional chaining of components in systems.

10.3.2 SERIAL DEPENDENCY OF COMPONENTS

In the component structure view, the diagrams are symmetrical and reversible, even when
there is an implicit arrow of flow. in a promise formulation, the asymmetry of causal
direction is clear. In the serial case (see fig 10.1), agents A AND B have to work, and
the probability

P (A AND B) = P (A)P (B|A). (10.8)

A B O

−

−

A B O+a

+b|a

Figure 10.1: Serially dependent components and promises. Note how the causal flow
direction is encoded into the promise version but is only assumed in the structure function.

If A and B are independent, this is simply P (B|A) = P (A)P (B). Or in terms of
the structure function, using the convention P (A) = pA, etc, we have

φAB = φAφB (10.9)

Eall(φAB) = pApB , (10.10)

i.e. the expectation of all parties that this arrangement is in a working state is the
product of probabilities of the components being in a working state. The general rule for
combination becomes:

Eall(φtot) =
∏
i

pi (10.11)

524 CHAPTER 10. CLASSICAL RELIABILITY THEORY

In terms of promises, we have:

A
+a−−→ B (10.12)

B
−a−−→ A (10.13)

B
+b|a−−−→ O (10.14)

i.e. A promises +a to B, B promises to use that, and furthermore B promises condi-
tionally b given that is has received a promise of a. And the end-of-chain observer’s O’s
expectation that the promise from B is kept is:

EO(B
+b|a−−−→ O) = P (b|a) = pBpA, (10.15)

giving an alternative derivation.

10.3.3 REDUNDANT COMPONENTS—ALTERNATIVE HANDLERS

For alternative components (see fig. 10.2), there is redundancy, e.g. pilot and co-pilot,
master and backup, etc. Although they are positioned in parallel, they do not necessarily
complement one another in terms of performance throughput156. Either or both of the
components should work, so the reliability frequency ‘probabilities’ combine:

P (A OR B) = P (A) + P (B)− P (A AND B) (10.16)

The last term only applies if both components are in play, in which case there is some
over-counting where the frequencies overlap. Alternatively:

P (A OR B) = NOT ((NOT P (A)) AND (NOT (P (B)))

= (1− (1− pA)(1− pB))

= pA + pB − pApB
≡ pA

∐
pB

≡ P (A)
∐

P (B). (10.17)

The exclusive expectation that only one and not the other is working is:

P (A XOR B) = P (A) + P (B)− 2P (A AND B), (10.18)

i.e. excluding the overlap region altogether. The promise version of this (see figure) has

A
+a−−→ O (10.19)

B
+b−−→ O (10.20)

O
−a−−→ A (10.21)

O
−b−−→ B (10.22)

10.4. COMBINING DEPENDENCY AND REDUNDANCY 525

B

A

O

+

−

+

−

O

A

B

Figure 10.2: Parallel components / promises

The observer’s estimate of the reliabilities for promise keeping is:

EO
(
A

+a−−→ O
)

= pA (10.23)

EO
(
B

+b−−→ O
)

= pB (10.24)

By treating A and B as a coarse super-agent, we may write:

O
−(a OR b)−−−−−−−→ {A,B} (10.25)

whence , the expectation of being able to keep the promise

EO({A,B} +(pA OR pB)−−−−−−−−−→ O) = pA + pB − pApB , (10.26)

= pA
∐

pB . (10.27)

and we recover the result in a different way.

10.4 COMBINING DEPENDENCY AND REDUNDANCY

The structure diagrams, with their combination of serial and parallel arrangements tempts
us to think about electrical circuits and continuous flow, but this may be misleading.
Systems may involve discrete events or continuous operation.

526 CHAPTER 10. CLASSICAL RELIABILITY THEORY

10.4.1 REDUNDANT ARRANGEMENT OF DEPENDENT SERIAL

SUB-SYSTEMS

Duplicating whole systems in parallel is a form of redundancy at the high level, e.g. a
server and a backup server, or a route and a backup route. Each system may consist of
sequences of components, like the dotted boxes in figure 10.3.

A
2

D2

A
1 D1

A
1

A
2

D1

D2+

−

+
−

−

−

O

O

+a

+d|a

Figure 10.3: Redundant 2-stage serial chains (dotted) in parallel

Taking the simplest example of a system of two serial agents A1 and dependent
series component D1, in parallel, with a complete clone A2, D2, the structure functions
or reliabilities have the form:

φ = φ((A1 AND D1) OR (A2 AND D2))

= φ(A1)φ(D1)
∐

φ(A2)φ(D2) (10.28)

Defining the reliability expectations:

φ(A1) = P (A1) = x1 (10.29)

φ(D1) = P (D1) = x2 (10.30)

φ(A2) = P (A2) = y1 (10.31)

φ(D2) = P (D2) = y2 (10.32)

Here, by analogy with the cases above, the P (A) etc, may be viewed as the probability
or reliability fraction with which the agent A keeps its promise. We only need to describe
precisely what (and to whom) that promise is. The arrangement of components in the

10.4. COMBINING DEPENDENCY AND REDUNDANCY 527

structure diagram implies to whom the promise is made, and on whom it depends, but it
does not matter too much what promise is being kept. This is built into the assumptions of
such classical reliability treatments. With that, we can simply say that the total structure
function is:

φ = x1x2

∐
y1y2 (10.33)

= x1x2 + y1y2 − x1y1x2y2 (10.34)

Also, we can supplement the promise semantics to complete the functional description
that is absent in the structure viewpoint:

A1
+a1−−→ D1 (10.35)

D1
−a1−−−→ A1 (10.36)

D1
+d1|a1−−−−→ O (10.37)

O
−d1|a1−−−−→ D1 (10.38)

Similarly, an analogous set of promises is true for the parallel system A2, D2. The two
systems come together only at the choke point of the observer:

O
−d1|a1−−−−→ D1 (10.39)

O
−d2|a2−−−−→ D2 (10.40)

From which O interprets, by coarse graining:

O
−d1|a1 OR −d2|a2−−−−−−−−−−−−→ {D1, D2}. (10.41)

Note how the implicit assumption of aggregation and coarse graining away differences
between the branches is documented explicitly in the promise version of this formula.
From this, it would infer the reliability of the system to be

E=

(
{D1, D2}

+d1|a1 OR +d2|a2−−−−−−−−−−−−→ O

)
= P (d1|a1)

∐
P (d2|a2)

= x1x2

∐
y1y2. (10.42)

This reproduces the result using the promise theory. Once again, the promise viewpoint
doesn’t alter the structure of the problem. It only adds the functional documentation of
intent. This becomes more significant as the promise collaboration graphs become more
complicated.

Comment: it is easy to see why there is still room for improvement in this design:
the point of system recombination is itself a possible point of failure, with everything
riding on a single consumer O.

528 CHAPTER 10. CLASSICAL RELIABILITY THEORY

10.4.2 A SINGLE SYSTEM MADE FROM FULLY PARALLELIZED

(REDUNDANT) COMPONENTS

The natural extension to removing a single point of failure is to make each functional
component in the system independently redundant (see figure 10.4). This keeps all the
failure probabilities independent and one expects the result to be smaller. Indeed, there is
a well known theorem that proves this to be the case (see the folk theorem in volume 1).

D
1

D
2

A
1

A2

D
1

D
2

A
1

A2

−

−

O

O

+a

+a

+d|...

+d|...

−d

−d

Figure 10.4: Serial chain of parallel components

From the structure function, we now have:

φ = (φ(A1) OR φ(A2)) AND (φ(D1) OR φ(D2)) (10.43)

Once again. defining the reliability expectations:

φ(A1) = P (A1) = x1 (10.44)

φ(D1) = P (D1) = x2 (10.45)

φ(A2) = P (A2) = y1 (10.46)

φ(D2) = P (D2) = y2 (10.47)

This becomes simply;

φ =
(
x1

∐
y1

)(
x2

∐
y2

)
(10.48)

Now let’s do it from the promise perspective. The promise diagram takes the form of a

10.4. COMBINING DEPENDENCY AND REDUNDANCY 529

coupled set of agents. From the two row of diagram:

A1
+a1−−→ D1 (10.49)

D1
−a1−−−→ A1 (10.50)

A1
+a2−−→ D2 (10.51)

D2
−a2−−−→ A1 (10.52)

and the bottom row:

A2
+a2−−→ D2 (10.53)

D2
−a2−−−→ A2 (10.54)

A2
+a1−−→ D1 (10.55)

D1
−a1−−−→ A2 (10.56)

Now there are two stages of OR aggregation: each of the Di agents, and finally the
observer O. The Di aggregations take the form:

D1
−(a1 OR a2)−−−−−−−−→ {A1, A2} (10.57)

D2
−(a1 OR a2)−−−−−−−−→ {A1, A2} (10.58)

Thus, Di promise to O:

D1
+d1|(a1 OR a2)−−−−−−−−−−→ O (10.59)

D2
+d2|(a1 OR a2)−−−−−−−−−−→ O (10.60)

By further aggregation, this is observed as:

O
(−d1|(a1 OR a2)) OR (−d2|(a1 OR a2))−−−−−−−−−−−−−−−−−−−−−−−−−−→ {D1, D2} (10.61)

Hence, O evaluates the reliability of this promise, with the coarse graining assumption
made explicit once again:

EO

(
{D1, D2}

(+d1|(a1 OR a2)) OR (+d2|(a1 OR a2))−−−−−−−−−−−−−−−−−−−−−−−−−−→ O

)
=
(
x2(x1

∐
y1)
)∐(

y2(x1

∐
y1)
)

(10.62)

= (x1

∐
y1)(x2

∐
y2) (10.63)

which reproduces the earlier result.

530 CHAPTER 10. CLASSICAL RELIABILITY THEORY

10.5 THE FOLK THEOREM FOR REDUNDANT FAULT

TOLERANCE

The redundancy folk theorem[Nat98, Bur04a], of classical reliability theory, states that
a single system in which every component is duplicated for redundancy is at least as
reliable as duplicated systems offered in parallel (see figure 10.5). This follows from the
lemma:

φ(x
∐

y) ≥ φ(x)
∐

φ(y) (10.64)

for any φ(·). When applied recursively, this purely mathematical inequality implies
that low level redundancy is the most reliable approach in terms of fault coverage. The
assumptions of this are based entirely on probabilities however.

Figure 10.5: Illustration of the redundancy folk theorem.

Although the probabilities satisfy the inequality without prejudice, a single system
with every component made redundant might not be the cheapest approach to build. For
example, we might not know how to make the system work with that design. Alternatively,
the system represented by φ(x) might be a cheap commodity, making an array of cloned
systems cheaper than a single system of higher quality.

By examining the promise graph for low level redundancy, in figure 10.4, we see that
the number of promise required to make all necessary interactions complete, exposing
all hidden assumptions, is twice the number for the low level redundancy case, thus the

10.6. FAULT TREES 531

chance of a system keeping all of the design promises is greatly reduced. This works
against the ‘truth’ of the theorem.

In spite of the shortcomings, we can now write the folk-theorem result in a promise
notation. For want of a better shorthand, and out of respect for tradition, we could express
the promise lists in the simplest analogous form as:

E
(
π(〈A1, O, b1〉

∐
〈A2, O, b2〉)

)
≥ E

(
π(〈A1, O, b1〉)

∐
π(〈A2, O, b2〉)

)
.

(10.65)

This shows that it is purely as result about structural expectation. We could add to this a
cost function C(·), which has the opposite result:

C
(
π(〈A1, O, b1〉

∐
〈A2, O, b2〉)

)
≤ C

(
π(〈A1, O, b1〉)

∐
π(〈A2, O, b2〉)

)
.

(10.66)

The proof is trivial by counting interaction lines and associating a non-zero cost to each
promise. We can add to this the cost of repairing components, or replacing components,
which is the same in both cases, unless the components themselves are aggregated into
commodity blocks for cost savings.

The lesson from this exercise is that, in any system of significant intricacy, there
are no simple rules for optimizing reliability. The statistical theorems are interesting as
guidance, but they do not offer a panacea for design choices.

10.6 FAULT TREES

A natural extension of the component approach to reliability is Fault Tree Analysis
(FTA), widely used in the nuclear power industry. It suffers from the same limitations
as the examples above, but allows for more sophisticated structures. It takes a simple
hierarchical view of system dependency, that is quasi-deterministic, and hence assumes
sufficient isolation from other effects.

The main purpose of FTA is to enable computation of relative reliability. It fails to
model semantics in a way that is related to the structure of the system. To address these
concerns, we need to go to a graphical method: promise theory.

10.7 QUEUES AND DETAILED BALANCE

Queues are the balance between arrival processes and service or renewal processes.
If we imagine the arrival process is the arrival of faults, then we can measure system

532 CHAPTER 10. CLASSICAL RELIABILITY THEORY

rejuvenation statistically using simple flow rates. This was approach was used to discuss
scaling in [BC04]. This approach can give some indication about timescales and fault
tolerance limits, using the queueing instability[Bur04a].

10.8 WHAT IS THE LIMIT OF PERFECT COOPERATION?

The promise representation has the ability to represent more aspects of a cooperative
system of component parts than the structure function approach. However, both give the
same result in the limit in which promise relationships are mutually established with 100
percent certainty. The limit implies that:

1. Both sides agree to cooperate.

2. Cooperation implies propagation of influence with unit probability.

We can now work on generalizations that stray from this limit. In general, this means
that the likelihood of a working system will be estimated lower than the classical limit,
but the important part is not the numbers (which are only estimates), but rather how the
scaling of probability is affected by different issues with greater specificity.

10.9 WHY NOT LOGIC AND RULES?

In Western culture, we have a strong belief in rules, so much so that it pervades our
thinking. We stop at red lights, and walk at the green man. We speak of ‘laws of nature’
as if the world were following a rigid plan; but, when we say ‘exception to the rule’, we
really mean ‘exception to the norm’. Do we stop at stop lights because we have to, or
because it’s a good idea to comply with conventions?

The problem with this trust in rules and obligations is that they distort our under-
standing of reality. Systems do not have to comply with our expectations. It’s the other
way around: we try to build systems that are stable enough to allow us to make rules by
observing their normal behaviour. But then, we come to believe that what is normal, in
one context, is actually a generally applicable rule, or even ‘truth’. This is where flaws
begin. Imposing rules and logical assertions onto systems is an interesting exercise for
the purpose of testing, but it does little to promote understanding. Turning this upside
down, a promise viewpoint replaces rule and obligation with likelihood and promise, to
describe our design understanding as best effort.

10.10. SHORTCOMINGS OF CLASSICAL RELIABILITY THEORY 533

10.10 SHORTCOMINGS OF CLASSICAL RELIABILITY

THEORY

Classical reliability theory was addressed to the description of machine components in
which the fixed meanings of components were assumed to be correctly composed to
deliver a workable outcome, for simple networks. The only question remaining was: does
any component stop playing its part? Consequently, it was never intended to encompass
human issues, qualities, or to represent changing systems.

In any statistical theory, the assumptions and semantics are constant in order to have
parity when measuring data. The functional behaviour of a system must therefore be
constant too, unambiguous and inevitable. The problem with this view is that functional
utility only makes sense relative to certain contexts or circumstances. In modern systems,
humans and machines interact in integrated systems and a purely statistical theory is
insufficient to describe system reliability. This suggests, too, that probability as an
estimator of likelihood is not the right interpretation, but probability as a scale factor for
relative weight in a cooperation is.

Figure 10.6: The shift from traditional statistical reliability theory to a promise view. Promises
represent a shift attention from standalone components to interactions with users.

Let’s qualify some of the shortcomings of the traditional approach. Using the
structure function to represent the system behaviour has limited expressive power:

1. It focuses on components as lumped ‘roles’ instead of the integrity and ap-
propriateness of their interactions. No component does anything by itself. Thus
even if all components are working, if they fail to interact properly, the system
will not work. Every interaction with uni-directional propagation of influence
involves two promises; one to provide and one to accept. Thus, any dependence
can fail in one of two different ways:

• By sender/provider/source promise not kept (+).

• By receive/accepter/sink promise not kept (-).

534 CHAPTER 10. CLASSICAL RELIABILITY THEORY

All transmission of intent, every act of cooperation, involves two independent
agencies. The two parts are independent promises, located at independent agen-
cies, but they form dependent failure modes: the receiver cannot receive if the
sender has not sent, so it is dependent. This is not accounted for in the basic fault
theory, where it is assumed that systems work by imposition / obligation.

2. Perfect cooperation without situational awareness. Because it lumps every-
thing into single probabilities, combined deterministically, it effectively assumes
that cooperation and adaptation of agents plays no role in its effective functioning.
The agents play their roles without question or self-awareness. This could be ap-
propriate for ‘dumb agents’, such as manufactured components, whose behaviour
does not depend on their perception or awareness of their situation, but it is not
adequate for human-machine collaborations.

3. Limits and tolerances. The structure function does not easily account for what
happens when the sum of impositions on a component exceeds the component’s
capacity to perform. Capacity limits are not included in the simple expressions
for structure, but they are a key part of information theory and transmission of
influence.

When a limit is exceeded, one of two possibilities must take place:

• A queue must build up at sender or receiver.

• Certain impositions or promises to use must be abandoned.

4. Scale anomalies. As workload is scaled to higher levels, we want to understand
how the fixed scale limitations of individual components impacts the total system.
Bottlenecks could be mitigated by employing parallel processing, not merely
redundancy, but this causes a potential confusion between parallelism and fault
redundancy, which serve different purposes.

Fortunately, the results of the previous chapter can easily be improved on by devel-
oping the promise approach, while keeping the simplicity of the method.

10.11 SUMMARY

In this chapter, we’ve used the classical approach of treating components as black boxes.
They are assumed to work (or not) with a certain probability. We do not model how they
work together, only that they are connected through dependencies and with redundant
alternatives. This offers some rough statistical insights about the ability to repair parts
within the design.

10.11. SUMMARY 535

Although we need approximate methods for summing up statistical reliabilities at
fixed semantics, we also need to be able to ask deeper questions related to functional
design and changing semantics. What if the semantics of a system suddenly changed,
while it continued to function? That would also be a fault, in which semantics no longer
represented intent. These are the issues that relate to human involvement in systems,
and thus represent a crucial perspective, from the design of machines as proxies for our
intentions, to our own interactions with them.

CHAPTER 11

RECOVERY, REPAIR,
REPLACEMENT, RESILIENCE

When agents interact, they may not be prepared for everything that will happen. To
begin with, they may find themselves in a state in which they are indisposed and unable
to respond on the appropriate timescale—whether for reasons of inadequate resources,
interior faults, flaws, and so on. This makes their full range of outcomes uncertain.
Beyond this basic level of uncertainty, there may also be events that cannot even be
promised. These are especially aggregious, especially when they are catastrophic, lead to
the a failure to keep promises, and even the destruction of agents.

The possible weaknesses of systems’ promises were discussed under the heading of
the three F’s: faults, flaws, and errors. The complementary topic of how one primes or
restores a system to a condition of intended functionality is the subject of this chapter.

Promises help us to clarify matters here too. Promises document intent—the degree
of semantic alignment between agents taking part in processes, and when we assess
the counts of successful outcomes, these document patterns of past dynamics. Promise
Theory adds to traditional descriptions the implication that agents are never merely
passive components—driven by the imposition of exterior forces—they must, in fact, have
autonomous interior processes in order to respond. This has some surprising implications
for matters of design responsibility, as discussed earlier. The interior ‘heartbeats’ of
agent processes can transform, absorb, and even initiate outcomes. This is not the usual
point of view in process modelling, and yet it has important consequences for how we
design systems, in order to be stable and resilient, recoverable and self-sustaining.

536

11.1. AGENT READINESS—EXPECTATION AND INTENT TO PREPARE 537

11.1 AGENT READINESS—EXPECTATION AND INTENT TO

PREPARE

The ‘R’ which is more usually discussed in the case of catastrophe is ‘risk’. Risk is a
heuristic assessment of the possible impact of an already expected outcome, assumed
to be unwanted and hopefully unlikely. It cannot be the assessment of an unexpected
outcome: by definition, we can’t assess what can’t be predicted157. Of course, some
events (like natural disasters or force majeure) could be predicted in principle, but we
don’t bother in practice due to their low rate of occurrence158. Promise Theory offers
a simple insight into the success of system processes: preparedness (in the form of
prior promises) leads to greater certainty about behavioural outcomes, and thus a better
understanding of changes and desired outcomes than the more traditional and mercurial
idea of imposition. Imposition, as we recall, offers no chance for an agent to prepare,
and thus the outcome of impositions is more uncertain than that of promised interactions.
Promises signal the intent to prepare for a constrained or more programmed outcome.

Expected or unexpected, does it make a difference? What do we mean by that? What
are the semantics of being prepared? When agents have accepted a promise, about the
behaviour of another agent, we may assume that they are better informed, and primed
to be ready for what is going to happen—at least to the extent that their interior and
autonomous capabilities admit. A promise acts as an ‘invitation’ to prepare. When
something is imposed onto agents, they are—by definition—unprepared, and may have
to muster a response in real time.

In section 9.2, we remarked that drifting of agents’ promised intentions may lead
to misalignment. Another way of saying this is that promise drift leads to unfulfilled
expectations. This is an active rather than a passive use of expectation, e.g. I expect you
to wash your hands. It implies imposition of an obligation. In the binding,

S
+bS−−−→ R (11.1)

R
−bR−−−→ S (11.2)

we know that the effective transfer is bS ∩ bR ≥ ∅. But, what if bS gradually drifts, or is
reduced in scope, so that R has the intent bR to use much more than S is offering? In
that case, the mere promise to use bR might eventually become a demand for more than
S is willing to promise. Then the (-) promise effectively transforms into a (-) imposition,
i.e. a requirement or a demand. The imposition of usage, by demand, can lead to stress.
In a human interaction this may even lead to hostilities.

Example 259 (Free software promises). Imagine some free software, with a license
of usage ‘as is’. It makes no particular promises, but a user assesses that it solves a

538 CHAPTER 11. RECOVERY, REPAIR, REPLACEMENT, RESILIENCE

problem that fulfills a particular need—say, to convert pounds into kilograms. Over time,
the software provider deprecates that particular functionality, or moves it somewhere
inconvenient, so that the user no longer assesses the software to keep its apparent promise.
The user then sues that company for damages.

Traditionally, statistics is the empirical field of study for coarse or average behaviours.
Statistics concerns the frequency with which outcomes fall into certain anticipated classes.
Statistics are related to probabilities for future outcomes in the special case of steady
state behaviours, i.e. when one expects the regular patterns observed over past history to
remain the same in the future. The patterns may be stochastic rather than deterministic,
but we need a steady state. This leads to the characteristics of ordinary behaviour. Part of
that ordinary behaviour might include random failures, such as in the Poisson processes
of chapter 10.

11.2 TALES OF THE UNEXPECTED

A more interesting, and critical question, is what happens to a system when it is influenced
unexpectedly by an external agent? At such a moment, probabilities are of no use
whatsoever, because the conditions under which they promise to provide an accurate
picture of expected behaviour have been violated. We speak of anomalies. The lack of a
quantitative scale can be distressing to those of us coached in the quantitative sciences—
who med (mis)led to believe that anything worth describing would be described by
numbers, because ‘numbers don’t lie’. It’s typically in so-called ‘complex systems’
that unexpected conditions occur. The reason is that complex systems generally have
too many possible outcomes to include in the scope of a model. They have ‘power law’
behaviour, i.e. behaviours with long tails that cover almost unlimited possibilities, albeit
with tiny and incalculable probabilities.

In physics, the concept of a perturbation or disturbance is used as simple model for
defining the response of a system to external influences—whether expected or unexpected.
As long as we can define the impact, we should be able to define the response, based on
the promises we know about the system. Of course, if we are not sure what promises
have been made, this in intractable—which is hopefully encouragement to know our
systems well. This is particularly important for the discussion of stability. Let’s try to
generalize the purely quantitative notion of an influence from physics to a the language
of Promise Theory.

11.2. TALES OF THE UNEXPECTED 539

Definition 202 (Perturbation). The imposition of a request by an agent S for response
by an agent R:

S
±∆S−−−−−→ R (11.3)

In other words this is analogous to a ‘demand’ for change.

The response to a perturbation may be said to be a causal consequence, by virtue of the
conditional dependence on it:

Definition 203 (Response). A conditional promise made after a prerequisite imposition
to provide it:

R
−(±∆S)−−−−−→ S (11.4)

R
+∆R | ∆S−−−−−−−→ S. (11.5)

See also the response function of section 6.4.13.

Notice how this definition of seems backwards in the language of promise theory. The
initial imposition of ∆S has not power to affect change; the response ∆R is given
voluntarily but in response. It was unexpected, and thus interrupts whatever interior plans
or processes were ongoing. In classical physics, a perturbation is an external force—in
the classical model, the mere imposition is enough to guarantee a deterministic response,
though in quantum physics that is no longer true. In a locally autonomous picture, an
external influence can only yield an effective force if accepted: it depends on the actual
response of the affected agent. We say this is voluntary, as a matter of definition.

The state of the agent is an internal matter, but it affects the ability of the agent to
sample, receive, and send information, as part of a Shannon information channel. We can
define an agent to be prepared if its acceptance of perturbations precedes their arrival:

Definition 204 (Preparedness). An agent R which makes a promise to accept a promised
or imposed change ∆ from an agent S is prepared with respect to the promise body and
agent pair 〈∆, S〉

R
−∆−−→ S. (11.6)

Lemma 43 (Expected and unexpected events). Impositions that arrive before acceptance
are unexpected. All other impositions are expected.

Thus, when a perturbation is received, we are interested in the ability of an agent to
‘handle’ it, which might mean to make use of it, or simply to ignore it. Perturbations

540 CHAPTER 11. RECOVERY, REPAIR, REPLACEMENT, RESILIENCE

might be not be material to the operation of a system, e.g. a dent in a vehicle doesn’t
affect its ability to transport things:

Definition 205 (Ignorable perturbation). A perturbation whose effect is within a toler-
ance band of acceptable values, and leads to no conditional response.

Perturbations, which are ignored, have no causal impact on the system’s principal
promises. The type of ignorable promises can be regarded as a ‘symmetry’ of the system.
Such symmetries play a role in the meaning of resilience for systems[Coc19].

11.3 PROMISE CONTINUITY UNDER PERTURBATION

The ability to continue promising and keeping promises is central to what we mean by
robustness and resilience. What’s missing from most accounts of resilience are reliable
definitions that can be applied across a range of contexts. Some informal clues to the
meaning may be found in [HWL06]. Let’s try to make some clearer statements about the
various R’s.

Note that, by the basic axioms of Promise Theory, we can only really speak about the
continuity of a promise binding, because both (+) and (-) promises can be unkept—and a
promise that is not used for binding is of no interest, as it has no causal effect159. After a
fault, which leads to an interruption of promise-keeping, continuity can be restored by a
number of strategies. Some common words used in this regard include the following.

Definition 206 (Recovery). A process by which a system moves from a fault state to a
non-fault state, i.e. all agents in the system of interest move to a state in which their
exterior promises are kept.

Recovery may involve repair or replacement of parts.

Definition 207 (Repair). A process by which an agent performs recovery or replacement
of interior agents and promises in order to recover a promise-keeping state in its exterior
promises.

Definition 208 (Replacement). A process by which an agent R, which depends on a
promise π from an agent S1, accepts an equivalent promise π from an alternative agent
S2. a dependency, so that reliance on S1 is exchanged for a reliance on S2.

11.3. PROMISE CONTINUITY UNDER PERTURBATION 541

Some engineers talk about ‘hot replacements’ in which redundant services are available
all the time as a matter of redundancy—as opposed to the case where a system must be
taken offline to perform a ‘cold replacement’.

An understanding of the avoidance of these courses of action leads us to define a
notion of continuity under conditions that are either internal or external to an agent, on
any given scale. Like all promise concepts, the definitions of resilience and robustness
are relative to a context in which they find themselves. Agents cannot be intrinsically
robust or resilient, because the perturbations and continuity they experience are—by
definition—assessed through interactions with other agents.

Definition 209 (Robustness). An assessment about the capacity of an agent or supera-
gent to absorb, tolerate, and survive perturbations imposed or promised by interior or
exterior agents. Robustness, as defined, concerns an agent’s invulnerability to change.

Robustness implies that an agent is sturdy and constant in its purpose, keeping its integrity
and its promises, without having to rely on exterior agents.

Going beyond mere survival, we may speak of resilience of a process that involves
the processes that maintain agents and their promises. Resilience is an assessment of
stability and continuity in the qualitative and quantitative details of promises kept as part
of the an on-going process. This assumes more than a mere tolerance of perturbations by
a particular agent—but the distinction is subtle and perhaps not very crucial.

A resilient system is one that continues to keep certain promises, even in the presence
of failures and perhaps even flaws. Faulty dependencies can be bolstered by redundancy
or repair, the envelope of possibility might be wide enough to tolerate even simple design
flaws. There may be many possible failure modes that test different aspects of resilience.

Definition 210 (Resilience). When a promise π is invariant under perturbations: i.e.
agent and promise may be called resilient if they can withstand, absorb, or recover from
a perturbation before another agent can observe a change.

Resilience implies both dynamical and semantic stability, i.e. continuity by dynamical
means, regardless of perturbations imposed or promised by interior or exterior agents
on which A depends conditionally for its own promises. Resilience is an assessment
concerning the behaviour of an agent or superagentA that envelops a process—a property
of processes rather than of static agents. It implies invariance over a specific critical
timescale. Like robustness, resilience can be compromised by both interior failures and
exterior perturbations.

542 CHAPTER 11. RECOVERY, REPAIR, REPLACEMENT, RESILIENCE

11.4 PROMISE DISCONTINUITY, RISK, AND IMPACT

When there is an intermission in promise keeping, observed by some reliant agent A,
which accepts and makes use (-) of the offers (+) from source agents S within a system,
it will fail to satisfy its function unless it can be repaired before an agent makes use of it,
or the loss is negligible because redundant agents can keep the promise instead. This tells
us that there are two causes of risk: the fidelity of agents in keeping their promises, and
the dependence on other agents (and thus their fidelity). Undocumented environmental
conditions affecting promise keeping may be absorbed into the fidelity of the agent by
the downstream principle. An agent A that relies on an agent S to promise X to O, is
responsible for accepting the promise from S, as well as supplementing it with its own:

A
+X|D−−−−→ O (11.7)

A
−D−−→ S (11.8)

Because the possibility of a promise not being kept (regardless of any assessment
of probability) depends on these factors, the risk of an impact on promise keeping
propagates and accumulates, somewhat like eigenvector centrality and our model of trust
(see [BB06]).

The assumption of continuity of agents’ operating conditions is (perhaps regrettably)
almost a default assumption in system design, even in the most testing of circumstances—
that’s partly because we can’t predict the unexpected. The traditions of reliability (see
chapter 10), and the assessment of risk, attempt to forge a link between the assessment of
risk and evidential probabilities. However, probability is a useless tool for risk assessment,
because it is merely a characterization of what can be expected, based on past evidence.
No one can predict the unexpected. What we can do instead is to assume the worst and
consider the cost of avoidance or repair.

A simple scale by which to assess risk is thus to use an estimated cost avoiding,
repairing, replacing, a broken system—a measure of the impact on the system. This
is more embedded in the context of each system proper, as it makes use of costs and
efforts that are known from its interior processes. Measures like Mean Time To Repair
(MTTR) are only a surrogate for that greater impact of the loss of a function—which
still remains to be characterized. Models such as Poisson probability distributions of
component failure are of little use once a failure occurs.

Principle 10 (Risk assessment). Assess and plan for promise discontinuity by consider-
ing the processes (promises, timescales, and costs) required to remedy faults.

The central aim in design of a functional system is to avoid catastrophes (in the
mathematical sense), i.e. suddenly discontinuities in promised behaviour. A system’s

11.5. SCALING RESILIENCE IN PROMISE NETWORKS 543

response needn’t be technically ‘smooth’, in the sense of calculus, but it should be of a
proportionate magnitude, and on the normal and within the characteristic timescales of its
regular promises in order to absorb the event. The possible timescales for perturbations
should therefore be studied and, by Nyquist’s law, one should seek to maintain interior
processes on a timescale of at least twice as fast as that.

This consideration of risk is another reason why the principle of separation of scales
is important. The ability for systems to absorb and tolerate perturbations is therefore
the key to resilience. Tolerance is related to aggregation: the ability to transduce a fast
timescale into a slower one.

11.5 SCALING RESILIENCE IN PROMISE NETWORKS

Resilience is thus the ability to absorb and tolerate perturbations, whether they can be
predicted or not. A realistic attempt at this requires some effort to understand the context
and environment in which systems intend to keep their promises.

System design principles for scaling promises—like serialization, parallelization,
centralization, decentralization, etc—have a generic impact on system resilience. When
we scale up systems from the bottom up, using agents in a promise-oriented model,
the bulk properties of systems look very much like the properties of matter in material
science. The characteristics of a sheet of metal is not directly related to the characteristics
of the atoms of which it’s comprised. If we apply this to what we mean by resilience,
the same observation applies. There is an abundance of ideas in popular literature about
what constitutes ‘resilience’ for different kinds of systems and agents. Some authors
use arguments to try to discount certain kinds of agents (e.g. humans or machines) as
being unsuitable for certain kinds of task—as we discussed under the topic of agent
fidelity (see section 9.6). While such considerations might be warranted on pragmatism
in special cases of immediate urgency, this feels both unjustified and irrelevant to the
bigger picture.

We can begin discussing these issues from standalone atoms, building up through
molecules, to chains, and multi-dimensional crystals and fabrics. All if these structures
are in use in technological and human systems today.

Example 260 (Computational pipelines). Flow charts or pipelines are like circuitry in
which messages are exchanged. Each connection between components, with specialized
tasks, can be represented as promises or impositions. Each link assumes a causal
direction for progress, from input to output. This model is a facsimile of a process, which
is why flowcharts are so popular for simple programming and algorithm design. In a
pipeline, several components might feed into a single component. How do we know if it

544 CHAPTER 11. RECOVERY, REPAIR, REPLACEMENT, RESILIENCE

will be able to cope with the load implicit in this? What promises and impositions enable
this to work reliably?

11.5.1 SCALING AND RESILIENCE

The scaling of promise keeping is naturally related to the question of resilience (see
chapter 7). A system that can always keep its promises is resilient by any measure.

Some authors have tried to argue against intrinsic stability, as this may lead to
inflexibility or a lack of agility, rendering systems unable to respond to challenges that
are unforeseen. Resilience certainly has to do with timescales. If a system is quick on its
feet, so to speak, then it can correct in realtime to avoid catastrophe.

Interior transparency is not necessarily sufficient to determine failure modes but it
might be helpful or harmful, depending on context. The intrinsic avoidance of failures
under perturbations depends on stability, not on transparency. Transparency could expose
weaknesses for malicious agents to exploit. Our best shot for stability is to keep systems
constrained to linear or sublinear (convergent) behaviours. Our best strategy for speed of
response is the be able to resume normal promised function within a timescale that is
equal or less than the timescale over which perturbations arise.

Lemma 44 (Resilience as scale invariance). A system which is resilient to perturbations
of any size must be be independent of the size of perturbations, and therefore must be
scale free.

Since no system is truly scale invariant (even if properties can be extended indefinitely,
the cost of running the system must rise, so we can only ever achieve partial scale
invariance by ignoring certain issues), there is no fully resilient system.

Example 261 (From hardware to software). Software engineers sometimes argue that by
moving from hardware design to software, using only standardized and generic Personal
Computer hardware, they remove the shackles of hardware allowing any problem to
be solved. This is incorrect, because it ignores the intrinsic scales that are implicit in
the generic hardware dependencies. We can never remove a dependence on scale, we
can only trade one scale variance for another. By introducing a giant computational
cloud, one can eliminate a certain restriction on capacity, but only at the cost of addi-
tional latency, power consumption, and interaction. Scale invariance is an incomplete
characterization, and thus so is resilience.

11.5.2 BULK PROPERTIES OF MATERIAL FABRICS

Our characterizations of systems are usually at a high level. Classical component analysis
would like to reduce these characterizations to concrete failure probabilities based on

11.5. SCALING RESILIENCE IN PROMISE NETWORKS 545

construction, but experience suggests that people pay little attention to such detailed
levels of characterization. Instead, we hand wave using effective characterizations on a
macroscopic scale. The analogy discussed in [Bur13a] is to compare to the engineering
we carry out based on bulk materials, with their macroscopic properties and failure
modes.

We can define a few bulk material properties, by analogy with material science
[Gor68]. Having ‘concrete’ definitions (sorry) does help to be more precise about the
properties we are trying to express.

Definition 211 (Brittleness or rigidity). A property of promises and promise bindings,
implying the inability for a promise binding to be modified by continuous or plastic
deformation, i.e. given any promise

S
b−→ R, (11.9)

all changes of the form b→ b+ δb result in b→ ∅, i.e. the collapse of the promise, and
hence a promise binding.

Rigidity builds on the notion of co-dependence, introduced in chapter 4.5. A body is rigid
when the interior clocked processes of all the parts move in lockstep. This rigidity makes
them brittle over every interval of time, because a change is spread to every sub-agent on
the interior of the body at the ‘same (exterior) time’. Failures therefore appear sudden to
external observers. For this reason, brittle materials can normally only change by such
catastrophic failure modes, including crack propagation, in which chains of promises are
broken like a zipper unravelling. A common synonym for brittleness is:

Definition 212 (Fragility). A less formal synonym for brittleness, usually applied to
systems.

In response to fragility the following term was coined by Taleb [Tal12].

Example 262 (Antifragility). This term has been used to express the capacity for systems
to learn and adapt to perturbations, e.g. by reinforcement, growth, or redundancy or
remembering configurations like memory foam.

The counterpoint to brittleness is plasticity.

546 CHAPTER 11. RECOVERY, REPAIR, REPLACEMENT, RESILIENCE

Definition 213 (Plasticity). This is a property of promise bindings, reflecting the ability
for the equilibrium point of offer and acceptance promises to be altered in a continuous
manner, in response to some applied influence. For example, given:

S
b−→ R, (11.10)

a third party T

T
+δb−−→ S (11.11)

S
−δb−−→ R, (11.12)

or simply S itself causes S to alter the parameters for b:

S
b+δb | δb−−−−−−→ R (11.13)

and R admits sufficient tolerance of this to accommodate the change:

R
−(b±δb)−−−−−→ S. (11.14)

Plasticity requires the cooperation and tolerance of both S and R with the influence of
the third party T .

The corresponding resistances or costs of brittle and plastic changes are described by:

Definition 214 (Stiffness). Resistance to (or cost of) plastic deformation.

For example, resistance might be the result of there being a multitude of agents that need
to be influenced (resistance proportional to the number). Or it could be related to the
capacity to keep the promise (it might take longer as b increases), etc.

Definition 215 (Strength). Resistance to brittle failure.

The size of δb needed to break a promise binding describes the tolerance of the binding
to increase or decrease in the overlap between sender and receiver of a promise binding.
Compressive strength and tensile strength are two different measures, in material science,
corresponding to the ability to increase or decrease the quantitative measure of a promise.

Plastic deformation is usually an irreversible change, but if there is a restoring
influence (as in the case of restorative maintenance processes) which maintains a detailed
balance, then we can speak of elasticity:

Definition 216 (Elasticity). The ability to recover from plastic deformation.

There are more properties we might describe for bulk materials formed from superagent
collaborative structures.

11.5. SCALING RESILIENCE IN PROMISE NETWORKS 547

11.5.3 RIGID BODIES AND FRAGILITY

Superagents that are strongly coupled are rigid. The model of entanglement or co-
dependence, described in section 4.5, is key here. When agents depend on one another
mutually:

A1
+b1(b2) | b2−−−−−−−−→ A2 (11.15)

A2
+b2(b1) | b1−−−−−−−−→ A1, (11.16)

their promises are bound to change in lockstep on the timescale of the interior clock of
the entanglement promises. This is also the exterior time between the two agents, and
is thus always slower than the interior time of either agent. For agents exterior to the
composite agent A1 ⊕A2, changes to both are instantaneous.

Now, suppose that an exterior boundary agent imposes a change in either b1 or b2,
assuming that the agents would accept such a change:

S
+δb−−−−→ A1 (11.17)

A1
−b−−→ S (11.18)

A1
b1→b1+δb | δb−−−−−−−−−→ S, (11.19)

then now both agents’ promises are shifted by the same amount due to their rigid co-
dependence:

A1
+b1+δb | b2+δb−−−−−−−−−−→ A2 (11.20)

A2
+b2+δb | b1+δb−−−−−−−−−−→ A1. (11.21)

Rigidity means that bodies whose components are entangled or co-dependent, with
respect to a property b, in this way, effective move as a single entity, with all parts
co-moving in a shared state of unison, with respect to perturbations δb. This needn’t be
true for all perturbations. For example, hitting a ball with a cue might induce it to move
as an entity, but spraying it with blue paint only affects the outside edge.

11.5.4 STRESS AND STRAIN IN PROMISE NETWORKS

We can generalize the idea of a stress, as used in material physics, to accommodate more
general promises, both qualitative and quantitative. If a load is an invited perturbation,
i.e. one for which a provider is properly dimensioned, then a stress is an uninvited
perturbation, i.e. a ‘demand’ imposed on an agent:

Definition 217 (Stress). The imposition of a request for a change ∆, by an agent R onto
a potential provider S:

R
−∆R−−−−−→ S (11.22)

548 CHAPTER 11. RECOVERY, REPAIR, REPLACEMENT, RESILIENCE

The response to a stress may be a deformation of a promise, which (by analogy) we can
call a strain

Definition 218 (Strain). The response to an imposed request for a change ∆, accepted
by an agent R onto a potential provider S:

S
−(−∆R ∩∆S)−−−−−−−−−−−→ R (11.23)

= S
+∆S−−−→ R. (11.24)

We can give more quantitative substance to these measures by using the model of
a queue as a processor of discrete transactions. Strain increases the as the waiting time
increases, or the rate of processing decreases. Strain reaches a maximum when the
response time R tends to infinity: Stress increases as the arrival rate grows:

Strain: σ ∼ R ' 1

µ− λ (11.25)

Stress: ε ∼ λ (11.26)

From Little’s Law (see volume I, chapter 12), we know that, if the queue length or
work queue L = 〈n〉, and TW = R is the waiting or response time, for an arrival process
with average rate λ and average service rate µ (and ρ = λ/µ) are given, then

L = λTW . (11.27)

Using the fact that, for an M/M queue, we have

TW = R =
〈n〉
λ

=
1

µ− λ (11.28)

L = 〈n〉 =
ρ

1− ρ , (11.29)

then we can write

ρ = (µR)−1 L, (11.30)

whence comparing to the Young’s law of stress and strain, where σ is the stress (or
tensile pressure), ε is the strain (or relative extension), and E is a constant called Young’s
modulus,

σ = Eε, (11.31)

we can make the analogous identification,

σeff ↔ ρ (11.32)

Eeff ↔ (µR)−1 (11.33)

εeff ↔ L. (11.34)

11.5. SCALING RESILIENCE IN PROMISE NETWORKS 549

This has an intuitive feel to it: the length of the queue is the measurable strain, and
the traffic intensity is the pressure under which the strain is felt. The modulus of
proportionality is a constant of order unity related to the average server efficiency.

An impulse or shock is certainly an imposition. Sudden impacts are impositions,
while expected loads may constitute promises. On the other hand, statistically stable
populations of impositions can be predictable too on an average level, so the relevant
part of signalling intent by promises lies not so much in whether the intent at the source
was announced in advance or not, but rather whether the receiver of a load is prepared or
unprepared to promise a response.

11.5.5 STRESS CONCENTRATIONS IN WORKFLOWS

The model of workflow, in which a succession of promises forms a dependency chain
or ‘circuit’ can be analyzed simply as a queueing system: i.e. an arrival based model
of discrete events. In bulk aggregations of agents, a key issue is how promises are kept
by superagents, where the sharing of a burden occurs on a larger scale. For example,
a bulk material (like steel) is formed from structures that contain may atoms working
together; biological tissue is made from many cells sharing certain burdens in parallel.
The influences that are imposed at an external boundary are not all channelled through a
single agent on a small scale, like a funnel, but are shared somehow between all of the
parts that make up the whole. How this sharing takes place is a key scaling issue that
includes both qualitative (semantic) and quantitative (dynamical) aspects.

Two network structures are particularly significant in the scaling of workflows (see
figure 11.1):

• Places where promises fan out to a number of (either mutually exclusive or
coexisting) alternatives, sometimes called a load sharing or balancing structure.

• Places where promises come together like a funnel that aggregates dependencies
at a single agent location.

We can call these converging or diverging lenses in the promise graph, because they
either focus or defocus the trajectory of outcomes in the workflow. From the perspective
of stress and strain, a fanning out offers relief from stress, while a convergence funnel
leads to a stress concentration (a bottleneck). The latter often leads to fragility along
interfaces and boundaries, especially where the promises are brittle.

We can analyze these situations, on a superficial level, as another application of
the replication scenario discussed in chapter 3, and reproduced here for convenience in
figure 11.2. This describes the basic semantics of the connections. Similarly, we can
use the simple dimensional scale arguments of queuing theory to estimate the stresses

550 CHAPTER 11. RECOVERY, REPAIR, REPLACEMENT, RESILIENCE

load focus

"queue"

load share

Figure 11.1: Focusing signals from space, trading space and time by queueing and load sharing.

and strains. The essence of bulk promise-sharing is easily encapsulated in the queueing
model (see volume 1 of this treatise) for m servers, e.g. the M/M/m queue. The reason
is straightforward: a queue is a processing pipeline for discrete countable events and
may be addressed as a continuum approximation too in order to deal with scale. The
connection between these lies in the choice is a distribution, such as a Markov model.
The model consists of potentially many stages, serially one after the other; however,
these fall into three main roles, shown in figure 11.2. A source stage forms the initial
boundary condition, where causation begins its trajectories. The replica stage acts as a
transmission line if the number of parallel agents is constant. It can also act as a load
balancer for the next layer if there is a fanning out to a larger number of agents that can
share the burden of dependency.

We can quantify this relationship in a flow approximation using queueing theory (see
volume I). If the total stress on the left if λ, and there are m agents to share the load (in
the manner of an M/M/m queue, then the acceptable strain is reflected in the response
times of the servers, each of which receives a share λ/n. As we know, from the queueing
instability, critical behaviour ensues as λ approaches λ/µ ≥ m from below.

The picture extolled in these simple dimensional estimators can be extended to apply
to form chains and other crystal lattice structures (see section 11.5.5). In practice the
quantitative estimators are of less importance than the semantic considerations built into
the specific promises. That’s because queueing systems have to be operated far away
from their critical region of brittle failure or collapse in order to be effective and maintain
the assumption of ‘flow’.

Our best chance of avoiding brittle shattering is fault tolerance, which can absorb
cracks before they propagate. This is like putting impurities into metals to disperse stress
concentrations.

11.5. SCALING RESILIENCE IN PROMISE NETWORKS 551

SOURCE
CLIENTREPLICA SERVER

upstream downstream

(+)

(+)

(+) (−)

(−)

(−)

(+)

(−)

(+)

S

R C

Figure 11.2: The basic configuration for sampling data through intermediaries.

11.5.6 LOAD-BEARING STRUCTURES

Resilience of infrastructure is often based on a large scale cooperation of smaller com-
ponents. Material science is a perfect example of this, which illustrates the scaling
principle—namely that superagents can make promises and form composites of their
own at each scale. Figure 11.4 shows the classical depiction of the beginning of crack
formation in a crystalline material. The absence of a single agent reduces the the number
of agents on an intermediate later for load sharing from left to right. If the stresses are
shared evenly by passing on the additional burden to the remaining agents, this might be
enough to tip one agent after the other over the edge of what it is able to promise, leading
to a domino cascade failure.

Example 263 (Transduction layers). Drivers and transducers that try to bring a kind
of uniformity to the variety of non-standardized devices and software interfaces are
amongst the most common places for bugs in software, because the lack of clear or
standard promises about the format of the data means that drivers and transducers are
often guessing, or ‘screen scraping’. This is has dubious semantic stability.

Interaction is what makes systems non-trivial. Interactions may be cooperative,

552 CHAPTER 11. RECOVERY, REPAIR, REPLACEMENT, RESILIENCE

Figure 11.3: Queueing funnels may lead to signal congestion and delivery delays.

non-cooperative, or even competitive. Many faults arise along boundaries, because
boundaries are, by definition, non-redundant. Cooperative structures may themselves act
as dependencies at the foundations of systems, providing the glue that holds large scale
cooperation together.

Example 264 (Infrastructure as latent dependency layers). Utilities such as electricity,
water, and Internet are needed by every home and business, but they are generally
considered to lie outside of the zone of interest for those entities. Similarly, in chemistry
atoms bound by ionic and covalent bonds play a role in forming molecules and crystals
that promise bulk properties. In an assessment of stability, the integrity of those structures
may be key to keeping load-bearing promises.

Example 265 (Network fabrics). The history of redundant networks goes back to the
beginning of the Internet. The Internet architecture was, itself, designed to avoid single
points of failure typified by hierarchical tree-like organizations. So-called Clos net-
works, designed for non-blocking telephony described patterns of material resilience,
for forwarding conversations at a structural level[Clo53]. These networks have been
rediscovered in connection with routing fabrics for large datacentres [Ano14, NLK13].

The basic idea is shown in figure 11.5. By doubling agents and their connections in
a mesh, redundancy of pathways is secured. Single failure can be disguised by a failover,
and traffic can be balanced to avoid saturation of any particular node, provided the total
throughput capacity is not exceeded. The number of agents in the layers can be varied; it
needn’t be one to one, as shown in figure 11.6.

The effect of combing multiply redundant layers is to introduce a material robustness
to a entire structure, which is not promised by any single component. The individual

11.5. SCALING RESILIENCE IN PROMISE NETWORKS 553

 Crack

Stress concentration

Figure 11.4: A load bearing structure with a stress concentration due to a broken or missing
promise. A direct comparison with a discrete promise-based system is beyond the scope of this
document, but the roles are easy to identify. The depression, around the missing agent, acts as a
funnel for stress applied from left to right. Each vertical column of agents acts as a load-sharing
interface and server battery for the next column. A crack implies fewer agents to transmit the
same stress leading to cascade failure above a threshold, analogous to the queueing instability.

R1 R2

R3 R4

swp2swp1 swp2swp1

swp1 swp2 swp1 swp2

Figure 11.5: 2x2 Clos pattern.

components, combined with the way their promises distribute the load together can
bring a resilience to the structure—potentially increasing the total capacity, or merely
ensuring complete stability. The traditional way of drawing the networks is in a Cartesian
embedding, with crossed wires, shown in figure 5.6. Although compelling to certain
engineers from an algorithmic viewpoint, figure 11.7 is an abomination from a symmetry
viewpoint. Crossed wires leads to a tangled topology that makes datacentre organization
extremely complex, error prone, and difficult to maintain. The cost of cabling is such
network installations dominates the costs of the infrastructure, and cable failures are
major debugging issues. Using the simplest of transformations, we can unpick the tangled
geometry to expose its natural form. The first step is shown in figure 11.8 Applying this
separation throughout, for the 2x2 network, leads to an disentangled form, shown in
figure 11.9.

554 CHAPTER 11. RECOVERY, REPAIR, REPLACEMENT, RESILIENCE

S1 S2

L1 L2 L3 L4 L5

Figure 11.6: 2x5 Clos pattern.

S S

S SSLRLL RL RRS

L R

P P P P
LL LR RL RR

A

L

A A A A A A A

L L L L L L L

LL LL

LL LL

LR LR

LR LR

RL RL

RL RL

RR RR

RR RR
R

L R

L R

L R

L R

L R

L R

L

L

R

Figure 11.7: A redundant left-right 2x2 Clos network, shown in a normal top-down geometry.

Finally, adopting a radial geometry, as shown in figure 11.10 allows the square
geometry to be turned into a fully line-of-sight network built with straight lines. In a future
vision of networking, these channels might even be replaced by direct laser pathways,
avoiding expensive cabling altogether. The key importance of the Clos structures is
that—by distributing the promises of the network amongst a number of independent
agents, with their causally independent interior processes—one avoids any single point
of failure amongst the components. The result is a super-component on a larger scale.
As we know from the redundancy folk-theorems, such low level redundancy is always
preferable to higher level failover mechanisms, say at the level of services. On a different
level, the two are merely scaled versions of one another, so the distinction may well be
moot when implemented throughout.

11.5.7 SERIAL REPAIR NETWORKS (EPIDEMICS)

When a system depends on a serial dependency, cascading failures may have to be
repaired by fixing one stage at a time to bridge access to the next fault. It’s tempting to

11.5. SCALING RESILIENCE IN PROMISE NETWORKS 555

A

L

Figure 11.8: Exposing the symmetries of the 2x2 Close network to form a natural radial structure.

LL

A RL
LL

R

LRS SRR

S S
LL RL

P P P P
LL LR RL RR

A
LL LL

L L L
A A A

AAA

L L L

LLL

Figure 11.9: The redundant 2x2 Clos network unpacked into an extra dimension (from left-right
to up-down) by symmetry.

use the model of network flow to think about the problem, but we should also realize
that influence propagates through networks even without the delivery of some kind of
package. Fixing holes in a road, for instance, has this structure because you have to fix the
first hole to reach the next, and so on. In other words, change can propagate like a wave,
such as when a disease spreads. The interaction between semantics and dynamics is
complicated here160 and involves (as usual) the ratio of interior agent process timescales.
Where repairs need to be carried out, from within a network, spanning multiple agents,
then this takes on a diffusion like character.

The example above of the Clos network fabrics offers an interesting case study, as
these networks are both staged (critically dependent) and yet have interior redundancy.
This leads to a particular kind of robustness, without necessarily bringing resilience.
Redundancy can only go so far in keeping promises. If redundancy is only to avoid
immediate failure then it must transfer stress to back up routes. If those routes are also

556 CHAPTER 11. RECOVERY, REPAIR, REPLACEMENT, RESILIENCE

Figure 11.10: A radial embedding geometry for the Clos network shown in figure5.6.

used in normal production, alongside routes that have failed, the redundancy doesn’t
protect against stress concentrations, and crack formation. Rather it performs a kind of
stabilization by entropy of mixing—rendering agents effectively indistinguishable from
one another by subordinating them to a bulk promise. This is a key role of subordination:
agents voluntarily give up their distinctive freedoms to become ‘just another brick in the
wall’.

11.6 RECOVERY BY RENEWAL PROCESSES

Prevention of fault states is a difficult task, even for a stable and predictable system.
Seeking a quick recovery from fault states is generally a more viable strategy for system
continuity, in the long run, since this will be necessary at some time anyway.

Law 5 (Busy and stable is predictable). Detection of anomalous behaviours is haphazard
except in the busiest and most stable systems. Only busy systems have statistical stability
to define the normal envelope of behaviour. Only stable busy systems are regular enough
to define anomalies cleanly.

A predictable norm makes anomaly detection of faults easiest. Sometimes a system that
is only quasi-stable or weakly unstable can operate from intervention to intervention, but
it may never reach a steady state. This is much how a jet fighter works—by continual

11.6. RECOVERY BY RENEWAL PROCESSES 557

renewal or recovery. The continual process of intervention might be called countervention
or the principle of equilibrium by detailed balance. This is how we handle chaotic
behaviours like unpredictable weather events, and so on.

Example 266 (The fighter and the passenger jet). A passenger jet promises to fly you in
a straight line from start to end, without any daring acrobatics. It is designed to fly in
a stable configuration, quite static. There are few changes of intended course during a
flight, so it can afford intrinsic stability against its main threat: the weather. A fighter
jet, on the other hand, expects threats to come much faster from attack. It needs to be
much less stable in order to be able to adapt more quickly. Fighter jets are constantly
struggling to escape from losing control by adapting very quickly to a changing flight
envelope. Too much stability would be a threat to them. This continuous adaptation is
highly expensive, requiring computer control to act quickly, but it enables maneuvers
that would be impossible for a passenger plane.

Realistically, recovery is always a better strategy than prevention, because we need
recovery anyway. So, if we design systems to be intrinsically recoverable rather than
being intrinsically stable, we can fend off vulnerabilities both dynamically and semanti-
cally as long as we don’t allow too large an envelope of possible states to wander about
in.

11.6.1 AGILITY FOR AVOIDANCE AND RECOVERY

The question of timescales is—as usual—central to understanding and maintaining
systems, whether human, machine, or hybrid. Prevention of stress and ultimately faults
is only possible if one knows exactly what the desired (zero strain) state of a system
is at all times—i.e. when systems are essentially fixed or very slowly varying in their
intent. A focus on strict compliance with static goals leads to brittle systems, impeding
flexibility and adaptation in the fact of contextual challenges.

Example 267 (Why kids don’t fall on the ice). If an athlete can dance on her feet, she
can stay upright even if the ground moves beneath her. When kids run in the snow, with
careless abandon, they are constantly unstable in a mode of rapid continuous correction.
If an old person walks rigidly on the ice, stiff and defensive, a sudden unexpected slip
means he’ll break something, because he is unable to react and correct quickly.

Definition 219 (Agility). The ability to adapt a promise body to accommodate chang-
ing circumstances in ‘realtime’, i.e. on the same timescale as perturbations from the
environment.

558 CHAPTER 11. RECOVERY, REPAIR, REPLACEMENT, RESILIENCE

11.6.2 CAN AGENTS BE REPAIRED OR REPLACED TO IMPROVE

RELIABILITY?

A traditional argument for eliminating errors from a system, especially human errors,
is to replace human workers with machinery, or to transform humans into procedural
machines. As already mentioned, the culture of incomplete system design tends to result
in the diagnosis of ‘human error’, when we have been too lazy to design fault tolerances
and contingency promises. This suggests that simply replacing humans with machines
might reduce errors of execution, increase speed and thus perhaps reduce faults, but
cannot address design flaws, which embrace both of the latter.

Paradoxically, the more we deploy automation within human-computer systems, the
more skilled human involvement we generally need to plan and guide the collaborative
processes, and interpret the contextual learning. Humans, on the other hand, are certainly
good at learning and improving the coverage of promises, as a work in progress, and
thus they have a natural skill within a system for continuous improvement. This points
to the fallacy of looking at the nature of the agents themselves, rather than focusing on
whether or not they keep their promises. The most unlikely agents can sometimes do the
best job161.

11.6.3 PREVENTION IS PERFECTION, BUT REPAIR IS REALISTIC

We cannot prevent faults and errors from occurring, especially in regard to complex and
even conflicting semantics, such as when obligations and impositions are expected to
dominate. In modern software systems, for example, there are just too many conflicting
semantics in play, making mismatches of intent likely. In industrialization, we work hard
to eschew the semantics so that only mechanical repeatable behaviour can be maintained
in a steady state, but this kind of inflexibility only works for very limited circumstances.
One aims for separation of concerns to allow sufficient isolation to enable this stable
situation.

More generally, our best hope then is to be able to repair systems quickly enough
that they will lead to catastrophic outcomes. This can be supplemented with the design
of safe failure modes—i.e. states which are themselves temporarily stable, like a holding
pattern, while analysis and recovery can be performed.

Lemma 45 (Quick repair is indistinguishable from avoidance). The consumer of a
promise that samples its dependency on a timescale of once every t seconds, cannot
detect a failure and repair fluctuation that occurs on a timescale much faster than this.

This follows from Nyquist’s theorem, or from the Maintenance Theorem discussed
in volume 1[Bur03]. Quick repair is the only way to handle unpredictable outcomes,

11.6. RECOVERY BY RENEWAL PROCESSES 559

because prevention assumes that you know how the failure is going to occur. What you
can’t foresee, you can’t promise to prevent. Moreover, repair can be automated by using
fixed point convergence, to perform at a high enough speed.

This might not just be about keeping the existing set of promises, because that set
might not be an adequate envelope for containing the system’s behaviours.

11.6.4 MAINTENANCE BY DETAILED BALANCE

Stability is a statistical characterization that takes time to reach equilibrium. It’s a
form of ‘learning’ with respect to environmental perturbations and boundary conditions.
Equilibrium, on the other hand, is a steady state property which requires the effective
isolation of the system over timescales for the ‘relaxation’ of the system to a steady state.
The issue of scales—in particular timescales—is never far from system behaviour. This
is not the story one learns in computer science, or in human management, yet this is the
central lesson of this treatise.

The more traditional dogma in system design is that of ‘rules based’ order, based on
command transactions, which leads practitioners erroneously down the path of imposi-
tions and deontic reasoning—known to be flawed[Bur05b]. This works in highly isolated
circumstances, where there is an effective firewall against environmental uncertainty,
but it leads to lazy and presumptuous thinking. Transactional rules alone are inadequate
to explain outcomes in systems (see section 11.6.5). Systems may gravitate towards
fixed points (see sections 11.6.9 and 11.6.10) by design, and may respond to boundary
conditions or information that arrives from the exterior of a system162.

It serves as a useful reminder to the principles discussed as part of the Maintenance
Theorem in volume 1 of this treatise. That theorem describes how discrete transition
systems can be repaired by either reversible transactions under complete causal isolation,
or by convergence to a policy defined fixed point if repairs can be made at the Nyquist
rate. Because there is a competition between agents in a scaled system, and because
choices are discrete, the strategies essentially form an array of alternatives that can be
mixed like a strategic game, or a type II theory (see volume I)[Bur04a]. The essence of
continuity is a balance between perturbations and course corrections or state repairs. This
takes the form of a game between faults versus maintainers, e.g. perhaps a kind of Tit for
Tat tournament of episodes that hopefully lead to long term stability. The language of
game theory helps to look at this problem through a formal lens (see volume 1), as does
the language of stability under Nyquist sampling.

Example 268 (Steady course in stormy weather). To keep the same semantics, in a
changing environment, we have to adapt.

560 CHAPTER 11. RECOVERY, REPAIR, REPLACEMENT, RESILIENCE

Example 269 (System upgrades, releases, bugs and fixes). Some motivations for system
design upgrades include:

• Adjustments to promises due for fitness for purpose

• Adjustments to implementation algorithms for keeping promises.

• New promises to increase the coverage of maintenance and feedback.

11.6.5 TRANSACTIONAL ‘ATOMIC’ CHANGE AND LOCKING

The ability to turn back time by undoing the processes that brought about the current state
of affairs is a compelling one that computer science tries to engineer by the technique
of critical sections, monitors or isolation kernels. You can always try to retrace your
steps—to undo the changes that led to the current configuration of time. Then you are
faced with the confusing idea of whether you are going forwards in time to undo stuff, or
whether that means that time is going backwards.

Example 270 (Undo). If you wanted to go back in time, and you hadn’t taken the
precaution of memorizing every snapshot in your cosmic database, you could try to
reverse or undo all the differential changes across the entire universe since a certain
calendar time (hit CTRL-Z repeatedly on your life computer and see what happens). On
a computer, the ‘undo’ operation is achieved by remembering all of the deterministic and
relative actions and reversing them, within a protected environment.

Example 271 (Reversibility in physics). In physics, we believe we have this information
compressed in a form of memory about processes that we call ‘Equations Of Motion’
that form part of the ‘laws of physics’. Many of these rules are reversible, as discussed
earlier, so we can use them in reverse to predict backwards—in principle. It’s not simply
a case of throwing the universe into reverse gear of course—to do that you would need
precise knowledge of every subatomic process in full detail, and have the technology and
force to reverse them all deterministically. When you finally undid everything, you would
have to set every particle on its trajectory again (except for yourself and your fellow time
travellers), and then continue in a forward direction again as before.

One way to achieve closed conditions of temporary isolation and thus metastability
is to build a transactional model. The essential feature this enables is reversibility, or
the ‘undo’ operation. To define transactional integrity we need to discuss how intended
change and unintended system change can be tracked and recorded in order to maintain
complete information about a system’s states over time. We shall distinguish a the

11.6. RECOVERY BY RENEWAL PROCESSES 561

concept of a journal of transactions (for intended change) from that of a history (which
includes actual changes intended and unintended).

To model intended versus actual change, we introduce the notion of a journal, inspired
by the notion of journaling in filesystems. A journal is a documentation of changes
applied to a system intentionally, noting and remembering that—in real systems— this
can be different from what actually takes place.

Definition 220 (Journal Ĵ). A complete, ordered sequence of all input symbols passed
to an automaton α∗ from an initial time ti to a final time tf is called the automaton’s
journal Ĵ = (α∗, ti, tf). Each symbol α corresponds to a change in system state δαq. A
journal has a scope that is known to the user or process that writes the journal. A journal
change δJ involves adding or removing symbols in α to J , and adjusting the times.

A sequence of transactions, forming a journal, can itself behave as a transaction, as
long as there is sufficient isolation from external environment. One way to achieve this is
to apply Shannon’s error correction theorem, or the Maintenance Theorem as a sequence
of desired end-states (see section 11.6.10). Shannon’s theorem states that one can always
achieve and error free outcome, with long enough time to apply repairs of coding. Each
transaction becomes an effective symbol in a robust alphabet of change. This requires an
absolutely brittle process, with no deviations from determinism, and total isolation. This
is both the benefit and the weakness of transaction design in information systems.

To understand imperative and transactional change, we start with a boundary condi-
tion, which may be called the snapshot state of a system Ψ0. We then impose a series of
changes ∆i to this as a sequence. Let S be a system agent (or superagent) and M be a
management agent. Viewed as a series of promises made between these two, we start
with the initial snapshot state:

S
+Ψ0−−−→ M (11.35)

S
−∆i−−−→ M ∀i (11.36)

M
+∆1−−−−−→ S (11.37)

M
+∆2−−−−−→ S (11.38)

. . .

Notice that S has to promise to accept arbitrary changes ∆i in advance, making itself
vulnerable to possible attack. If something goes wrong, we have to recreate the snapshot
state in order to recover, and the order of the transactions has to be promised by M .
This is the ‘congruence’ approach[Tra02]. In the convergent rollforward approach, the
transactions are turned into a set of conditional promises that can only be applied with

562 CHAPTER 11. RECOVERY, REPAIR, REPLACEMENT, RESILIENCE

prerequisites in place (this adds a kind of transactional safety in reverse: instead of
relying on a snapshot state, it relies on a desired outcome).

An improvement on this haphazard trusting approach is to verify each change im-
posed, by communicating back assessments of the changesα(∆)i, and making successive
impositions dependent on the confirmation, to invoke a protocol of prerequisites:

S
+Ψ0−−−→ M (11.39)

S
−∆i−−−→ M ∀i (11.40)

M
+∆1|α(∆1)−−−−−−−−−−→ S (11.41)

S
+α(∆1)|∆1−−−−−−−→ M (11.42)

M
+∆2|α(∆1)−−−−−−−−−−→ S (11.43)

S
+α(∆2)|∆2−−−−−−−→ M (11.44)

. . .

It’s usual to define transactions in terms of atomicity and consistency, but this
inevitably means referring to a specific process which is non-scalable. Here we can
define the concepts more simply using invariance of promises, at any scale:

Definition 221 (Transaction at scale T). A transaction is the promise of an invariant sequence
of messages M1,M2, . . . ,MT , of length/number T , accepted by a process agent A, whose
memory of the messages is also invariant over the sequence, and contains all the data needed to
keep the conditional promise

A
+X|M1,M2,...,MT−−−−−−−−−−−−−→ (11.45)

In other words, the agent A doesn’t let go of the information from its cache until it is
acknowledged by the receiver. With this definition, we do not presuppose any model or
scale for the meaning of a transaction. As long as the transacting agent is invariant over
the completion of its promised task, and the data require no dependencies.

The virtue of this definition is to make such transactions repeatable, as all the
conditions of the transaction are self-contained, and thus invariant. Put another way,
transactions turn messages into scalable autonomous (super)agents, without exterior
dependencies beyond their promised scale T .

The resources are effectively blocked or locked with mutual exclusion. Failures on a
large enough scale can still wipe out all the information of the transaction, but this adds
some assurance of invariance if the data survive the transaction.

Lemma 46 (Transactions are repeatable). Any valid transaction at scale T leads to a
repeatable process, given the same message and conditional promise.

11.6. RECOVERY BY RENEWAL PROCESSES 563

Notice that the process is only memoryless if T = 1, i.e. we choose a particular scale,
but the all important invariance is scale independent. Also note that it’s important
to distinguish between events and transactions, which many authors fail to do. The
invariant properties of transactions are not shared by arbitrary messages, so favouring a
transactional system is not the same as favouring a message or event driven system.

The model of integral transactions was introduced to try to establish control and
certainty over change, by means of artificially induced isolation. It is widely used for
financial exchanges, and database writes. Transactional thinking is very common in
information technology. A transaction is a promise of locally deterministic change that
relies on two main conditions:

• Exclusive process isolation for an interval of time.

• Atomicity of changes, i.e. all change happens within the interval of isolation.

The scaling of transactional systems often additionally relies on a specific ordering of
changes, i.e. serialization of changes, as is usual in databases. This effectively breaks
transactional semantics.

Lemma 47 (Composition of transactions). The composition of transactions is not a
transaction unless they are supplemented with the conditions for a transaction on the
scale of the sequence.

This is a straightforward consequence of exterior composition, since transactions assume
constant exterior conditions. Once the conditions for being on the inside of a transaction
are ceded, that promise of invariance is given up.

None of these conditions are generally valid in a distributed system163, making errors
due to incorrect assumptions rife.

Example 272 (Transactional security). There are certain ‘consistency protocols’ (e.g.
Paxos, Raft, Zookeeper, Chubby, etc) that claim to handle transactional changes consis-
tently in distributed systems, but these apply typically only to very simple data values not
to distributed state or interactions. Moreover, they have a finite response time to imple-
ment, and they are not fault tolerant. The assumption of process isolation is precarious
and fragile.

We tend to think that banking systems require this kind of consistency, although banks
and credit card companies regularly handle fault tolerance in transactions with buffer
pools, as this is an innate part of dealing with unpredictable requests. The transactional
nature only helps to generate a narrative about who did what first, often as a basis for
charging fees and fines.

564 CHAPTER 11. RECOVERY, REPAIR, REPLACEMENT, RESILIENCE

Example 273 (Maintenance windows). Planned downtime, maintenance windows, or
repairs on the ground, enable transactional isolation by taking system parts out of service
for planned maintenance. This might result in taking down the whole system, or systems
might rely on reduced capacity or ‘hot wiring’ a bypass (e.g. in heart surgery) to work
around the issue.

11.6.6 ROLLOUT AND ROLLBACK

Planned change goes through a decision lifecycle. In a distributed system, the moment of
committing to the change is sometimes called the rolling out of the change. To distinguish
them from rigorously implemented local transactional systems, we define two concepts
that respect widespread beliefs about change at the level of systems:

Definition 222 (System rollout). A distributed intentional change ∆ implemented in a
quasi-transactional manner. This may or may not involve the suspension of a system
operations.

Definition 223 (System rollback). A distributed change ∆−1, relative to an intentional
change ∆, implemented in a quasi-transactional manner. This may or may not involve
the suspension of a system operations.

Transactional rollback is the inverse of an atomic ‘transaction commit’ operation, i.e. it
is supposedly an atomic ‘undo’ operation164.

The concepts defined above mimic the notion of transactional commit and rollback
in locally isolated monitors, such as computer supervisors and database engines, but the
usage does not satisfy the isolation requirements for proper transactional behaviour.

The popularity of transactional thinking has led to a similar popularity of rollback
thinking: when a mistake or unforeseen error is committed, one simply needs to roll back
to the previous state. A formal proof has been given to show that this is impossible in
general[BC11].

Law 6 (Rollback is unreliable). Rollback cannot be promised in an open system. Con-
gruences that may contain unknown symbols cannot be undone.

Desired end state approaches are the natural solution to this issue.

Example 274 (Version control reversals). Version control systems use the same basic
technique of approximate isolation of state with content branches, though it often goes
awry, due to the realities of imperfect isolation. This is because changes have dependent
consequences, arising from sampling the faulty states during the non-atomic changes.
We cannot control time is a distributed system.

11.6. RECOVERY BY RENEWAL PROCESSES 565

11.6.7 STAGING, TESTING, AND SAFETY NETS

The staging of changes, to produce phased rollout of pseudo-transactions, is essentially
another term for pipelining or workflow with a few transactional constraints added. Refer
to figure 11.2. Phased deployments of change are sometimes assumed to bring a greater
resilience to a working system, by minimizing the risk of losing system integrity. There
is no theoretical reason why this should be true.

A phased rollout is simply the imposition of a change as a number of transactional
stages. That means the conditions for transactional security are applied to each stage
instead of to the whole process. This could minimize the scope of the change, or it might
lead to partially consistent states. In other words, limiting the scope of ‘rollouts’ can
limit the risk of unintended side-effects, but it cannot necessarily predict all of them. By
making a deployment of change into a transaction, only the affected states are protected,
not states that depend on the changes.

Problems may occur only when a certain scale is reached. Phase rollout effectively
limits the amplification of possible faults by limiting |R| in equation 6.135, see the
discussion of gain in section 6.5.1. However, what one cannot see from the instantaneous
response/gain is the network effect of extended fault propagation.

Transactions are often treated as a panacea—as a way to transform change into
do-undo sequences. This is naive at best. Even if changes are made transactionally,
the unintended consequences may only be visible over an extended time, long after
the transaction has completed—requiring a broader plan for clean-up and recovery.
Transaction locking does not apply to all state in a distributed system, because there is
no monitor of all resources (kernel, hypervisor, etc) that has jurisdiction over everything.

The arguments for transactions are thus of limited value in systems with dependencies.
Such effects can only be estimated by understanding the timescales relating to dynamics
of the system; this is difficult to predict when systems reach a high degree of complexity,
such as near instability.. During that time interval, intermediate states can arise preventing
the possibility of a rollback, even if it is still possible to recreated an approximation to
transactional behaviour[BC11].

Example 275 (Push-imposition and rollback). A change is made to a firewall acciden-
tally and erroneously shutting it down. A computer gets infected. The change is rolled
back so the firewall is replaced, but the server is already infected, hence the fault persists.

There is an obligation to remove your shoes before entering houses in Japan, Norway,
etc. If you are unaware, you might unwittingly make a perceived error in following this
imposition. To correct the error, you remove your shoes, but now you have to clean up
the dirt you already walked into the house. Thus a rollback to the approved state does
not undo the problems associated with erroneous push.

566 CHAPTER 11. RECOVERY, REPAIR, REPLACEMENT, RESILIENCE

By limiting the scope, one increases the chances of finding instabilities, errors, and
provoking faults in the larger system while still maintaining a partially working system
but this is not guaranteed, as critical instabilities could still be provoked. See section
11.6.7.

Example 276 (Strategies for software deployment). Some common observations about
software systems are worth mentioning:

• Fault tolerance is always a preferred option for system integrity, absorbing cracks
before they propagate. Making rigid systems with brittle conditions that have
to be met only leads to states of non-compliance that bring down the ability to
promise the system.

• When depending on inputs, validation testing of input for tolerance or rejection is
a strategy for avoidance of fault states, though a rejection may be perceived as a
different kind of fault state. Testing is the asking of the question: are all promises
kept? Without clear promises, we cannot test a system except by unwarranted
expectations. An observer can impose their wishes onto a system, but (as we know)
this is futile. Systems don’t often adapt to the wishes of users on a short timescale.
In software, for instance, testing covers various issues related to promises:

– Semantic tests (acceptance of promises).

– Dynamics tests (execution and scale tests for promise-keeping).

– Stress tests: Monte Carlo search methods, using ‘chaotic’ conditions, in-
duced failures etc.

• When parallel services can be offered, A/B testing (of version A alongside version
B) is a useful way of assessing the response of the system to live perturbations
under real conditions.

• Faults that have already propagated to other agents cannot be undone without sig-
nificant cleanup, and perhaps never. The time-window in which a semi-complete
transaction allows partial state to propagate is a highly significant scale for live
systems.

11.6.8 INTENDED CHANGE BY PUSH AND PULL

As a brief addendum, we can comment on promise and imposition as ‘push’ and ‘pull’
protocols. Changes that are pushed from a single agent are in an unknown state by the

11.6. RECOVERY BY RENEWAL PROCESSES 567

instigator until each agent being imposed upon reports its state. There is no global atom-
icity, and no plausible rollback (imposing state through a noisy channel with crosstalk is
a low fidelity operation).

Changes that are pulled by a set of agents always maintain a known distributed state
by the instigators. There is limited local atomicity, and limited chance of repair in case
of local error. The distributed consequences of a correctly implemented local change
might still be incorrect at a larger scale. In this case, the effect is emergent and cannot be
rolled back.

11.6.9 CONVERGENT REPAIR AND ‘ROLLFORWARD’

A more reliable approach to a predictable outcome, in any circumstances is to reject the
notion of ‘undo’ operations altogether. Such operations are intrinsically fragile, but they
can be replaced by something more robust. Convergent repair was discussed in chapter of
volume 1, section 10.4. One way to understand it is as an integrated test-observe-repair
loop, sometimes called continuous delivery in software circles.

Consider an agent that gets its stability from another agent. This applies to many
software systems, and it applies to thermal and chemical equilibria. Let S be the source
(or reservoir) of ‘desired state’, and the receiver R be the agent that seeks to maintain its
continuity. The receiver accepts to subordinate its state to the directives promised by S:

R
−ψS−−−→ S, (11.46)

and R promises to report its state to S

R
+ψR−−−→ S (11.47)

S
−ψR−−−→ R. (11.48)

As long as the state is within acceptable limits Ψ, S makes no impositions to interfere
with R, but if the state deviates, then it imposes a strict target:

S
∅ | (ψR∈Ψ)−−−−−−−→ R (11.49)

S
+ψS | (ψR 6∈Ψ)−−−−−−−−−→ R. (11.50)

Notice that this is not a relative correction, but an absolute reset. The scale of the reset
is not important, though the assumption is that it can be made invisibly to agents that
depend on R in some way so as to not cause disruption.

Example 277 (Convergent operator resets). The approach used by CFEngine[Bur98,
Bur04c, Bur03] was to apply this method independently to every microscopic atomic
configuration property of a computer system, by regular sampling and repair of state, thus

568 CHAPTER 11. RECOVERY, REPAIR, REPLACEMENT, RESILIENCE

minimizing changes over their expected timescale. The assumption here was that these
minimal interventions would go unnoticed by other processes maintaining continuous
compliance. The uncertainty with this lies in knowing whether the system might actually
spend small amounts of time in non-compliance states over the time it takes to converge
to ΨS .

Example 278 (Congruent rebuild resets). The CFEngine approach was criticized by
Traugott[Tra02] who argued for a maximal reset on the scale of a computer. The
computer was inactive while being re-imaged and rebuilt, attempting to ensure that the
system was never in a non-compliant state after fault detection and retirement. This
disadvantage of this approach is that it mandates complete interruption of all processes
on the interior of the computer.

Example 279 (Container resets). The congruent approach was adopted for container
technologies, like Docker, on a more granular level of a single process and its dependen-
cies, by a redefinition of what ‘atoms’ could be changed for the era of cloud computing.

These three examples are all equivalent methods, but applied on different scales. The
smallest scale used by CFEngine was one of minimal intervention and fastest repair. The
maximal scale, used in the congruence of whole machines, was one of firewalling an
entire set of related processes. The container scale is a compromise between the two.

The congruent or imperative command-based approach, with blocked state execution,
is like the use of mutex locks in programming. Ideally one tries not to block execution
for a long time, else other processes will be affected. The advantage of applying the
method to microscopic or atomic changes is that each state can be defined in approximate
isolation along with a very simple method for repair. As soon as the combinatorics of
atomic transactions becomes significant, the complexity of computation grows. This
problem is known to be NP and PSPACE complete[SC07, BK07].

Many programmers and human managers still believe that state changes only occur
in systems when they make intentional changes. This neglects faults, environmental and
contextual changes, and so on. The result is that many software systems and businesses
are unprepared for the unexpected.

Comment 26 (Change is not only intended). During forensic analysis of problems, it is
often assumed that changes occur in a system by deliberate intentional action. This is
not always the case. Both intended and intended changes can be instigated by agents.
Moreover, changed that come from environmental impositions can also affect systems,
particularly when they have not been designed to maintain their state in the face of such
changes.

11.6. RECOVERY BY RENEWAL PROCESSES 569

11.6.10 REPEATABILITY AND FIXED POINTS

The method in the previous section builds on the properties of mathematical property of
‘fixed points’ of transition maps. The goal for functional systems, as tools, is to strive for
repeatability and predictability. Repeatability is not assured simply by repeating chains of
impositions or commands from a common starting state. This is because the composition
itself might be affected by unmodelled and unrecognized influences[BC11]—which is
what makes the strategy of ‘rollback’ inapplicable in general (see section 11.6.6).

It should now be clear that this is about the larger goal of arranging invariance over
process conditions, i.e. dependencies. The surrogates that often stand in place of this,
such a statelessness, and causal ordering, are themselves non-invariant characteristics
and should therefore be avoided.

A common mistake is to try to assure invariance by acting ‘only once’ (the FCFS
random walk approach to state, rather than the determined fixed point). For example, in
the delivery of a transaction. We might number transactions, like TCP sequence numbers,
and tick them off a checklist as they are completed. This leads to a growing process
memory (a stateful process). It can be replaced by a memoryless local process using
advanced causation.

Advanced causation (treating the end state as a fixed point) has many uses, e.g. for
desired state policy enforcement. Systems whose interior states are changing may not
have homogeneous transitions across different replays, but a choice of a fixed attractor is
equivalent to inline error correction.

Relying on thing that happen only once is a non-invariant procedure (changing
the sampling timeout can change yes into no). Messages may be repeated or lost, and
isolation from interference is not a promise that can be kept easily (process isolation is
often the first thing violated by intrusions and security exploits). If we seek a deeper
level of safety, it makes sense to rely not on the keeping of promises that are fed as data,
but on the characteristics that are more likely to be preserved, such as convergence to
fixed points165. The surest means to achieve repeatability is the maintain the promises on
a timescale shorter than that at which they are sampled. This is the Nyquist sampling
theorem in action.

Advanced propagation determines based on a desired state xD

xend = f(xany) (11.51)

xend = f(xend) (11.52)

We see that the final value is insensitive to the initial value, which is in strict opposition
to the functional idea of past forming immutable facts. The immutable fact lies in the
definition of the function itself, which refers to an ‘inevitable’ future state.

570 CHAPTER 11. RECOVERY, REPAIR, REPLACEMENT, RESILIENCE

The outcome is idempotent when it reaches its final state, not after a certain number
of transactions ‘once only’ has been reached[Bur4 a, Bur04c]. The approach is what the
immune system does, and was used famously in CFEngine[Bur95, Bur04c] and later
configuration tools166. It’s also the approach used in pull requests, and GPS locators.
The processes are designed to favour a predetermined outcome. The outcome will only
become an event in the agent’s future, and will only be observable as a future event by
other agents that depend on it.

On the interior of a process, a fixed point of a chain satisfies conditional promises:

A
+Xp|Xi−−−−−→ A′

A
+Xp|Xp−−−−−→ A′. (11.53)

The more familiar retarded process is a Markov chain, to some order, and has no
deterministic end state unless the agents keep their promises perfectly, which is essentially
impossible to promise.

11.6.11 THE PHASE AVERAGING TRICK FOR NOISE REDUCTION

Noise is unintended signalling, which is received (-) by an agent, and interpreted as a
message. Noise is difficult to deal with once it arrives. Without a guide to the correct
information, a receiver is at the mercy of the noise. The approaches for noise elimination
are identical to the strategies for any other repair: quick repair versus redundant failover.

• In band error correction was studied by Shannon. His error correction theorem
showed that, with suitable channel encoding, a part of a channel capacity could
be given over to the elimination of noise with arbitrary accuracy, at the expense of
a loss of transmission rate[SW49, CT91].

• If we can introduce redundant parallel channels that absorb errors with the opposite
sign, then they can be cancelled on recombination. This is difficult for semantic
errors, but easier for dynamical errors. This is the trick used in making balanced
line audio cables. This is a dynamical averaging technique, by ensemble resilience.

11.7 SECURITY

The topic of security is one that’s rarely integrated into discussions of system design, in
spite of its importance. It’s more commonly viewed as an added extra, which is unfortu-
nate as this goes along way towards mystifying the topic, leading it to be associated with
the somewhat arcane and mysterious worlds of cryptography and trickery. Nevertheless,
security can be defined straightforwardly using the notion of promises. Readers are

11.7. SECURITY 571

reminded to review the basic concepts rights, permissions, authority, and sharing (the
opposite of privacy) in chapter 2.

11.7.1 DEFINING SECURITY

It’s unusual for security to be defined alongside ordinary system concerns. Perhaps we
are blind to security issues because we are trained to think in terms of deontic concepts
of obligation: what must or must not happen, what is allowed or disallowed, instead
of thinking in terms of what we can and cannot promise167. The tradition of obligation
thinking has blunted our senses to obvious issues. Privacy is a simple example of this.
The absence of a promise to share something, for example, is not a promise of an absence
of sharing! This lack of attention to casual uncertainty lies behind simple mistakes on
all levels, and it tends to trip up designers, especially in Information Technology, where
people have been taught a naive and comforting idea about Boolean logic.

We begin by defining security in as uncontroversial a way as possible. The Oxford
English Dictionary asserts:

Definition 224 (Security). The term security is used in a number of ways:

• As an adjectival state, it refers to the state of being free from danger, threat, or
risk, i.e. avoiding dependencies that may become non-beneficial to an agent’s
own integrity for promise-keeping.

• As a noun, it refers to a guarantee of fulfillment, e.g. a certification or attestation
to an outcome—implying a promise of no risk, or an obligation to deliver.

Clearly security is an aspirational state rather than a realizable goal. Even if a complete
specification could be promised, meeting all stakeholders’ expectations, promises are
not guarantees, and rely on dependencies over which we have no control. Indeed if we
start from the axiom that an agent can only make a promise on behalf of itself, then any
promise of security could only be made by an agent about itself, i.e. concerning personal
security—yet the subject of the promise concerns external things (threats, dangers, etc).
Promising security amounts to a declaration against self-harm—often this is more of a
self-deception than a realizable promise.

As a noun, ‘a security’ (such as the usage in finance for bonds and collateral obliga-
tion papers) is only an obligation (which is thus likely to be unsuccessful), we take it as
an axiom that no agent can supply guarantees (promises are not guarantees), since the
law of autonomy tells us that two parties are always involved in delivering a cooperative
outcome.

572 CHAPTER 11. RECOVERY, REPAIR, REPLACEMENT, RESILIENCE

Let’s point out some flaws of reasoning that lead to incomplete promises being made.
Perhaps the most basic error is in believing oneself to be in control of a system: that
which is not designed doesn’t occur. There are always degrees of freedom in systems
that we cannot account for, unless we can arrange a significant degree of isolation from
outside influence. This becomes increasingly difficult as the ‘size’ of a system grows, as
measured by the system surface, i.e. the agents that can interact with the exterior.

Theorem 6 (Absence of a promise is not promise of absence). The absence of a promise
of b is not a promise of the absence of b.

The proof of this is trivial.

A 6 b−→ A′ = A
∅−→ A′ 6= A

¬b−→ A′ (11.54)

The absence of a promise is no promise at all. This simple observation (make so many
times through history) seems laughable, and yet it catches us out repeatedly.

Example 280 (CFEngine classes). The state classifiers in CFEngine that promise evi-
dential properties about a contextual environment have often been confused with boolean
variables, but as promises they cannot be booleans. This does not mean that one can’t
use them for Boolean reasoning, as long as one understands this simple point. A promise
of Monday acts as though it were a boolean truth statement. If this promise is not given
(because it’s Tuesday, say) then we can easily infer that it is not Monday, i.e. !Monday
is true. In this case it’s because the observation of the date is always promised, and
there is mutual exclusivity between the outcomes. However, if a test for a property is not
promised (or the result is not accepted) then using the absence of the class as evidence
of its absence is inconclusive. For example, testing whether a system is a member of the
group of DNS servers (a fact that could be changing in real time) relies on a Nyquist
sampling rate being sufficient in relation to the use of the fact to return to ‘correct’
answer. To the use of the class !DNSserver may not be treated as a boolean variable,
since its status is not synchronized with immutable observations.

11.7.2 THE DYNAMICS AND SEMANTICS OF SECURITY

Security relies on a mixture of dynamical and semantic intentions, i.e. promises. Trying
to ensure the continuity of a system, as intended, is the business of security. Avoiding
failures, faults, and errors is a key part of this continuity. One could easily get the
(unsubstantiated) impression that the usual approach to security is to try prevention of
fault states from occurring in the first place. But avoidance could be both expensive and
lead to misplaced effort. In many cases rapid recovery is a better option.

11.8. PLANNING CONTINUITY 573

Agility is a surprising answer to address security, which goes against general advice
from experts, yet being evasive is a good defense from the unpredictable. Changing the
objective of a system in realtime may lead to chaotic behaviour, but it could also save
you from the unexpected. Recall example 266.

Example 281 (Closed circuit TV camera). Security cameras sweep back and forth to
try to prevent intrusions by detecting them quickly. If a thief can run twice as fast as the
camera sweeps he can avoid being seen by the camera—running only when the camera
is pointing away. The timescales of a security process have to match those of the threat
model. Prevention may therefore fail if the prevention process is not agile enough. A
fast recovery, by a rapid response team can still be just as good as the prevention if it
can response before any harm is caused. This is another example of the use of Nyquist’s
theorem.

Realistically recovery is always a better strategy than prevention, because we need
recovery anyway. So, if we design systems to be intrinsically recoverable rather than
being intrinsically stable, we can fend off vulnerabilities both dynamically and semanti-
cally as long as we don’t allow too large an envelope of possible states to wander about
in.

Security is easy to define and to police when it comprises a set of fixed promises,
i.e. when it is rigid and inflexible. This makes it easy to manage by prevention, but
both vulnerable to brittle failure and unable to adapt to changing circumstances, i.e.
potentially flawed and unfit for purpose. Opening security systems to realtime adaptation,
such as in a mixed game strategy or even a non-linear response, opens to the potential of
unpredictable and even chaotic behaviours, and moving targets, but it could ultimately
maintain the promised integrity without interruption. This is the dilemma of choice
system designers face. Ultimately, the optimum choice requires a careful analysis of
timescales over which perturbations and responses can be expected to occur. As always
we return to the fundamental observation about system behaviour: predictability comes
from an attention to the proper separation of scales.

11.8 PLANNING CONTINUITY

Having a system persist in the face of perturbations is the goal of resilient continuity,
even when propped up by repairs, replacements, and upgrades made ‘in flight’. The
metaphor of changing aircraft engines while in flight is often used for mission critical
continuity. Replacements can easily become temporary self-induced faults.

Whether or not we can accept ‘downtime’ or periods in which the engines are not
running is entirely a question of timescales. This goes back to Nyquist’s theorem, which

574 CHAPTER 11. RECOVERY, REPAIR, REPLACEMENT, RESILIENCE

we can restate as a basic law of continuity:

Law 7 (Continuity law). If a promised dependency is used (sampled) faster than it can
be repaired, the a failure will propagate. If it can be repaired faster than it is sampled,
continuity will be maintained and faults will not propagate.

This follows essentially from Nyquist’s theorem, or the Maintenance Theorem[Bur03]
described in volume 1.

Faults, i.e. states that conflicts with what is promised, take several typical forms:

• States arising from logical errors.

• States arising from random errors.

• States arising from (unexpected) emergent interactions.

We can adopt different strategies for solving a problem:

• Mitigate the damage by relieving symptoms on a regular basis.

• Fix the cause of the problem at designated source, aka ‘root cause analysis’.

In many complex systems, it is profitable to employ both of these. While the belief in a
single ‘root cause’ is at odds with the network nature of most real systems, in practice
this is simply a convenient definition that relies on a prescribed model of the system. If
we learn anything from this volume is it surely that, without as model of a system, we
are flying entirely in the dark.

When a fault arises, either spontaneously or due to an error, we generally have to
resort to one of the four R’s of technology: recovery, repair, and ultimately replacement
for resilience. Forensic investigation (aka ‘debugging’) is often initiated as a meta-
process to find out which promises were not kept and why. An integrated process of
self-monitoring and regulation (see chapter 12) can be a way to avoid any unpredictable
change.

11.8.1 DESIGN WITHOUT FLAWS

Avoiding problems before they occur would be a simple-minded way to avoid trouble.
Prevention may be preferred, but—given that we are always operating with only in-
complete information—it sidesteps the important potential for learning from experience
in-band, as we go, and the attendant ‘anti-fragility’ that could result168.

Assuming that the arrangement of components in a system is determined by its
function, first and foremost, let’s ask what measures we can take to reduce unreliability
in the agents. A natural beginning is to ask the most basic of questions:

11.8. PLANNING CONTINUITY 575

1. Which agent makes the promise?

2. In what context does the promise apply?

3. Is the agent robust? Does it incorporate redundancy internally?

4. Is the agent’s promise adaptive or fixed/dumb with respect to context?

5. Who are the stakeholders?

11.8.2 SYSTEM ISOLATION

As mentioned in the introduction (see section 1.6), systems do not usually have simple or
well-defined boundaries. Some issues might be localizable within a certain scope, say a
geographical region, others may roam freely. Systems should be considered ‘open’ in all
practical circumstances. Many of the difficulties and errors that are made about systems
arise from the tacit treatment of systems as being closed, i.e. existing immutably and in
isolation from external forces. However, as soon as we make use of a device or procedure,
it interacts with and is altered by its environment169. Design flaws often revolve around
the assumption that systems are only affected by intentional changes made one at a time
inside a system’s artificial boundary. In practice, we know that the largest perturbations
inflicted on any system come from its environment—often from its users.

11.8.3 SCALING ROLES TO ELIMINATE SINGLE COMPONENT

FAILURE

The lesson learned from classical reliability theory is that redundancy—on the lowest
possible level—is the most effective way to avoid immediate failure, but this might
only delay a more extensive failure. Once a crack has opened, it will tend to propagate.
Redundancy and risk mitigation are gambles against the laws of chance. The same is
true of the capacity of a system to handle loads. Load sharing is another application for
redundancy. As load rises, what might seem initially redundant becomes a matter of
necessity.

We thus try to design for embedded repair and replacement, by designing around
roles rather than commodity components. Commodity components are cheap and have
the promise of easy availability, but they might not themselves be robust. So we need to
build systems with hierarchical redundancy built in. Every agent can be replaced by a
superagent, with a geometry that covers as many failure modes as can be predicted.

Redundancy is not only a dynamical continuity, but also about semantic continuity:
were procedures followed properly?

576 CHAPTER 11. RECOVERY, REPAIR, REPLACEMENT, RESILIENCE

Example 282 (Dynamical redundancy). Is there a backup that keeps the same promise?

Example 283 (Semantic redundancy). Were observations correctly interpreted? If there
a backup plan if one selected outcome is fails?

11.8.4 THE INS AND OUTS: BOUNDARY CONDITIONS

Any interacting system operates with a set of promised inputs and by promising a set of
outputs. If the output is conditional on the inputs, then the promises are in the manner of
a transformation matrix. Mimicking the notation of quantum theory S matrix, we can
write it as a scattering matrix. The information ‘in’ forms a boundary condition for the
transformation, and the information ‘out’ forms another. Dirac’s suggestive notation can
be used here to good effect: a transformation T is a kind of matrix multiplication:

〈out|T |in〉 =


Ain

+I−−→ T

T
−I−−→ Ain

T
+O(I)|I−−−−−→ Aout

Aout
−O−−→ T.

(11.55)

The output is sensitive to the inputs, but also to the bindings in the transformation. If
the inputs are misinterpreted or distorted in an unintended way by the intermediate
agents of whatever process is represented by T , then the output will be affected. It’s
worth remembering the intermediate agent law: promises cannot be propagated through
intermediate agents without uncertainty.

11.8.5 SHRINKING THE POTENTIAL FAULT SURFACE (CONTEXT)

The minimization of the ‘attack surface’ for a system is often used as a metaphor for
systems, deriving from military terminology. This language is less appropriate for
systems that are not based on entirely physical interactions. The inputs or boundary
set for acceptance of influence, in the foregoing section, is an obvious place for errors to
be propagated, and for new ones to occur. If there are N input agents to a transmuting
superagent, then the uncertainty or potential for error is N times as large as for a single
agent. This tells us that we should be wary of all dependencies. However, what happens
next in the agent is more important to the causal trajectory of the system (see figure
11.11).

A convergent agent, or closure, which maps all inputs to a single fixed point attractor
is an example of an extremely fault tolerant transmuter agent. No matter what the inputs,
the output will be the same (e.g. CFEngine).

11.8. PLANNING CONTINUITY 577

acceptance

causal

trajectory

output

surfacesurface

amplification?

dimensional reduction?

transmuter

(+) (−)(−)(+)

input

Figure 11.11: A transmuter pattern accepts input and generates modified output. The output
degrees of freedom in the output might be greater or less than those at the input, depending on
whether its acts as amplifier or discriminator. The potential for vulnerability depends on this
amplification, not on the ‘attack surface’ per se.

Dependencies are inputs. System boundaries might not be easy to describe, but one
can always try to reduce their potential contact with environmental ins and outs by limit-
ing interactions. This lesson applies between every stage in a multi-stage transformation
workflow, such as figure 11.2.

Example 284 (Pattern recognition and AI). In so-called Artificial Intelligence machine
learning systems, discriminators are built to perform a dimensional reduction. One way
to view these discriminators is as transmuters that perform a dimensional reduction from
an input source with a large amount of diverse and high entropy data into a number of
symbols at the output, e.g. in recognition of cats, dogs, etc from picture data. Attempting
to attack the input to expose a vulnerability is harder the smaller the number of symbols
at the output, as the possibilities for false matching are reduced.

Example 285 (Spectral analyzer). The example of pattern recognition above is a special
case of spectral analysis methods. In astronomy, light from distant stars or from chemical
vapours is passed through a prism for separating the wavelengths that are absorbed by
key materials. In this way, one can infer the composition of the source from the discrete
spectral lines at the end of the transmuter. The uniqueness of the absorption spectra
makes misdiagnoses unlikely.

578 CHAPTER 11. RECOVERY, REPAIR, REPLACEMENT, RESILIENCE

Example 286 (Sudo not su -). A command line operation is a concrete example of what
we abstractly refer to as transformations. The Unix command sudo, which grants one
time root access, is often recommended for use instead of a privileged root login. This
is because it grants privilege only for the duration of the named command, preventing
accidental invocation of other commands out of context.

11.9 SUMMARY

What we have seen so far is that promises are kept and cooperation is won through
networks of agents whose only link is the keeping of promises. The tolerance of a system
to the unexpected is an important principle to contain the envelope of possible states that
it might encounter. The concept of safety is somewhat beyond the scope of this volume,
but it’s clear that we are not far away from defining that too with these elementary formal
considerations.

Some topics here, like transactional isolation, might be equally placed under the
heading of processes and their predictability. I chose to include them here under the
topics of resilience and recovery to emphasize that we should not be complacent when
adopting such techniques. There are no panaceas when it comes to equipping process
with armour. There is always a complex interplay between semantic intent and dynamical
response.

CHAPTER 12

SYSTEM KNOWLEDGE

“Skilled workers tend to think that it is enough to be smart. In fact this
is wrong: smart people tend to be problem solvers and will happily solve
the same problem many times, wasting time and effort. Moreover, human
intervention is often based on panic and lack of understanding so every
time someone logs onto a system by hand, they jeopardize everyone’s
understanding of the system. Only the self-discipline of stable procedures
leads to predictability. ”

–The Author, CFEngine 3 tutorial (2010)

In the final chapter of these notes, I want to take a step back from the details of
specific promises and look at the greater purpose of observing and describing systems.
Without cognitive faculties, on some level, studying systems would be impossible–for
any agent. Promise Theory is interesting because it removes the distinction between
assessments made by humans and assessments made by any agent in a system, with any
set of capabilities. Human assessments might be more sophisticated (of greater semantic
complexity) than those, say, of a thermostat, but they are no more valid.

What higher intelligence adds to assessment is the ability to build causal narrative.
Without the ability to formulate stories, based on cause and effect, there would be no
organizing principle by which to discuss behaviour. The echoes of space and time lie
deep within every description of phenomena, and there are meta-strategies for how we
formulate narratives about them. That’s a topic worthy of a book in its own right, but it’s
worth sketching out some of the issues in the light of the previous chapters.

579

580 CHAPTER 12. SYSTEM KNOWLEDGE

12.1 SCALES OF KNOWLEDGE

Like any other information-based phenomenon, knowledge can be observed at multiple
scales. We can know different things about a system at different levels of abstraction
(difference semantic or dynamical scales). All knowledge of phenomena is based on a
learning relationship with agents associated with those phenomena[Bur09]. Discussing
knowledge fits cleanly into the notion of promises, with agents playing the role of the
entities about which knowledge can be learned, promises playing the role of observable
evidence, and assessments playing the role of measurement in its broadest sense.

The principle of separation of scales must therefore apply to knowledge too. This
means that it’s possible to discuss a subject at several levels, about promises that may be
quite independent—from technical details to assessments of public significance, politics,
law, and so on. This is a topic we don’t have time to address here. Instead, I want to
focus on the technical application of Promise Theory to address such narratives, as they
may appear on any level or scale.

Example 287 (Aviation accidents). Aviation accidents invoke discussions at all levels—
from the technical specifications of flight systems, to processes carried out for mainte-
nance, in-flight operations, and eventually the public discussions (carried out largely in
the dark, and based on speculation). Public discourse as well as technical specification
can be couched in the language of promises as a lens through which to separate issues
clearly [CL99, BB19b, BB20].

12.2 FROM OBSERVATION TO KNOWING

The desire to expose the chains of cause and effect that underpin observable phenomena
is irresistible, yet we know that the ability to observe and interpret systems is both
limited and compromised by availability, relativity, signalling speeds, as well as by
the noise of environment. The state of the art in observational methodology still relies
principally on brute force data collection and graphical presentation, perhaps with
some regression analysis. There is surprisingly little discussion about the semantics
of the process[HL93, Hog95, Hel96, PS06, SBS99, DF98]. Uncertainties from sensory
instrumentation are often left for human operators to untangle on their own. In this
chapter, I want to seek a few principles that can be applied across hybrid systems170.

The ‘measurement problem’, as it is known in physics, bedevils every corner of
science in different ways. We need to ask: is there a consistent viewpoint on what’s
happening in a system, which can be arrived at without doing such violence to the system?
The ability to know something about an adversary or a friend doesn’t come by magical
revelation. It doesn’t happen suddenly. It grows as a process of iteration, by building a

12.2. FROM OBSERVATION TO KNOWING 581

relationship, and assessing what promises are made and kept. This is supported by two
key pieces of work: Dunbar’s social brain hypothesis [Dun96, ZSHD04] Axelrod’s work
on non-cooperative game theory [Axe97, Axe84]. These two foundations suggest the
importance of understanding knowledge in terms of ongoing processes with certainty and
trust that evolve with experience171. The topic of knowledge, then, is related to the power
of observation, as well as the ability to form assessments of the behaviour of agents over
different scales. This topic could easily consume several books on its own, so we suffice
to lay out the basic promises and dependencies that connect with the language laid out in
the foregoing chapters.

12.2.1 COMPOSITION

Systems, composed of agents, may be visible, invisible, transparent or opaque. What
can we do with this? Being able to observe what happens is not sufficient criterion
for being able to understand or predict its behaviours. If a system has no repeated
behavioural patterns, watching it is futile—we learn nothing unless there is a pattern
that can be symbolized and reduced to semantic value. The challenge of observation,
then, is to go beyond data to structure patterns into alphabets and languages of change.
By language, we don’t necessarily imply something that is written down in words,
but certainly something that can be written into symbols with an invariant meaning.
Language adds some specific qualities to mere data: there is a separation of data into
roles, prerequisite context, and scaled composition of concepts. Language embodies
hierarchy and composability.

12.2.2 PERFORMANCE ANALYSIS

The observation of a system to determine its effectiveness and its efficiency is what
we call performance monitoring. It relies not only on the ability to collect random
data (which is unfortunately the standard in many systems), but to understand which
measurements have a meaningful corelation with promise keeping.

Definition 225 (Performance measure). A measure, composed of qualitative and quan-
titative components, characterizing the rate, cost, and capacity of a system to keep its
promises.

The performance of a system might also be described as a measure of its spacetime
envelope, its set of possible trajectories and their characteristics, etc. Performance
requires a model to define a measurement precisely. It might therefore include simple
measures like ‘time to keep promises’ (or Mean Time to Promises, MTTP).

Defining the effectiveness of a system is straightforward.

582 CHAPTER 12. SYSTEM KNOWLEDGE

Definition 226 (Effectiveness). The effectiveness of a system is the measure of what
fraction of its resources keep their promises over a set of measurements.

Effectiveness =
Promises kept

Promises made
(12.1)

Defining the efficiency is a different matter. When is a system not completely efficient?
This implies a policy about the use of resources, which might not be knowable.

Definition 227 (Efficiency). A measure of what fraction of the resources were actually
needed to keep their promises over a set of measurements.

Efficiency =
Minimum required resources

Actual resources used
(12.2)

This fraction is vaguely defined, and once again requires a model to make sense of it.
For that reason, efficiency is generally ignored as an issue in systems. Time and motion
studies of human systems were often used to try to improve and economize on resource
usage, but this requires only relative quantification. A measure of efficiency suggests
that we can offer an absolute quantifier of the envelope of resource usage. That, in turn,
suggests that there would be an attractor for perfect efficiency, at which a minimum level
of resources was reached. That’s a speculative claim as it depends on the method and
machinery used to achieve the outcome, which might not be unique. There is an link to
the question of faults and design flaws here. An inefficient system might be considered
one that has a fault, as it fails to keep its promises within a budget. Alternatively, a
bloated system might be considered a design flaw.

Example 288 (Software bloat). Modern software is often characterized as ‘bloated’,
implying an inefficiency. That comprises too many layers of software, unused libraries,
redundant functionality, etc. A small part of some software may be fit for purpose,
without the remainder needed at all. In modern parlance, the strategy of microservices or

‘function as a service’ has been used as a way to improve this duplicated redundancy, by
centralizing software as a service to be rendered for a statistical population of users. In
a similar way, the resource cost of running software on emulators and virtual machines,
with many layers of virtualization and management has led to concerns about energy
waste. Unikernels, which strip software down to a minimal level, have been one proposal
for reducing that waste.

Example 289 (CFEngine control envelope). The CFEngine software constrained the
performance of processes using two parameters to limit resource usage and protect
against Denial of Service attacks. These were called ExpireAfter (a maximum time a
process should be allowed to run on order to keep an atomic promise), and IfElapsed (a

12.2. FROM OBSERVATION TO KNOWING 583

minimum time that should have elapsed, according to a local clock, before the state of a
promise should be sampled and perhaps repaired again).

12.2.3 SMART OR EFFECTIVE COGNITIVE SYSTEMS AND DUMB

SYSTEMS

Cognitive systems are another name for sensory learning systems. Some readers might
disagree with this characterization, but this is a useful starting point, with a minimum
of assumptions. It can be scaled and extended to enhance and embellish the position. I
choose it for its universality. For an extensive justification and motivation see [Bur19c],
or simply take this as an axiom. Dumb systems have been the norm for mechanical
automation until recently: preprogrammed systems, without sensors, enacting a simple
non-adaptive program. However, increasingly human-machine hybrids are equipped to
observe and receive information, from which they learn and adapt. This is the definition
of a cognitive system—perhaps not a genius mega-brain, but a ‘contextually smart’
system nonetheless.

SMART

VALUE SPEED

capabilities

functions

economics

savings

costs

context

adaptation

search

scaling

parallel

cooperation

prediction

preparedness
on−demand

3d printing

LOCAL

MIXING AVAILABILITY

NON−LOCAL

Figure 12.1: What makes a system smart or effective? A mixture of timeliness and fitness for
purpose. Effectiveness and efficiency may be characterized in both quantitative and qualitative
terms. Without the latter, measures have little meaning.

Smart is a vague and subjective assessment, but the term has become widely adopted
as a marketing vector. We might also use the term effective. We give it to things and
people we feel bring us value or save us some cost, in a timely manner. We perceive a
thing or a process as helpful only relative to a context (i.e. fit for present purpose). The
use of context implies that sensing of context is involved, and some feedback, influence
or decision that is based on the result. Smart might simply mean a thing or process that
arrives ‘just in time’ to be useful in that same context (too late is not smart). Smart

584 CHAPTER 12. SYSTEM KNOWLEDGE

also sometimes means efficient, to the point, i.e. concise, ‘not too much noise’. It’s not
essential to define ‘smart’, but it’s a useful intuition in dealing with human-machine
interactions.

From a promise theory view of the world, the way we always start an analysis is to
ask:

1. What or who are the operational agents involved?

2. What promises do they make to one another, in what context?

3. What are the important scales for their interactions?

Scale always plays a key role in the understanding of systems.

Example 290 (Smart cities). Smart spaces can be imagined at any scale, from micro-
scopic materials and disease technology to urban spaces and even economies. For static
choices, we have already built these structures to the best of our abilities. The new
challenge is to extend ‘smart design’ to time-varying adaptive cases. There are two
approaches one could take for ‘smart spaces’

• To enhance the experience of people living in or around smart spaces. (Interac-
tive)

• To create autonomous, specialized functional spaces (like factories, farms, or
organisms) that are more self-sufficient. (Passive)

In either case, the meta-goal is to bring a positive benefit to society at large. However,
we have a choice about what this means:

• Community of smart individual units (putting individuals first).

• Smart scaled singular unit (putting the city first).

There are many complex issues at play. The most important consideration is the scale at
which systems interact with one another. Both viewpoints have a place, but can they be
aligned simultaneously?172

Smart cities are an important case, because they span most scales, and allow us to
see many of the cases under a single banner, so I will focus on cities as an umbrella term.
We’ll need to address services and promises at each scale independently.

In a cognitive system, an observer (who is often a user of the system) has a cognitive
trust relationship with the system as a provider. If the provider forces the user to jump
through many hoops and adapt to its case, trust will be low. This is a dilemma for security,
because it implies that strict controls and rigid protocols will end up not being respected.

Too many barriers also degrade trust[Tai88] and may lead to system fragmentation.
Openness (trust) on both sides of an interaction is the lowest cost configuration.

12.2. FROM OBSERVATION TO KNOWING 585

12.2.4 LEARNING SYSTEMS

The concept of learning has become loaded with expectations since machine learning
technology became commonplace. It’s too broad a term to define without a specific
subject about which we learn173.

Between data and semantics there is learning.

Definition 228 (Learning about π). Let S be an agent which promises a sequence source
of data to a receiver R:

π : S
+di−−→ R, = 0, 1, 2, 3, . . . (12.3)

We say that R learns about a sequence di or its promise π, if R promises to repeatedly
sample the sequence +d and adjust its belief estimates E(d) according to some learning
(memory) function L:

R
−d−−→ S (12.4)

R
+E(d)|L(),d−−−−−−−−→ ? (12.5)

where

E(di+1) = L (E(di), di+1) . (12.6)

The function L() typically represents some kind of Bayesian learning. Learning is a
relationship accumulated over time, so it fits naturally with service relationship.

Definition 229 (Longitudinal (cognitive or timelike) learning about π). Collection of
samples at sequential times,

This is naturally associated with Bayesian probabilistic analysis, since the Baysian
formula represents a timelike oriented process.

Definition 230 (Cross-sectional (spacelike) learning about π). Collection of semantically
simultaneous samples (i.e. under approximately ‘identical’ conditions).

This is naturally associated with frequentistic probabilistic analysis, which is a constant-
time ensemble aggregation.

Comment 27 (Learning and time). The timescales for learning:

Tuser ' Tclient ' T (rX) > Tlearn about user � Tserver ' T (X) > Tlearn about server (12.7)

586 CHAPTER 12. SYSTEM KNOWLEDGE

12.3 CONTEXT FOR ADAPTABILITY

This section is based on the discussion in [Bur16c]. Context is an assessment of the state
of ‘here and now’, summarized from whatever sensory inputs are available. Context may
refer to short-term and long-term memory of phenomena that have occurred before.

Definition 231 (Context). A summarization function f() of recent sensory inputs di,
collected from sensors Sj promised in a form that may be used to predicate (discriminate)
behaviours or decisions. Context can be promised by an agent A that promises to
aggregate data from sources Sj:

Sj
+d

(j)
i−−−→ C (12.8)

C
−d(j)i−−−−→ Sj (12.9)

C
+f(d

(1)
1 ,d

(1)
2 ,...,d

(j)
i ,...)|d(j)i−−−−−−−−−−−−−−−−−−→ Sj (12.10)

The function f() may be a simple Markov process, or an n-th order Markov memory
process. The domain/range of f() can be adapted to each case.

In order to be useful, context has to be something we can use to select decision pathways,
so it can act as a kind of discriminator, turning complex inputs into simple selection
outputs. It has a tokenizing, or digitizing role.

It is useful to define the two components of context in a learning system:

Definition 232 (Exterior Context). Context in which the source of data arises from
outside the learning system, i.e. from sensory inputs that receive unknown impulses from
the exterior environment.

Definition 233 (Interior Context). Context in which the source of data arises from inside
the learning system, i.e. from the sensing of active concepts and memories, previously
integrated into a world-view.

Interior context may become active as a result of exterior context, or it may be randomly
activated (as in dreaming). So the schematic flow of reasoning is:

1. S offers (+ promises) data.

2. R accepts (- promises) or rejects the data, either in full or in part.

3. R observes and forms an assessment αR(.) of what it receives.

12.3. CONTEXT FOR ADAPTABILITY 587

This third and final stage is the moment at which data can be said to arrive at the receiver.
The details of a physical network are not directly relevant, but the topology of actual

interactions between agents is. It depends on the promises made between pairs of agents,
which therefore serve as documentation of intent. An offer promise with body +bi made
by Si to Rj is written:

Si
+bi−−→ Rj , (12.11)

where the + refers to an offer of some information or behaviour (e.g. a service). This is a
part of Si’s autonomous behaviour, and the promise constrains only Si. Rj may or may
not accept this by making a dual promise, marked −b to denote the orientation of intent:

Rj
−bj−−→ Si. (12.12)

If both of these promises are given, and kept, then influence in the form of vital infor-
mation about the body b will pass from Si to Rj . In general, the offer and acceptance
may not match precisely, in which case the propagated information will be the overlap
(mutual information)

b∩ = bi ∩ bj , (12.13)

in the manner of mutual information[SW49, CT91]. I’ll suppose that modern systems
are cloud computing systems. The elementary agents of cloud computing are processes,
any of which may express promises about state and services. Processes are hosted at
agent locations Ai, Si, Ri etc.

I use the following nomenclature for message agents M :

• Eγ is an event, for example Lγ ⊂ Eγ may be a line of information reported in a
log or journal. Greek indices γ label information agents successive packets, i.e.
γ = 1, 2, 3,

• {Eγ} or{Lγ} refers to a collection of such events or lines.

• Si, Ri ∈ Ai refer to processes running on computers.

• {Si} refers to a collection of sources, etc.

• Ai refers to a process checkpoint in some kind of dataflow, which has its own
interior event log and counters. Checkpoints typically make promises about their
identity, location, local counter values, and intent to pass on data in the form of
packets Pi, with some promised order.

• Pi refers to a data packet passed between checkpoints agents. Packets typically
make promises about their identity, data content, schema, and type.

Latin indices therefore label locations, and Greek indices label events at the same location.

588 CHAPTER 12. SYSTEM KNOWLEDGE

12.4 DEFINING THE KNOWLEDGE PROBLEM

Let’s use the language of Promise Theory one last time to formulate the basics of
acquiring knowledge as part of a process of observation.

12.4.1 WHAT IS INTENDED AND WHAT IS PROMISED?

There are two ways in which we use data to interrogate a number of processes:

• Tracing: (‘During’) —in band observation, in which data are sampled intention-
ally and recorded as a process unfolds to maintain ‘situation awareness’. e.g. the
ECG or life monitor approach to medical monitoring.

• Diagnosis: (‘After’) —out of band forensic reconstruction of a system using data
one can find after an incident, where intent to comprehend kicks in only after the
event has occurred: e.g. the post mortem approach to medical investigation.

Most users will try to combine these approaches, paying attention mainly when significant
events occur. The automation of alarms (usually based on simple-minded absolute
thresholds) tells human operators when to pay attention, at which point they have to rely
on what has been traced. The promise to maintain awareness is an expensive one, and
we rely heavily on our skills of reconstruction after the fact.

12.4.2 THREE PERSPECTIVES ABOUT SCALE AND RELATIVITY

Distributed processes are composed of agents that pass information in space and time
(see figure 12.2). Messages or events propagate from one agent to another, and we
consider the arrival of such information to be an advance in the ‘state’ of the distributed
system, which is what we mean by the proper time of the process. Events that occur in
parallel, as separate logical locations, know nothing about one another—they are causally
disconnected and lead independent lives. The time on the wall clock or system clock is
not a ‘proper’ time, as we’ll see below174.

spacelike

timelike

Figure 12.2: Space and time as agent parallelism and serialism respectively.

12.4. DEFINING THE KNOWLEDGE PROBLEM 589

There are three kinds of story or explanation we want to be able to tell about
distributed systems (figure 12.3):

1. The data traveller log. What a travelling data packet experiences along its journey,
e.g. which software including version handled it and in what order?

2. The checkpoint visitor log, from key signposts around the data processing land-
scape. The log of what each checkpoint along the journey saw, i.e. which data
packets passed through the checkpoint and what happened to them?

3. The map of combinatoric intent, i.e. the relationships between invariant elements
and concepts, including the topology of checkpoints and influences, the types of
data passed between them, significant occurrences, and so forth; i.e. the semantics
of the data, software, and invariant qualities and quantities that summarize the
processes within the system’s horizon.

These viewpoints require separate data collections. Present day logging systems focus
almost entirely on the second of these.

In Promise Theory, one reduces a system to a collection of agents, their promises,
and their assessments. Agents include the checkpoints from which data emerge and are
collected. A second layer of agents comprises the data packets that are transmitted. The
promises made by these agents include communication, data compression, speed, and
integrity. They may include data formats and ordered protocols. We equip different agents
in the system with promises to report the information available to them to observers. I
shall not be concerned with matters of authorization and permission in this paper, but
rather focus on the difficulties experienced by those who are promised information.

12.4.3 DIAGNOSIS

It’s up to an observer to infer something about the state and history of a system, based
on what is observed. This is not as straightforward as software systems have come to
assume, especially as cloud computing pushes the limits of observability. At some point,
this reconstruction involves a form of reasoning—not necessarily rigid logical reasoning,
but at least a process of joining dots into an acceptable story.

12.4.4 DIAGNOSTIC MESSAGES

Process tracing is a simpler problem than reasoning, because it can be constructed as
a purely Markov process—at least in principle. Tracing is the construction of a totally
ordered path through a set of agents. Reasoning, on the other hand, involves semantic
relationships between clusters of agents that may be considered to have an invariant

590 CHAPTER 12. SYSTEM KNOWLEDGE

THE MAP

checkpoints

travelling

data

Figure 12.3: 3 Views. Travelling passport documents, versus logs of entry and exit from a
checkpoint, versus the map of checkpoints and routes.

meaning, and it may combine several traces into a satisfactory explanation. According to
the definitions in [Bur16c, Bur17c], I’ll simply define the following:

Definition 234 (Reasoning). Reasoning is a search over a graph of ordered conceptual
relationships.

This pragmatic and unconventional definition might offend some logicians, but it’s closer
to what humans call reasoning than a definition based on mathematical logic. A few
common issues crop up in diagnostics:

• The predictability of agents’ behaviours.

• The distinguishability of agents and data messages.

• Loss of information due to mixing of origin sources.

• Reordering of information due to latency.

The problem with the first two kinds of story in the list, is the lack of a deterministic
and universally defined order between the transactions of ‘event driven’ processes at
separate source locations. The extent to which we can write down spatially invariant
orders, process summaries, etc, which may be expected to persist over a timescale useful
for prediction, is the essence of the difficulty in tracing causal history175.

12.5 OBSERVABILITY OF MESSAGES

From the foregoing, we can define the concept of observability between pairs of agents.
It does not make invariant sense to speak of ‘observability’ without some qualifications,
so we can be more precise:

12.5. OBSERVABILITY OF MESSAGES 591

Theorem 7 (Observability of X at S by R). A range of promised set values X , sourced
from an agent S is observable by an agent R if and only if:

π+ : Si
+Xi−−−→ Rj , (12.14)

π− : Rj
−Xj−−−→ Si. (12.15)

Xj ⊆ Xi (12.16)

Note that the criterion for observability is not a deterministic guarantee the ability
to obtain a value on demand. It is essentially a property of an information channel,
in the Shannon sense. There is only a finite probability of all these promises being
kept, which makes observation a fundamentally non-deterministic process. There are
many impediments to keeping promises in practice, not least of which the the Law of
Intermediaries176.

By assumption, agent’s are autonomous and each plays a role in the collaboration
required to exchange the information involved in monitoring. The definition of ob-
servability illuminates a basic dilemma in monitoring: the autonomy of agents in any
distributed process (i.e. their causal independence) means that there is fundamental
uncertainty about the process of observation not just its outcome. Causal independence is
the very definition of a random variable. A source of signals may believe it does all it can
to ensure correct transfer of information, and that any problems lie in the delinquencies
of the receiver; meanwhile, the receiver believes it does all it can and trusts the source
and the network in between implicitly to report with complete fidelity. The assessment
of X by Rj (denoted αj(π+)) is still a function of Rj’s access and capabilities at any
given sample, and may be subject to environmental interference.

12.5.1 PRELIMINARIES ABOUT INTENT

Most technologists believe that, if they design without ‘bugs’, they can achieve whatever
outcome they desire, given sufficient resources. This is not a scalable view, so we need to
be more cautious. In the standard model of queueing theory [Kle76], data are produced
by a source Si, at a rate λi messages per unit time, and may be processed by a receiver
Rj (sometimes called a server) at a rate µj . The queue is unstable and grows out of
control as the traffic density λi/µj → 1.

12.5.2 EVENTS AND SAMPLING

Events were defined in definition 51 chapter 3. The concept of events plays a major role
in the language used for monitoring and data flow in IT. The arrival process for events

592 CHAPTER 12. SYSTEM KNOWLEDGE

of a particular type may have any kind of profile, from a strongly deterministic regular
signal, such as a ticking clock, to an entirely random event.

There are two different kinds of distribution that characterize events:

• Interarrival times: the distribution shows the number of arrivals that fall occur
since that last arrival, i.e. ∆t versus N(∆t).

• Frequency by class or type: shows that number of arrivals that fall into a certain
characteristic sample class C, i.e. ∆C versus N(∆C), for some characteristic
promise of the data.

In classical component failure analysis (see chapter 10), fault events are assumed to have
interarrival times distributed as a Poisson process. This is an experimentally observed
‘fact’ for the distribution of faults in a wide range of systems. Messages that arrive from
users of the Internet have arrival frequency profiles that can be modelled as quasi-thermal
equilibria[Bur00b, Bur00a].

12.6 AGGREGATION OF SOURCE DATA

It’s time to look more carefully about what aggregation of data means. In the context
of causality[DS05], it matters both where and when signals come together, and to what
degree information is lost by mixing. Distinguishability plays, again, a central role here.
For example, the commonly used metrics of load average, CPU percentage, memory
usage etc. The behaviour of a process depends on the behaviour of the platform, which
in turn depends on the behaviours of the guest processes[Coc06]. These are measures of
different scales, since a platform is an aggregation of processes, and so on.

When unexpected behaviour (signpost behaviour) is observed in an aggregate vari-
able, the culprit may not even be in the same process. The relevant question may seem to
be: can we obtain information about which process may have been responsible? But that
is not the right question, because it could be the accumulation of many processes leading
to an exhaustion of resources which actually impacts the process we are monitoring—by
undermining its critical dependencies. When this is the case, we might be more interested
in why scheduling policies resulted in such a confluence of demand. Obviously, there are
many layers of decision behind such stress concentrations.

The causal connection between these cannot be inferred with any certainty from
quantitative measurement however. One would rather expect to see a process log fail
to allocate memory from within the privileged context of the process itself. Today, we
wrap processes in containers that are quite opaque. In fact, processes are equally opaque
when viewed through kernel metrics, because there is unfortunately little or no causal
connection between the changes and any particular process of interest.

12.6. AGGREGATION OF SOURCE DATA 593

12.6.1 SAMPLING RESOLUTION (TIMESCALES AGAIN)

We need to know when data belong together and when they should be considered separate.
For any collector, this is a policy decision, but it can be informed by the processes of the
system. There is information in the order, content, and volume of data. If that information
is squandered, it may be unrecoverable.

12.6.2 METRIC SIGNIFICANCE

Data collection is frequently abused thanks to the ease with which data can be collected.
Experiments show that there is often little correlation between commonly collected
quantitative metrics and actual process semantics[BHRS01]. This is a historical arti-
fact that comes from the fact that observables were designed for timesharing, not for
process monitoring. Measuring kernel metrics is something analogous to watching the
weather to plan for a crop. In some cases, a change in a distant place may may trigger
outcomes that result from arbitrary choices in code elsewhere. For example, if one sets
an arbitrary threshold for a value, in a conditional statement, the unusual process weather
originated elsewhere may push the conditional over the limit unexpectedly and lead to a
discontinuous branch of behaviour. This is why understanding relativity is so important
in reasoning, and why cloud computing is especially susceptible to relativistic effects.

Entropy of mixing does not usually increase relentlessly in IT systems, because new
information is being added in the form of semantic labels (boundary conditions) all the
time, e.g. when a particular set of images is identified as belonging to the same person,
we name the set as the person; or when a sequence of command instructions leads to the
same failure mode, we name the histories with the name of the failure mode. This new
information adds context.

As data scale, some information is lost, and new information is added. Aggregating
data and integrating over time, throwing away time information, but building maps of
invariant relationships. The map of what remains distinguishable grows as more data are
added, because the number of possible storylines grows as new invariants are added.

Lemma 48 (New data at all scales). Origin data are lost by coarse graining, but
combinatoric selections of aggregates leads to a new degree of freedom: distinguishable
routes or paths through the composite variables.

Each story has its own semantics: the loss of event indexing leads to the addition of
fewer semantically stable storylines. Distances that require distinct labelling become
meaningless, but new emergent distinctions lead to new possibilities for classification. If
sufficient information is retained to point backwards along to causal signposts, specific
paths can be traced without muddying the global picture.

594 CHAPTER 12. SYSTEM KNOWLEDGE

12.6.3 LEARNING AND COARSE GRAINING DEFINED

We can track the different scales of a system by seeking to separate invariants from
microscopic local changes, using the principle of separation of timescales. Learning over
sequences (in a timelike direction) effectively form Bayesian processes that can act as
aggregate state discriminators[Pea88, Pea00].

Example 291 (Learning). The collection of data to train a statistical algorithm may
take weeks or months, and involve large amounts of data that are compressed into a
composite form, irreversibly. The composite aggregate is used as part of an algorithm
that recognizes images on a timescale of seconds. These processes can be naturally
decoupled.

The degree of separation of timescales corresponds to what we call supervised
learning (highly separated timescales for learning and using) and unsupervised learning
(where timescales for learning and using are approximately the same).

Even a single unique episode may eventually become viewed as an invariant if it
is not repeated and hence is never challenged, but its significance may be limited. We
can only know this by learning over time. The significance of concepts grows by the
frequency by which they become repeated. Thus learning and garbage collection of
insignificant concepts is needed to prevent all the information from becoming noise.

For full episodic reconstruction, the invariant connections that generate process
stories need to integrate with one another, like a linked list, using the a map of invariant
concepts as glue. The invariants represent the aspects of processes that are not specific
to a single source. See the earlier work on characterizing spacetime semantics [Bur14,
Bur15a, Bur16c, Bur17c], based on earlier experiments [CB09].

All causality is a representation of Shannon’s basic model of an information channel.
The distinguishability of information is the key to following and tracing processes,
but where does the significance of information lie? The significance of information
(associated with labels to it) is necessarily diluted by scale, or the entropy of signal
aggregation.

12.6.4 THE MASHED POTATO THEOREM

Mixing of signals leads to loss of traceability. Suppose you are at a restaurant and
you receive some mashed vegetables. You first assume that it’s potato, because that
is common, but something doesn’t taste quite right. There are some other vegetables
mixed in. Closer inspection reveals some orangy colour (perhaps carrots, or sweet potato,
etc). How could you know what was in the potato without accurate knowledge from the
source?

12.6. AGGREGATION OF SOURCE DATA 595

The loss of distinguishability (entropy of mixing) tells us that we can’t easily discern
the content of mashed potato without the recipe because we cannot separate (classify)
the parts of the signal.

Theorem 8 (Loss of distinguishability). Let Σ be an alphabet of class categories that are
distinguishable by a set of source agents Si. Data aggregated from Si without complete
causal labelling σ ∈ Σ, from the source cannot be separated into its original categories
Cσ with certainty, i.e. the promise

πcateg : R
+Cσ|data∩−−−−−−−→ A? (12.17)

is kept with equal probability for all Cσ .

To see this, we note that the aggregation of data involves promises:

πdata : S
+dataS−−−−→ R (12.18)

πlisten : R
−dataR−−−−→ S (12.19)

data∩ = dataS ∩ dataR. (12.20)

and we take data to be a collection of line signals data ∼ {Lγ}. In order for the
conditional promise (12.17) to be causal, the promise of data in (12.18) have to be a
reversible function of the Cσ . But if data are indistinguishable, then the Cσ must also be
indistinguishable, thus

Cσ = Cτ , ∀σ, τ (12.21)

thus, the probability of discerning a signal Cσ , pσ ≡ P (Cσ) = pσ , and the entropy

Sent = −
∑
σ

pσ log pσ → max(Sent). (12.22)

If one rescales all the Cσ = Cτ into a single category to indicate that all such categories
are the same, then the entropy is zero, Sent = 0, indicating that the information per
transmission, in the mixture, is actually trivial. Thus, we must keep all labels from
different sources and classifiers in order to retain useful information. This does not
depend on the amount of data (or mashed potato). Moreover, if data are passed on, the
dependence of a reconstruction by (machine) learning is unstable to the datasets177. The
definition of entropy in computer processes has been examined recently to address its
semantics[ZKT19].

12.6.5 SEPARATION OF CONCERNS

The practical question remains: how should one separate variant and invariant data when
designing systems? This depends partly on the structure of intent and observations.

596 CHAPTER 12. SYSTEM KNOWLEDGE

Programmers are trained to recognize what values are variable and abstract them into
parameters to invariant functions.

If we think about how we formulate stories, as humans, we embed variable fragments
of causal history (episodes) into larger assemblies of more invariant concepts, which
provide context for reasoning. This is how experiences are organized around conceptual
models. I’ll come back to this in section 12.8 on model extraction.

Example 292 (Logging text compression). As a simple example, consider the generation
of a log message from a typical format string in code:

• A separate format string is an invariant class of messages. It can be replaced by
a single numerical value and looked up in a hash table to compress data.

• Standard data format can record format string and variables in an indexed
structure with named members.

• Message significance level or priority (policy) - imposed + or -?

• Variable Substitutions in the format string are variants with respect to the message.
Some of these may be invariants too (the name of a host or function), while other
data have no long term significance (the time or date).

If we compare these points to a Unix syslog message, the glog library, and many more
examples, it’s clear that syslog satisfies none of these promises. Lines of text are basically
random.

12.6.6 RETAINING SEMANTIC CONTEXT FOR EVENTS

Concepts are the result of dimensional reduction over contextual learning sets Ci from
a number of sources Si [Bur16c]. In invariant cases, the context can be learnt by
accumulation of evidence over time, because it doesn’t change. In general, significance
may be assessed based on a number of contextual sets Ci, so when an alert messageM is
reported to an agent R, this is in fact a conditional promise that depends on the context:

S
+M|C1,...,Cσ ∀i−−−−−−−−−−−→ R (12.23)

This means, by the conditional promise law, that the promises supplying this context to
S:

Ai
+Ci−−−→ S (12.24)

S
−Ci−−−→ Ai, (12.25)

S
−Ci−−−→ R, (12.26)

12.6. AGGREGATION OF SOURCE DATA 597

are not available to R. The context is lost. This means R has to trust the alert and
its significance as a random variable. This is no problem if the goal is to bring an
unrecognized condition to the attention of an operator. However, if the goal is to perform
contextualized reasoning on an aggregate scale, the graph of invariant context also needs
to be promised:

Ai
+Ci−−−→ R (12.27)

R
−Ci−−−→ Ai, (12.28)

and the conditional dependencies also need to be captured:

R
−(M|Ci, ∀i)−−−−−−−−→ S (12.29)

If we didn’t apply this idempotently only to sparsely occurring invariant concepts, the
cost of the aggregation would rise sharply. An expedient separation of scales allows the
context to be contained at the sources as ‘smart sensors’ [Bur16c, Bur17c].

Context can be framed and localized using namespaces. Namespaces also provide
unifying labels that can usually be treated as invariants in information systems. Aggre-
gation of messages, without cataloging, indexing, or other labelling leads to ensemble
entropy: the irreversible loss of structural information and contextual semantics.

Context

Usage

Figure 12.4: As data get propagated farther from their initial context, their original meaning
is degraded, unless all context is transported with them. Each of the rings may represent an
intermediate agent that may or may only promise to forward data selectively or after distortion.

Transporting too much context is a questionable idea. If the environment in which
context originates is lost, then the meaning of the context is also lost, and the ability to
reconstruct scenarios based on it becomes of largely forensic interest. System designers
need to find expedient ways to compress context and filter it: what can remain local at
the source, and what can be aggregated and assigned wider meaning? Thus is remains a

598 CHAPTER 12. SYSTEM KNOWLEDGE

policy decision to balance the cost of preservation against the actionable usefulness of
doing so.

12.7 HISTORIES: LOGS AND JOURNALS

Now aware of the issues around sequentialism and observability in distributed systems,
we can tackle the first two story types in section 12.4.2. Logging of process conditions
may well be the most popular and common approach to tracing in computer programs.
Isolated single-agent logs are simple serial queues, or time-series databases, of varying
degrees of sophistication, for keeping informative messages about what transpires in a
process. This is no longer true for log aggregation unless complete causal linkage is
preserved.

12.7.1 CAUSAL LINKAGE

In most shared logging services, messages are imposed by multiple process agents Si
onto a queue and are strongly ordered by a single receiver R.

Si
+L−−−−→ R. (12.30)

R accepts requests indiscriminately

R
−L−−→ Si. (12.31)

Individual processes can voluntarily write their own logs but this is not a common
practice because the end goal of logging, in modern practice, is to aggregate all messages
as ‘big data’ to be trawled.

Modern logging services, like Prometheus etc, provide more nuanced semantics
with structured data formats that can incorporate key-values; but these trust data to be
useful. They are abused greatly by programmers, who tend to dump any and all data into
a stream without regard for meaning or consequence, in the hope of sorting it all out later.
Logs need to promise invariant causation:

• Same text (signal) as the same interpretation.

• Information is encapsulated as transactions to show partial order.

• Every significant transaction needs to point to its previous significant event.

These principles have been embodied in a proof of concept implementation[Inc].

12.8. MODEL EXTRACTION 599

12.7.2 DROPPING HINTS

To record useful events, from within the meaningful context of a process, processes need
an API that constrains authors to produce information that can be consumed later. For
example, in the Koalja history package, based on the principles in this paper, significant
events can be marked with signposts[Inc].

H.SignPost(&ctx,"Milestone 1...")

H.SignPost(&ctx,"Milestone 2...")

...

H.SignPost(&ctx,"Commence testing")

And these signposts can be detailed, using the four spacetime semantic relations from
[Bur16c, Bur17c]:

H.SignPost(&ctx,"code signpost X").

Intent("open file X").

ReliesOn(H.NR("/etc/passed","file")).

FailedBecause("xxx").

PartOf(H.NR("main","coroutine"))

We shall explain this point further in a sequel[BL19].

12.8 MODEL EXTRACTION

If we pursue a concrete strategy of separating timescales and extracting invariants from
the chaff of noisy variation, we can expect to infer causal and conceptual relationships
over long aggregate times by learning. Learning is a process that happens across several
timescales, as noted in [Bur16c]. In modern Machine Learning parlance, we would say
that acquiring and stabilizing training data is a long term process, while recognition and
classification is a short term process. Monitoring tries to achieve both processes as an
unsupervised in band single-scale process, so it has to deal with the instabilities in band
too.

The spacetime model in [Bur16c, Bur17c] allows us to define a partial ordering of
semantics, represented as agents in a virtual knowledge space. The future and past cones
are generated by the first two spacetime semantic relations: for generalization or scope
and causal order. Ordered relationships are the most important ones because they tell the
stories we seek. Data may arrive in incidental order, for a variety of reason that involve

600 CHAPTER 12. SYSTEM KNOWLEDGE

causal mixing. We need to extract the intended order of system cooperation from the
incidental or unintended order of side channels that muddle behaviour.

12.8.1 INVARIANT SEQUENCES FORM EXPLANATIONS

The invariant stories that can be generated about a process require us to first be able to
promise identifiable and repeatable phenomena. In order to generate a map of invariants,
we need to not only identify them, but consider what they can promise about one another,
so that we may position them in relative terms. In [Bur16c, Bur17c, Bur17a, Bur17b], it
was shown that we can plausibly define four coarse kinds of semantic relationship based
on elementary spacetime considerations. These ought to apply between pairs of agents in
any distributed system (see figure 12.5). The significance of these types is that they are
all we need to algorithmically reason about different kinds of process relationship. Any
more specific information may be contextual relevance, but does not affect the causal
structure of a story.

• i) CONTAINS: localization in spacetime (scope of containment or ordering by
scale)

• ii) FOLLOWS: order, causation (Markov processes or order by influence)

• iii) EXPRESSES: local distinction (scalar attribute at any scale)

• iv) NEAR TO: measure, distance (assessment of distance at any scale)

Notice that order is distinct from distance, i.e. direction and proximity are different
concepts. These concepts are not clearly distinguished in a vector space.

The four kinds of relationship are illustrated in figure 12.5 and detailed in table 12.1.
This identification of types offers an enormous dimensional reduction algorithmically for
the characterization of system trajectories. Agents may promise exemplifiers, symbolic
and metric discriminators, or regional classifiers. The relationship between a discrimina-
tor iii) and a classifier iv) is subtle, and is easy to promise inconsistently. The essence
of expressing an attribute is to label the type, which can be combined with something
else to form a union of different promises (a kind of semantic chemistry). A promise of
containment, on the other hand, is a promise of belonging to a common class. These two
promises therefore represent assembly versus classification of agents178.

12.8.2 PROMISING SEMANTIC MAPS

The four spacetime semantic relationships, described in [Bur16c, Bur17c] may be as-
signed between pairs of concepts, originating by signal (+) or by inference (-), entirely at
the behest of an observer, and according to the following ‘selection rules’:

12.8. MODEL EXTRACTION 601

i)

iv)

iii)

ii)

Figure 12.5: The four kinds of promise that spacetime can express: i) containment, ii) succession,
iii) local attributes, and iv) proximity. Although we can distinguish different sub-types of
these four, it’s hypothesize that the four are necessary and sufficient for describing observable
phenomena.

1. Distinguishability: Descriptive properties that distinguish, describe, and em-
bellish the name of a concept are EXPRESS promise types. These are scalar
promises used to explain attributes that may form compositions of attributes for
aggregate ‘hub concepts’.

For example: a banana may express the colour yellow, ripeness, and sweetness. It
does not express fruit or Del Monte.

2. Generalization: membership in classes and informal categories use the CONTAINS
promise type. These express subordination to one or more umbrella concepts, and
superordination to instances and exemplars of the named concept. Generalization
is strictly transitive.

Generalization is not as in taxonomy: a concept may have any number of general-
izations, i.e. there is no unique typology to concepts. The utility of recognition
lies in the overlapping nature of classes[Bur05a].

For example, a banana is generalized by fruit and desserts, and has instances such
as Del Monte. It does not express these as attributes.

602 CHAPTER 12. SYSTEM KNOWLEDGE

TYPE FORWARD RECIPROCAL SPACETIME STRUCTURE

is close to is close to contiguity
approximates is equivalent to PROXIMITY

ST 1 is connected to is connected to “near”
is adjacent to is adjacent to Synonym

is correlated with is correlated with similarity
FORWARD RECIPROCAL SPACETIME STRUCTURE

depends on enables ordering
ST 2 is caused by causes DIRECTION

follows precedes “follows”
FORWARD RECIPROCAL SPACETIME STRUCTURE

contains part of / occupies boundary perimeter
ST 3 surrounds inside AGGR MEMBERSHIP

generalizes aspect of / exemplifies “contains” / coarse graining

FORWARD RECIPROCAL SPACETIME STRUCTURE

has name or value value of property qualitative attribute
ST 4 characterizes property of DISTINGUISHABILITY

represents/expresses represented/expressed by “expresses”
promises Asymmetrizer

Table 12.1: Examples of the four irreducible association types, characterized by their spacetime
origins, from [Bur16c]. In a graph representation, ‘has attribute’ and ‘contains’ are clearly not
independent, so implementation details can still compress the number of types.

3. Dependency: promises of dependency—prerequisite or follow-up concepts are
FOLLOWS type promises. They may link concepts of any type into some
meaningful order, by any interpretation of the observer.

For example, the beginning precedes the end. “One” precedes “two” which
precedes “three”, etc. Dependency is usually transitive, but may contain loops (in
feedback cycles).

4. Similarity: the degree of similarity between two concepts is an assessment that
may be promised by any observer, to represent a degree of similarity or closeness.
This is represented by promises of type NEAR. This is an ad hoc assessment and
should not be taken too seriously.

In the case where several agents form an agreement about the metric distance
relationships between concepts, these assessments may form the basis for a shared
local coordinate system.

The semantics of these relationships are not automatically orthogonal to one another,

12.8. MODEL EXTRACTION 603

scope

Past (retarded)

Future (advanced)

causality

Figure 12.6: The propagation cones indicate the past and future as ‘timelike’ trajectories
generated by the causal relationship, and semantic scale or scope of meaning accumulated in
‘spacelike’ directions around the average time axis in rings of increasing generalization.

so we have to maintain the incompatibility of the types by assignment. The local promises
are mutually incompatible, which is to say the no two agents may promise more than one
of the three types CONTAINS, FOLLOWS, EXPRESSES (or their inverses179.

• EXPRESSES is incompatible with CONTAINS.

• CONTAINS is incompatible with FOLLOWS.

• FOLLOWS is incompatible with EXPRESSES.

The semantics are easily illustrated with an example. The concepts blue and yellow
are expressed by objects that combine them as part of their identity: e.g. a blue and
yellow pattern, like the Swedish national flag, and green paint may be composed of blue
and yellow paint, but neither the Swedish flag nor green are generalizations of blue and
yellow. The concept of colour, on the other hand does not express blue or yellow, but
generalizes them as members.

The promise of proximity is slightly different:

• NEAR is potentially compatible with any of the above, since it is an informal
assessment of non-locality.

The assessment of proximity between agents may seem to imply something about
the orthogonal semantics above, but this is ambiguous (see figure 12.7). For
example, because proximity is a type of relationship, not a standardized metric

604 CHAPTER 12. SYSTEM KNOWLEDGE

constraint, relations may vary in their interpretation:

A EXPRESSES ‘close to B’ (12.32)

A EXPRESSES ‘close to C’ (12.33)

‘close to B’ FOLLOWS ‘close to C’ (12.34)

Together these might suggest that A,B,C all lie in a certain region and that there
must therefore be a category (dotted line in figure 12.7) that generalizes all of
them. That kind of inference is dangerous, because it is based on coarse inference,

Figure 12.7: The assessment of proximity between agents may seem to imply something about
the orthogonal semantics above, but this is ambiguous.

These selection rules can be applied in order to join similar objects into hubs. Each
observed instance maps to a hub that can be broken down into atomic concepts by
expression. Containment promises are generally learned on a much longer timescale (e.g.
added by human expertise), and causal dependency promises are added by processes that
generate them or observe them.

12.8.3 STORYTELLING FROM SPACETIME SEMANTICS

Once constructed, the graph may be parsed to generate stories, or automated reasoning. A
reasoning process may be viewed as an expansive search along alternating (+) axes (causal
outcomes that are related by generalization or exemplification by specific instance), and
tempered by elimination by relevance criteria (-).

• Starting from a topic of interest, we follow promises of type FOLLOWS indepen-
dently in the forward and backward directions, to explore the causal cone (figure
12.8).

• Arriving at each new concept, we follow promises to generalize and specialize the
concept to find all links arising from the collective generalized concept, and follow

12.8. MODEL EXTRACTION 605

these along different story paths. In other words, we multiply the number of stories
by conceptual associations that imply examples of the same idea—expanding the
scope of meaning without going off the rails.

Such promised relationships cannot be easily found by in band machine learning tech-
niques: this is an orthogonal and complementary method, but learning may form the basis
for collapsing experience into an arrangement of similar concepts on longer timescales
(see figure 12.8).

The algorithmic rules for parsing stories from the concept graph come in several
forms. A conceptual reasoning search might be bounded at the start (retarded), at the
end (advanced) or at both ends (causal). The first two are a form of brainstorming that
ends with a single concept: ‘tell me all about X’. The latter case asks for a specific
explanation of ‘Y given X’. There is no unique path for any search, in general. The
paths most frequently trodden, i.e. have the most frequently observed transitions, or
most frequently searched for concepts, become ‘classical paths’ and may be favoured,
someone analogous to a PageRank search[PBMW98, BBCEM10].

Loops in causal relationships may be significant, so we should detect them. Some
loops may be errors of identification, others may be cyclic reasoning (e.g. self-consistent
ideas, like eigenvalue problems).

scope

Past (retarded)

Future (advanced)

causality

Figure 12.8: The scope of knowledge about spacelike information is accumulated as memory
from past events propagated into a model of the present.

606 CHAPTER 12. SYSTEM KNOWLEDGE

12.8.4 MODELS, SHARDING, IDEMPOTENCE, AND

FORGETTING

From sampling of data at the edge of a network, to actionable insight, there is a chain
of reasoning to monitoring that starts with observability and ends with the deletion of
irrelevant and antiquated data:

1. Data collection,

2. Stability or convergence to fixed points,

3. Model extraction,

4. Classification into buckets,

5. Controlled forgetting.

Each of these steps plays an important role. Data collection provides the basic observ-
ability to trace systems at different scales and tell stories about them that bring valued
insights. The convergence of phenomena to fixed points is an incredibly important
principle in dynamics, but one that receives too little attention180. When systems fly all
over the place, they are not telling us anything significant. It’s only when they converge
onto repeated patterns or stable attractors that we can build on them as part of a reliable.
Models need to expose those differences. Today, there is a fascination with using machine
learning to try to expose such fixed points, but the technique is only possible if there is
sufficient stability. When monitoring reaches a level of maturity in IT, we will place as
much value in attending to semantics as we do in recording noise today. Data that have
the same semantics need not be recorded twice. Once one has identified the invariants
of a system, these can be made idempotent. Model identification classifies inputs into
discrete alphabets. Repeated symbols can be compressed, and if they are repeated no
harm need be done if they have fixed point semantics.

For example, it is not a problem if we accidentally collect the same data twice as long
as they map to the same place. Storing the same data twice is idempotent unless we are
counting frequencies. Frequency counting can be made idempotent by labelling intervals.
The general principle is that we should engineer data sources to permit convergence.
Promise Theory reveals the mutual responsibility for information transfer between sender
and receiver.

Principle 11 (Convergent data). The safest way to avoid data inconsistency is to design
messages in such a way that repeated messages always map to the same location and
update them without breaking a promise.

12.9. KNOWLEDGE SUMMARIZED 607

Fixed points lead to stable models, which lead to efficient indexing of knowledge.
This helps in scaling storage (e.g. in sharding), and it helps in fault tolerance. When data
are recorded around proper index points, it doesn’t matter if data get delivered multiple
times (idempotence) or even out of order: everything will find its proper place in the
end. Model extraction tells us how to compress the data into an alphabet or catalogue of
meaningful and significant ideas, and therefore separate into buckets or shards.

Finally, perhaps the most important issue of all is how to forget what is no longer
of value. Keeping data and even models around forever is a senseless squandering of
resources and an irresponsible and unsustainable use of technology. One wonders how
many of the photos now being eagerly accumulated in the cloud will be preserved in ten
years’ time. The same is true of monitoring data that were collected last week. If we
don’t understand the timescales, context, and relevance of data, then we have no business
collecting it, because it cannot tell us anything of value. A policy for forgetting can
usually be built into a definition of context from the start, e.g. through finite windows
and sliding sets, running averages, and so on [Bur02].

Example 293 (Model based collection). In CFEngine, weekly data were mapped idem-
potently to a finite number of buckets marked by 5 minute intervals throughout a week,
based on a prior measurement survey using autocorrelations. After a weekly period, the
buckets would wrap around, like a clockface and data would update the corresponding
image in the map. This approach was able to promise a limited stability of expectations,
as well as automated forgetting (constant weight gradient of temporal history), and thus
effective garbage collection

What’s remarkable is how few of these issues actually get any attention in the
literature. One hears arguments like ‘its cheap to keep all data forever’—which smacks
of the sudden realization of global warming or the plastic crisis. Every time we advocate
increasing something, we need to think about the balancing garbage collection process.

12.9 KNOWLEDGE SUMMARIZED

The collection of accurate data is not in question. Today, there is increasing interest
capturing ‘digital twin’ representations of agents in the real world, with every detail
available for possible inspection. No one could resist the idea of such knowledge, unless
it invades their privacy. The question in technology monitoring is rather whether every
detail should be centralized and whether data can be compressed without loss.

In this summary of what can be observed about distributed systems, we see that
tracing events back to ‘root cause’ is an ill-defined problem, but tracing back a significant
likely cause is indeed possible with careful labelling (especially of time). This kind of

608 CHAPTER 12. SYSTEM KNOWLEDGE

labelling is not commonly provided in current tooling. Assuming access to data, we
might hypothesize that a complete monitoring system would promise to:

• Separate timescales.

• Identify the alphabet of system invariants

• Capture local histories of instances, in the context in which they happen.

• Identify significant events at different scales and measure their invariance.

• Tools for reconstructing and backtracing of histories from local data.

• Tools for generating semantic past-future cones for causal reasoning.

Today, many IT monitoring systems transmit raw data in large quantities to a central point
for analysis, without attempting to alphabetize the data before transmission. In effect,
by ignoring the existence of a model (summarized by an alphabet of non-overlapping
signals) one is repeatedly sending the same model over the network again and again,
wastefully, and to no gain. If we can classify observations at their source, and condense
them into an alphabet of signals, a vast data compression can be accomplished for both
faster recognition and potentially greater semantic content. That will be the subject for a
sequel [BL19].

It should be clear that nothing about the ability to trace systems enables full re-
versibility of state, which should be considered difficult to impossible, depending on
scale[BC11]—so ultimately monitoring may be of little value. More value could be
captured by building intrinsic stability into systems in the first place.

The elephant in the monitoring system is an essential attitude in the industry concern-
ing the purpose of monitoring. Systems are only sustainable, knowable, and predictable
when they seek stability—not when they labour under the burden of intrusive inspection.
For a lot of practitioners there is a conflict of interest here. If we seek to measure all
that is random or unstable, by oversampling and consuming resources wastefully, it will
be neither stable nor sustainable. Consensus protocols, for instance, promise semantic
stability, and are popular (if somewhat over-used) in software engineering181. They draw
attention to a preoccupation with semantics in software engineering, i.e. a desire for
stable qualitative outcomes, at the expense of quantitative delay. Software engineers
seem not to trust concepts like intrinsic dynamical stability i.e. systems that promise to
converge to predictable quantitative outcomes. Monitoring tends to treat all software as
adversarial, and we put more faith in ill-designed monitoring than in an initial software
design. This is a paradox that will inevitably lead to big surprises and catastrophic
events.

CHAPTER 13

AFTERWORD

Bringing this collection of notes to a close, its easy to conclude that there are more than a
few significant principles we can state about systems, but there remain many gaps left to
discern and be filled for a fuller engineering understanding of human-machine systems.
Unlike the idealized world of physics, it is more difficult to separate semantics and
dynamics clearly—not only because these tend to span multiple scales, but also because
the number of independent process channels is typically much larger for specified systems
than for faceless ‘ergodic’ systems about which we can divine statistical knowledge.
Systems share more with complex electronics or biology than with the mechanics of
non-decript bodies.

TO THE READER

I hope the purpose of these notes—to bring together traditionally incompatible issues
under a single framework—is helpful to some. I understand that I ask a lot—readers
who find value in these pages are not typical ‘just show me the result’ engineers, nor are
they ‘keep my head down and publish classical papers’ scientists, let alone ‘let’s all talk
about it together’ team managers; the lectures are aimed at a more ambitious audience of
scientific problem solvers who strive to forge a deeper understanding—and in an age of
soundbites and impatience. That will not be to everyone’s taste.

Through many examples, which I’ve assembled and tried to track over many years
of consulting and problem solving around the world182, I think one can see, convincingly,
how both dynamics and semantics can be brought together under a common umbrella,
and their concerns (sometimes separable and sometimes not) reconciled in a ‘simple’
way. This has a value in its own right, since it has been staunchly denied by many in the

609

610 CHAPTER 13. AFTERWORD

fields of both Computer Science and Physics (at least while I was climbing the academic
ladder). The principles discerned can be applied to any system to understand and describe
properties on all scales. Systems can be described as phenomena with intent and outcome
included. It won’t necessarily be easy, but it is achievable.

For me, this has been an enjoyable though exhausting effort to try to bring some
order to the subject. I realize that there is a lot of scope for improvement, but that work
almost certainly needs the contributions of others who are convinced of plausibilty of
the mission. Perhaps these two volumes might inspire those, while I move on to expand
this approach to the next compelling frontier, which is crying out for a formalism that
brings together semantics and dynamics: social systems. From here on, it’s up to a
new generation of researchers to take on board the successes and remedy the gaps—to
assume the mantle of developing a more integrated theoretical picture and push for future
progress. There is no shortage of topics remaining, nor of details to complete in the
material here.

SUMMARY

Once again, in summary, here are some of the key findings:

1. By designing systems to yield a promised outcome (by promise, not by obligation
or imposition) we maximize causal predictability.

2. There is no need to separate human and non-human parts of a system: analyze
them together.

3. Choosing the right agent to keep each promise should follow an assessment of
fidelity building on experience rather than assumption.

4. In general we must be aware of where the boundaries of a promise are: there are
different effective boundaries for different kinds of promise. If we pretend they
are all the same, we will likely compromise the integrity of some.

5. We can build for self-regulation and self-protection by choosing pull-based sys-
tems over push-based systems.

6. By avoiding systems, which amplify impositions, we avoid the magnification
of inevitable errors. During amplification, we can use pull based methods for
stability and context.

7. We choose centralization principally for calibration and separation of timescales.

8. We choose decentralization principally for redundant robustness and resistance to
change.

611

POSTSCRIPT: SUSTAINABILITY AND WASTE

Although I avoided a direct discussion of the issue in these notes, it seems clear to me
that too many of today’s human-designed systems are sluggish and obese leviathans,
built on principles that have not adapted significantly to modern times or its many
technological opportunities. Wasteful and vulgar examples abound, where commoditized
convenience has been championed over engineering excellence. Systems and processes
are in desparate need of streamlining, for environmental as well as social reasons. The
waste produced by our civilization—both in disused material and heat entropy—is both
indefensible and unsustainable. We see the effects of the Industrial Revolution written
on accelerating climatic processes, and the next crisis will surely be the legacy of the
Information Revolution. It will concern unaddressable data storage and computational
waste. Software engineers receive little training about the processes that make computers
work, or are aware of the enormous energy cost of wasted computation. I hope more
attention can be paid to efficient and thoughtful design, in the coming decades, both in
physical and virtual systems, with care and parsimony triumphing over today’s brute
force methods. No engineer, or citizen, can afford to take resources for granted.

ACKNOWLEDGEMENT

I’m grateful for comments and discussions with a number of people, some of whom
worked with me on various projects, others who were kind enough to read my notes and
formulations. These include Adrian Cockcroft, Paul Borrill, and Daniel Mezick, who
gave specific comments. Naturally, I have had many important and pivotal discussions
with my collaborator Jan Bergstra over the years in which we have developed Promise
Theory together. I should also mention (but shall nonethelss refrain, for the sake of
privacy) the discussions and examples adapted from the experiences together with a
number of engineers in the field—these practical cases have driven this entire second
volume. None of the above bear any responsibility for errors, omissions, lack of clarity,
or interpretations contained herein.

612 CHAPTER 13. AFTERWORD

APPENDIX A

EMPIRICAL EXAMPLES: CASES

AND REMEDIES

The following is a selection of faults observed in the field for service providers, in
boldface. Proposed resolutions, based on a promise-compliant architecture are described
for each.

A.1 OBSERVED FAULTS AND THEIR AVOIDANCE

A common theme in these examples is the misplacement of trust in low fidelity agents.
Buffers and noise reduction techniques (dynamic and semantic averaging) may be
employed to reduce the risk of faults.

A.1.1 KEY PARAMETERS WERE UNEXPECTEDLY MODIFIED

Examples from networking equipment:

1. Some switch parameters which should be OPEN are CLOSED, which was
not realized until service crashed. e.g. routine backup, MAC self-learning
function, etc.

No documented promise was made to provide these services, so no assessment of
the state was made either, meaning that the state of the switch parameters are ad
hoc, and not automatically repairable.

This is common in models based on change, instead of desired outcome/state. (We
make models about how we can get involved, not about what outcomes we desire.)

613

614 APPENDIX A. EMPIRICAL EXAMPLES: CASES AND REMEDIES

By using a policy model, and a self-repairing agent with regular maintenance (e.g.
like that of CFEngine), because we cannot guarantee no tampering, this kind of
error can be eliminated within a minimum time window. e.g., if an agent checks
the state every T minutes, then the Mean Time To Repair (MTTR) is T/2.

2. Some global parameters were modified by mistake and affected large scale
services.

Strict routines for non-tampering with devices can be introduced. A barrier or
buffer between humans and device states is needed so that human whims and
spurious actions are isolated from high risk outcomes. The risk is higher when
instructions and changes are partial or relative (context-free) changes, rather
than complete repeatable outcomes. The loss of repeatability is a key problem.

For a software system, all changes may be version controlled changes to a context
aware policy that describes a clear outcome for each context. The policy is then
implemented and maintained by a self-repairing agent with convergent outcome.

Comment 28 (Model based promise-making). The key principle that is violated in these
examples is that a user or consumer of a service has clear expectations of a promise
being kept, but no promise was actually made: ad hoc configuration changes were once
by someone, without verification.

By employing a model-based promise language, a promise can be made a kept
formally and verifiably. Changes can be versioned and tracked, pre-tested, etc. This is a
standard approach used for:

• Compliance with regulations.

• Compliance with Service Level Agreements.

A.1.2 WRONG MODIFICATIONS APPLIED IN BATCH

Examples:

1. A user wants to modify the LAC attribute of a single base station183, but
actually all LAC of base stations was modified, because the user select the
ALL parameters by mistake.

Inadequate buffer between human low-fidelity agent and amplified outcome. A
high-impact control parameter has inadequate safeguards to accidental change.
e.g. the pilot ejector seat on a plane should not be located next to the intercom
radio button. A small mistake could lead to catastrophic consequences.

A.1. OBSERVED FAULTS AND THEIR AVOIDANCE 615

A noise reduction method is needed, based on semantic averaging. For all ampli-
fied or catastrophic changes, implemented by low-fidelity agents, there should be
multiple opinions, e.g. ‘dual key’ launch codes, or confirmation from a second
(multiple) source. This is why pilots have co-pilots, missiles have dual launch
keys, etc.

2. A user wants to disable a device in a tree model network, but selects the
upper level node by mistake, so all the devices under this node are been
disabled.

The user is implementing actions directly instead of decoupling reasoning from
action. Reasoning should be slow, and deployment fast only after validation.
No validatable promise was made about what devices should be active, or the
agent’s assessment of the state was erroneous, perhaps due to insufficient fidelity
or resolution in its assessment of the context.

Again, this is a design error of placing radically different things close to one
another (control channel separation), and trusting an unreliable agent without
asking for confirmation? A warning message is the minimum barrier to a fault:

“warning you are about to delete ... Are you sure?” A two-factor authentication
with one-time pad codes can be used to authorize such events. This is common in
online banking. For high risk items, dual keys can be required.

This could also be dealt with by fault tolerance, ensuring that an erroneous change
did not have major consequences, or requiring dual-key activation.

Comment 29 (Big hammers need supervision). Big hammers or coarse changes refer to
to changes that are sweeping and extensive. The key principle violated here is in coupling
high impact consequences to a low fidelity agent, without verification. Spurious choices
are thus amplified with high fidelity by automation (see section 6.5.3), This is like giving
a child a sledgehammer to open a bottle.

Role Based Access Control (RBAC) can set limits on what individual operators are
allowed to do, with or without confirmation. Some operations are harmless and one
can trust even a low-fidelity agent to implement them. When destructive operations are
implemented with a high degree of amplification, but high fidelity, semantic averaging
can be used (dual authorization).

As part of a version controlled language of promises, changes can be made by using
a version control system (e.g. git), and filing a change request. A process supervisor then
merges to offer confirmation. The code can be checked for consistency. Provided the
workload on the supervisor does not lead to low fidelity verification, this is usually good
enough.

616 APPENDIX A. EMPIRICAL EXAMPLES: CASES AND REMEDIES

A.1.3 DELETION OF KEY RESOURCES BY MISTAKE

More examples of inadequate separation of (potentially) low fidelity human agent from a
dangerous outcome (misplaced trust):

1. Deleting a route by mistake.

2. Delete a IP path by mistake.

3. Some configuration files deleted by mistake.

No manual change allowed. Model based change with version control is used,
and the “diff” (delta change) is authorized by duplicate sources of truth before
being deployed.

4. The user deletes the wrong resources, or he did not realize there are key
services on these resources.

No manual change allowed. Model based change with version control is used,
and the “diff” is authorized by duplicate sources of truth before being deployed.
If resources are in use when deleted, this can be detected from the model docu-
mentation. Knowledge-based tools and keep track of these.

Comment 30 (Dependence tracking and change impact). In a system, any change can
have consequences. A map of knowledge about these dependences can be inferred from
a promise model.

A key question to ask is: why would a user end up in this situation of wanting to
delete a resource? What leads to this decision? Then, what context information does
he/she need to make the decision?

A.1.4 PARAMETERS OR ATTRIBUTION ARE WRONGLY CONFIGURED

Examples:

1. The attribute of a port has been wrongly configured. It should be an optical
interface, but was configured as an electrical port.

Low fidelity agent makes an erroneous assessment of current state, or erroneous
response. Replace the agent/promise with a higher fidelity agent/promise.

This is an error of understanding or intent. This could be due to inexperience of
the human operator, or bad naming conventions. Clear naming conventions allow
different components to promise their functions clearly. It should not be possible
to confuse one type of component for another.

A.1. OBSERVED FAULTS AND THEIR AVOIDANCE 617

2. An IP address been wrongly configured, so the service is directed to the
wrong destination.

3. The ID of a device is wrongly configured.

4. The route map table is wrongly configured.

These are errors or intent. The lack of a proper model of the system, verified and
pre-tested, and rolled into production without testing. Again, clear naming is
important for human comprehension and recognition.

If the configuration errors are made in the policy model itself, this suggests a lack
of understanding of the system, and a lack of testing.

Comment 31 (Proper identification through classification and naming). The fidelity of
human agents depends on their ability to make sense of a situation. Clearly distinguish-
able names and identities aid human comprehension.

When systems process too much raw information, this leads to delays, fatigue, and
loss of human comprehension. By using patterns to abstract/represent many things as a
single pattern, we can make generic rules or wildcards to amplify the effect of a small
amount of information (see earlier remarks about amplification).

A.1.5 CONFIGURATION OF KEY RESOURCES OR PARAMETERS IS

MISSING

Examples:

1. APS group 1022 of 106 did not get deployed, so a service packet did not send
at both working tunnel and protection tunnel, so the protection tunnel lost
function.

2. The VLAN was not divided and both two NEs connected to one maintenance
LSW cause the issue and service crash.

3. Forgot to change IP after software upgrade, service abnormal.

These are all examples of a lack of clear promises, implemented by high fidelity
agents.

A.1.6 INCONSISTENT CONFIGURATION

Examples:

618 APPENDIX A. EMPIRICAL EXAMPLES: CASES AND REMEDIES

1. The configuration on master and slave board are not consistent, the configu-
ration on slave board is wrong. But this mistake can only be found when the
switch from master to slave is happen. At this time, the service is affected.

2. The docking parameters between two devices are configured inconsistently.
Such as frame format, Name, policy of two devices are not consistent of
conflict.

These issues can be dealt with by model-based promised policy. Fault tolerance of
system inconsistency is the most important property of a system. Full consistency cannot
be guaranteed at all times. It is affected by network partitions and latencies.

A.1.7 NON-OPTIMAL CONFIGURATION

Examples:

1. Parameter is too small or too big (but still in valid interval)

2. Some parameters are configured too small, it’s still in valid interval but have
high risk. In the condition of certain business volume, it will trigger incident.

3. The network is configured in a non-optimal way.

4. VLAN is configured and split in non-optimal planning, so the service quality
is affected.

Optimization requires an understanding of how causal factors lead to desired out-
comes. This can be learned over time by human analysis, by collecting data. For this, we
have to combine intended state with actual state and output.

A.2 CHALLENGES

Examples:

1. A mistake has been introduced into the network long ago, but was unde-
tected until the service was seriously affected, leading to many incidents.

Manual tampering must be forbidden. Errors in the model can be verified by
acceptance testing, or oversight.

2. A wrong configuration causes bulk parameters or data be modified. Some-
times the error can be found immediately, but it will take too long to change
the parameters or data back to the initial status, leading to long term service
disruption.

A.3. COMMON DATACENTRE FAILURE MODES 619

Agent based automation, based on policy models minimized this risk. Errors to
policy itself can be addressed by testing, or consistency checklists. The move
towards disposable container technologies allows quick reversal of configuration
in stateless systems. A dependence on runtime state leads to fragility here.

3. An error been introduced into the network, because of the lack of complete
validation rules. But it is a huge work to work through the code to find which
is lacking.

This is an intentional error. Validation is simpler in a promise model.

4. Configuration errors take too long to discover.

Regular automated verification should be run at regular intervals that matches
the likely rate of fault (MTBF).

5. There are different vendor products, and some configuration is associated
with vendor product, but some with service type. It’s hard to find a solution
or technology to help all products to resolve the problems.

A multi-vendor (open source) agent is straightforward. This is the approach used
in CFEngine across dozens of different systems and vendors systems.

A.3 COMMON DATACENTRE FAILURE MODES

1. Device failures - bad batch of disks, Power Supply Units, etc.

2. CPU failures - cache corruption, math errors

3. Datacentre failures - power network, disaster

4. Routing failures - DNS, Internet/ISP path

5. Vendor diversity

A.4 SOFTWARE FAILURES

1. Time bombs - counter wrap, memory leak

2. Date bombs - leap years, seconds, epochs etc

3. Expiry - certificates expire

4. Revocation of credentials - Certificate authority failure

620 APPENDIX A. EMPIRICAL EXAMPLES: CASES AND REMEDIES

5. Security exploit

6. Language bugs - compile time

7. Runtime bugs - JVM, Linux, Hypervisor

8. Network bugs - routers, firewalls, protocols

9. Versioning mismatches

10. Configuration errors

11. Overload

12. Build was interrupted or failed to complete

13. Timeout

A.5 PREDICTING NEW FAILURE MODES AT SCALE

• Certain unpredictable occurrences only occur at a macroscopic scale.

• What if the ‘weather’ of contending resource scheduling becomes so heavy that
it begins to create effective couplings though third parties? Then a macroscopic
superagent can become an effective boundary condition for a microscopic process.
This leads to non-linear feedback

• Second order effects become more likely, amplified at scale.

A.6 CAN WE STABILIZE SYSTEMS WITHOUT BREAKING

THEM FURTHER?

Suppose we design a system based on a set of promises and assumptions. This leads
to an unexpected outcome. Is it possible to say anything about how to stabilize the
outcomes so that we could make/keep new promises to constrain the behaviour, without
destabilizing the existing promises? This is the software bug fixing problem. There is
no general answer to the question. Any change could negatively impact another exterior
promise; this depends on the way the interior promises are coupled inside the relevant
agent boundary.

For example, modular separation of concerns is a commonly assumed strategy here.
If two parts of a system seem to be separable, we tend to assume that they are not in
contact, and will not affect one another. This is simply wrong. However, we often assume

A.6. CAN WE STABILIZE SYSTEMS WITHOUT BREAKING THEM FURTHER?621

that the risk of fault propagation is reduced, which is simply naive, as it ignores first and
second order interactions.

APPENDIX B

SUMMARY OF do AND don’t IN

SYSTEM DESIGN

Summarizing the analysis of fragilities with respect to promise keeping from the fore-
going sections. This describes a mixture of general suggestions for stability of both
dynamics and semantics.

Learning (i.e. so-called ‘anti-fragile’) systems become increasingly ‘situation aware’,
such that predictability and robustness can grow. On the other hand, we can avoid designs
that rely on memory or suffer from system memory loss, such as unstable, and non-linear
designs that lead to mixing and loss of predictability.

Comment 32 (Warning, take responsibility). In the following, readers are warned
to interpret “DO” and “DO NOT” not as an absolute directive, but as a guard rail
suggestion. If this book advises anything, it is surely that simple rules make no sense
without context and consideration of tradeoffs.

B.1 FAULT RELATED PRINCIPLES

1. DO Reduce fault surface of system |in〉.

2. DO Reduce amplification of effect 〈out|in〉.

3. DO Reduce degrees of freedom with promised constraints.

4. DO Equilibrate degrees of freedom.

5. DO Increase sampling rate for fault detection, Nyquist frequency.

622

B.1. FAULT RELATED PRINCIPLES 623

6. DO Decrease MTTR ∆t.

7. DO add preventative processes to increase MTBF (increase tolerance, or slow
system velocity).

B.1.1 DEVICES (MACHINE PROXY AGENTS)

1. DO Avoid operations that apply relative changes (deltas). Make all operations
converge (idempotently) to a fixed desired end-state.

2. DO Make all behaviours fault-tolerant of their own states, and of dependencies.
Every operation should have an outcome that is aligned with goals, despite
unexpected conditions.

3. DO Make state self-maintaining.

4. DO make devices self-recovering in case of fault.

5. DON’T rely on alarms and human intervention in critical situations (see comment
9). DO pre-plan for disaster scenarios and build in safe rational responses that
converge towards a desired end-state.

6. DO Avoid hard dependencies. Cache/store all pre-requisites at the point of
requirement before acting to prevent unpredictable failure.

7. DON’T allow any state of the system to block a control channel to an agent
(human or device).

8. DON’T (ever) assume that all devices are synchronized or in a consistent state.

9. DON’T assume availability of any device.

10. DO make agent models. DON’T make agent-less models. DO apply repairs and
controls at the fault location, never by remote control (because this compounds
uncertainty).

11. DO ensure that all devices and systems fail safely and predictably.

12. DO consider the need for redundancy and DO evaluate the need for multiple
opinions and quorum (semantic averaging). It is most stable to be tolerant of all
variation in a system.

624 APPENDIX B. SUMMARY OF DO AND DON’T IN SYSTEM DESIGN

B.1.2 HUMAN AGENTS

1. DO assess all promise proposals, in the light of all possible contexts, before
making them.

2. DO review promises regularly (continuous assessment and delivery) and consider
possible missing promise coverage.

3. DO change promise intent slowly, but contextual details continuously, with version
control, and test validation, to trace who changed them and why.

4. DON’T use transactional thinking. Don’t pretend that something is transactional
if it is non-atomic and without proper isolation. Few system scenarios fit these
conditions.

5. DON’T allow any state of the system to block a control channel to an agent
(human or device).

6. DO consider the need for redundancy and DO evaluate the need for multiple
opinions and quorum (semantic averaging). It is most stable to be tolerant of all
variation in a system.

B.1.3 HUMAN-MACHINE INTERACTION

1. DO limit the focus of any interface to a clear goal to increase situation awareness.

2. DON’T provide direct (CLI or GUI) access to mission critical functions. Use
policy to buffer changes through an intermediary (with authorization, verification
and validation).

3. DO require confirmation of intent by compiling intentions and validating them
before execution.

4. DO provide graded alarms as advisories. DON’T plan to rely on new reasoning in
a crisis (see comment 9).

5. DO avoid relying on specific ordering of events or promises being kept. Fault
tolerance of ordering and preconditions will avoid a major source of brittleness.

Direct action is always more risky than buffering decisions through a proxy. The
aim is to allow ourselves time to evaluate reasoning before executing or acting on the
decision. We want to avoid risky situations, where rapid decisions insert new instabilities.
Decisions on the timescale of changing environmental events leads to non-linear coupling,
and hence increases the likelihood of instability. A good design goal is to separate slow
reasoning from fast pre-determined response.

B.2. THE VALUE OF PROMISES 625

B.2 THE VALUE OF PROMISES

The value of links in a network depends on the promises they make. The value of a
promise is a form of assessment[BB14a] that any agent can make independently. We
write an assessment of whether a promise was kept

αi(Ai
b−→ Ak) ∈ [0, 1] (B.1)

to mean the assessment by agent Ai that the promise from Aj to Ak was kept. A
valuation is an estimate of what a promise is worth to an agent. This may of may not
depend on the assessment of to what extent the promise is kept or not. Every agent
assesses on its own calibrated scale. If we want a common currency valuation for all
parties, this has to be calibrated by a single agent according to its scale.

The interpretation of value is also an individual judgement that relies on trust, and
may be based on accounting of the assessments over time (reputation)[BB06].

My reputation ∝
∑
you

(
you −b−−→ me

)
(B.2)

In words, my reputation is proportional to all the number of ‘you’ who (publicly) promise
to accept my promised service. Even unilateral promises may have some value:

VALUATION BY X ABOUT PROMISE REASON FOR VALUE TO X

Me me +b−−→ you An reputation building investment

Me you +b−−→ me A service that might help me

You me +b−−→ you A service that might help you

You you −b−−→ me You need the service now

Cooperative relationships are usually based on conditional assistance[BB14a], and take
the form of a conditional equilibrium:

S
+S|M−−−−→ R (B.3)

R
+M|S−−−−→ S (B.4)

S
−M−−→ R (B.5)

R
−S−−→ S. (B.6)

in words, S promises R a service, if it receives payment M ; and R promises to pay M
if it receives service S. In a network without trust, this is a deadlock. But if any agent
trusts the other enough to go first, it is a cyclic generator of a long term relationship.
Such relationships imply lasting value, as known from game theory (for a review see

626 APPENDIX B. SUMMARY OF DO AND DON’T IN SYSTEM DESIGN

[Bur13a]). Both agents also promise that they will take (-) what the other is offering
unconditionally. This is a signal of trust. Valuations are not necessarily rational to anyone
but the agent that makes them, and are unrelated to cost.

The economic value is that something is exchanged, which requires a binding of
both + and - promises.

S
+S−−→ R (B.7)

R
−S−−→ S (B.8)

Both agents recognize the value of the other party, so the value exchanged is proportional
their assessments that the promises were kept:

vS ∝ αS(S
+S−−→ R)αS(R

−S−−→ S) (B.9)

vR ∝ αR(S
+S−−→ R)αR(R

−S−−→ S). (B.10)

In a community where such transfers are made often and between arbitrary pairs of
agents, standards of valuation are equilibrated, and may be exchange in league with a
calibration agency (e.g. a bank or government). Thus, in a well-connected community,
with a spanning infrastructure, we may posit that the value of a one-way transfer is simply

vC(ΠS
ij) = cSαiαj , (B.11)

where cS is the currency value of a perfect service relationship S, and αi is an impartial
assessment of the probability with which Ai will keep its promise to give or receive S.

CHAPTER NOTES

NOTES

1This second volume brings together terminology from a wide range of fields, and it’s my hope that
readers will appreciate the subtlety with which words have been defined and used. I’ve tried to strike a
balance to preserve the intended meanings of words in common usage. These choices are not as haphazard
as in some other works, so I encourage readers to pay attention to the definitions and consider them
carefully.

2Although Logic and Category Theory have achieved arcane recognition, they have yet to succeed in
offering any practical insights as they ask too rigorous a discipline of formulations. Category Theory feels
more like an organizing principle, like taxonomy—a collector’s hobby more than a predictive theory. In
this respect, Promise Theory has come much farther in a shorter space of time. However, as a cynic, I
note that it has the forms and following to appeal more to the society of mathematical snobbery more than
Promise Theory does, and will therefore rise to greater heights in the academic world.

3Impartiality may be the goal of science, but it is often defined tautologically, or not at all.
4This does not mean that they can necessarily work independently of external help, only they can

always choose to ignore it if they so wish.
5For example, all processes can be represented as Feynman diagrams.
6This could be accomplished virtually by aggregating multiple serial events into a single process tick

(using ‘subtime’ transactions).
7In continuous systems, the state is the position and generalized velocity. In a discrete system, the state

is the position and the transition probabilities.
8Some like to use the term rules or laws of motion, but this suggests that they have some absolute

nature, which is not the case. The behaviours are emergent, but might be sufficiently repeatable to warrant
capturing as a formula.

9The issue of independent oversight was how Promise Theory came about, from CFEngine’s model of
system maintenance[Bur95, Bur04b].

10As we say in the networking technology world ‘No route to destination’.
11It’s interesting that this kind of ‘public education’ service was common after the second world war,

but fell into disuse in the 1980s when many of the objectives became normalized. Today, do we assume
normalized behaviour is established without such education? The risk of norms decaying into instability is
always there. Maintenance of promises in necessary in all systems[Bur03].

12Inviting someone to invite them is almost like an imposition, but through the channels of diplomatic
maneuvering.

627

628 NOTES

13British readers may take offence at the spelling of offense, which is a constant source of consternation
between regional norms.

14It often leads to what has come to be known as Complex Adaptive Behaviour to indicate the non-
linearity and fragility of adaptation.

15The framing of law through Deontic reasoning, or obligations is a red herring. Promise Theory shows
that it is really build upon a foundation made from layers of promises.

16This assumes that we are talking about promises of the first kind, which are the fundamental promises.
17This contradicts the mandatory language of ‘inalienable human rights’ in law, such as the American

constitution’s bill of rights—whose amendments are in fact nothing more than promises by the state to its
subjects. There are no fundamental rights. There are only fundamental capabilities. It makes no sense to
speak of the right for humans to be able to speak about X any more than anyone could grant the right to
have wings, to fly, or to breathe under water.

18The etymology of authority comes from the Latin auctoritas, meaning ‘originator, promoter’, as in
author.

19The latter is effectively a form of voting, but not based on a democratic majority. The mandate is
required for every single agent individually for cooperation.

20This suggests that use of simple user interfaces may not increase human fidelity in difficult circum-
stances.

21Maxwell’s cog wheel model of electromagnetism is a good example.
22It might sound bizarre and fanciful to think of the memory of a process, but it’s no more radical

than suggesting the existence of hidden degrees of freedom, dimensions, or internal quantum numbers.
In physics, we have always assumed that propagation of influence or energy occurs deterministically or
perhaps probabilistically, but without any hidden process, but we know this to be an oversimplification. In
either case, there is an effective coupling constant but a ‘driving term’ like a forced oscillator. A finite
process is needed to absorb or transfer any normal mode from a source to a receiver. This is the essence of
Nyquist’s theorem. A discrete process is a computation, see Turing, von Neumann, and Chomsky[Cho59].
The longer the chain of process required to decide an outcome of emission and absorption, the more
interior memory a ‘location’ (agent, field, particle, etc) needs—e.g. simple energy levels that encode
electron processes as scalar information in the form of energy levels. Promise Theory seems to show that
there is no way out of the hierarchy of processes for transmission of information. It’s sampling all the way
down, which implies that the origin of time is always interior to agents.

23In physics, locality is usually a reference to light speed propagation, which makes a number of
assumptions about the primacy of light and its universal role. No such assumption will be made here;
rather, we define locality as a primitive notion, associated with the definition of a semantic boundary.

24The speeds of waves and signals, used to transmit influence, depend on material properties that are
often mainly invariant, and can therefore be assumed constants.

25In practice, the application that reads the database is the observer. This might be quite localized. If
the application has access points all over the globe, then the problem is of greater magnitude since the
inconsistencies are magnified by transport latency.

26The exception is in data processing pipelines where processing time may dominate for some tasks.
27The increasingly pervasive language of Complex Adaptive Systems leads to assertions about strong

and weak coupling, but we need to be able to define those things to use them.
28One can define the scope of a promise is a subset of agents that can observe a promise. For convenience

we may write this:

A
b−→
σ
A′ (B.12)

NOTES 629

where the set σ ⊂ {A} is the scope, which includes A′. This can further be broken down into promises
of the type def(π), as discussed earlier[BB14a]. Note that A cannot decide σ, as this would violate the
principle of autonomy.

29This illusion of a flow is maintained by a gradient of intermediate agents that accumulate samples in
buffers.

30We see the effect of ‘populism’ in society today, when intentions follow unstable polls instead of
convictions.

31This is where the turtles hide.
32It is not a theorem in the mathematical sense,
33It’s sometimes assumed that the coincidence limit is about getting closer to the finest grain of structure

in nature, but in fact it’s the opposite—what happens when you zoom out of a system and lose the resolution
to see elementary discreteness.

34In physics, we have often neglected to account for possible anomalies in the scaling of spacetime
properties. The assumption of continuity and Lorentz invariance all the way down is an obstacle one must
overcome to model elementary spacetime processes.

35This topic is new to me, and seems worth following up.
36Note, nothing prohibits there being several channels for this communication, with different character-

istics. We think immediately of light messages versus entanglement messaging, for instance.
37In physics, we associated Long Range Order with phase transitions and symmetry breaking[Gol92].
38There are obvious implications about discussions in QM about where is the electron? Can it be in

more than one place at a time? Physics confusion arises from the inability to discuss clear semantics and
make implicit assumptions based on tradition.

39One can speculate whether entanglement in QM is such an out of band channel that enables a short
circuiting of local.

40The generating functional approach to percolation in [New03] may be compared to the effective action
as a generating functional for Feynman diagrams[Abb92] and exposes the irrelevance of coordinate labels
x, t to essential system properties.

41It’s flawed reasoning to assume the conditions for reversibility by default and then claim that it’s
physical law.

42Anyone who has used a version control system, in IT, understands subtime as all those moments
observers of the document repository cannot see, that lead to what was committed in each observable
version.

43Defining an equal view is not a simple matter either, unless one assumes a god’s eye privileged
position.

44It does not rule out other forms of quantization at a smaller or larger scale.
45Of course, in practice the ‘doctor’ here represents a superagent of staff working with the doctor to

support the doctor’s practice
46The increasingly pervasive language of Complex Adaptive Systems leads to assertions about strong

and weak coupling, but we need to be able to define those things to use them.
47This is the paradox of weather forecasting: when nothing is changing, we can predict the weather

easily; but, when everything is in flux, prediction is hopeless.[Bur13a].
48One works hard to make this point in the physics of relativity where coordinate systems get in our

way of understanding spacetime processes
49Reversibility is something of a misunderstood concept in dynamics, especially as applied to IT system

behaviours. The apparent reversibility of the machinery is sometimes used as an argument against causality,
but the argument is built on a misunderstanding that ignores the boundary conditions.

630 NOTES

50These ionic properties may reach outside the superagent boundary too in some circumstances, allowing
oxidation, etc.

51If one can imagine a disconnected agent that makes no promises at all, then from there, one can
imagine postulating the existence of an infinite number of empty spacetimes. These matters become
technical, and we have no way of deciding whether they are real or fictional, assuming that there is a
distinction.

52Note, this information is related to the entropy of the system, but it is not related to disorder, merely a
loss of information about order.

53In fact, in the case of a radio, one could argue that it is the outer casing which makes the promise of
being a radio, and that the other components are tenants of the outer casing agent. I’ll return to the issue of
tenancy in the latter part of these notes.

54The description of a virtual hierarchy of perimeter boundaries around resources leads to a kind of
‘Gauss law’ for promises made by process agents. Any promise of state expressible externally must come
from interior process memory.

55I’ve argued that one should instead be guided by The Principle Of Separation Of Timescales if
predictability and stability are the primary goal[Bur19a, Bur4 a, Bur4 b].

56The intent of the Twelve-Factor App manifesto seems to principally address risk and local contention.
57A huge amount of discussion centres on data consensus sharing protocols for server (+) promises, but

almost nothing is written about the responsibility of the receivers (-) who ultimately shoulder the burden of
dealing with inconsistency. For an industrial example, see [Bre18].

58This is an interesting example because in Newtonian mechanics, a collision may be memoryless, but
the trajectory isn’t. The momentum of balls is conserved and remembers the sum effect of prior collisions.
This is one of many ways to illustrate how memory and state are scale dependent.

59This may also be used as a definition of the autonomy of the agents.
60This is a more precise expression of what people mean by ‘immutable containers’.
61This is what happens, for example, when runtime incidents lead to iterated bug fixes in software

and new promises are made that incorporate past states into the initial conditions of current promises
(feedback loops). The process of Continuous Delivery renders such changes on the same timescale as
runtime transactions, which makes sensitivity to change higher.

62I borrow this phrase from Paul Borrill, and elsewhere use the term ‘interior time’.
63This is Turing’s halting problem.
64This explains the value of in band configuration maintenance for security and safety in a live setting.

Instead of relying on isolation, one hopes for isolation but validates it with a competing immunity process
(‘trust but verify’).

65This distinction and its scale dependence was the basis for the configuration management wars of the
2000s. It was argued that an initial state process was required along with complete congruence of steps
(requiring total isolation at a high level)[Tra02]. The converse was argued: by creating closed operations in
which the outcome was assured at a low level, the dependence on exterior ordering could be relaxed (which
corresponds to a non-blocking execution policy)[Bur95, Bur04c]. The latter is just a micro-encapsulation
of the former. The process is the same on different scales, but the latter is ‘reactive’ in the sense of the
reactive manifesto[BFKT].

66See for example the way this is used as a limitation on observability to guarantee equilibration in
entanglement systems [BBKK18].

67This is the case for many observation and monitoring systems.
68This feels like a good place to remind readers about the redundancy folk theorem, which states that

low level redundancy is always at least as effective than high level redundancy. See section 10.5.

NOTES 631

69The most fragile is perhaps the heart because of the high degree of serial coordinated calibration
needed to maintain the rhythmical action. One could imagine a different kind of pump that did not have
this flaw.

70The authors of these studies did not use Promise Theory in their work, but that does not prevent us
from retrofitting the inferences from their work.

71Telling you twice that we owe you 100 dollars doesn’t mean that we owe you 200 dollars.
72It is well known that the scaling of ad hoc communications networks, where agents are distributed

randomly is like
√
N . This is easily understood from the spatial geometry: mobile phones occupy some

approximately two dimensional area, so the diameter is of order N
1
2 ; alternatively, they have average

separation d ' V/
√
N , so the distance across the group is of the order Nd '

√
N . The linearity of the

process gets mixed up with the geometry of the embedding space.
73Note that this is not a real connectivity, which has to do with the number of nodes, but a kind of

close-packing of the sparse interactions that occur between the nodes into the infrastructure stream.
74A simple analogy is to think of a tube of toothpaste. The toothpaste comes out in a one dimensional

stream of fixed width, but we are forcing the output of a three dimensional tube through this portal, and
asking: how does the amount that comes out increase with the size of the tube if we squeeze it in the same
way? By fixing the cross section, we can compare different tubes, or different cities.

75Electrons play this role in molecular chemistry, or telecommunications in the human realm.
76A dependency does not just have to be discovered, but also maintained in a persistent relationship,

which accumulates cost over time.
77If the person’s path is detailed, one could include the Hausdorff dimension of the path and use vH/Di

as the range, as Bettencourt suggests. I’ll ignore this for now, as humans do not tend to move in fractal
paths, as his data suggest.

78Because telecommunications networks are global, it does not make sense to relate their cost to the
size of the city (though this depends on exactly how we model the costs), so the cost depends more on its
usage than on its extent. We simply assume that it exists and has sufficient capacity for the NI connected
residents.

79Messages may be sent with or without words, with body postures, or coded by melody (frequency
division multiplexing) rather than representations discrete in time (time division multiplexing). These are
well known in information theory.

80One can speculate about the reason for the size of discrete patterns used to convey meaning. Dynamical
scales will ultimately place limits of the comprehension of an agent. If agents could have infinite resolution,
there would be no limit to what information could be conveyed in an arbitrary promise. But a recipient has
to be able to parse this information in a finite time, shorter than that which is needed to keep its promise.
This suggests that information density must be finite, whatever the nature of the agents. Even a concept
like ‘happiness’ cannot have an infinite number of shades of grey! Protein size limits the size of a gene;
variety of length and time scales limit the complexity of a key used by a human or a computer, and even the
density of musical notes in the scale is limited to approximately quarter tones by the size of the human ear.

81The latter case is like the Millikan experiment for measuring electric charge. If you look for differences,
then the smallest difference may be assumed to be an elementary.

82There is an analogy here with local gauge symmetries, as imagined by Weyl.
83Why, for example, would genes be preserved in number and type across species? If that were the case,

all species would eventually equilibrate into one, and what was gained by one species would be lost by
another.

84Causation in the sense of statistical inference has received a lot of popular press in recent times, and it
a subtly different issue that is more controversial than causation by intent[Pea00].

632 NOTES

85It is tempting to say that the probability should be equal to 1 to speak of causation, but that is too
simplistic. We might choose to classify a failure as a fault instead, depending on the arrangement of
intermediate agents in the system.

86A proper description of these states is beyond the scope of this work. This is not a completely trivial
matter. Any dynamical system, in general, is characterized by two ‘canonical’ quantities: q and δq at each
epoch.

87Laws of motion are not laws, of course, but observed patterns that are kept with overwhelming
regularity.

88Note that amplification of effect does not depend on whether a system operates by push or by pull,
though the susceptibility for promises not to be kept may do. Any system that has the intent to transfer
intent with amplification can propagate and magnify both intended and unintended influence.

89It is a general prejudice arising from our manual experience to think of push as a driving force for
change, but we know from countless examples that both possibilities exist. Gravity, magnetism, ‘vacuum
pressure’, etc are all examples of pull. Even at the elementary particle level, interactions can be framed as
retarded or advanced propagation, depending on how we choose to fix boundary conditions. It is precisely
this desire to fix the end state, rather than the start, which favours pull.

90This approach is sometimes used in systems: continuous mandatory replacement of parts to ensure
correctness. It can be effective, but it is disruptive and wasteful.

91This is a method of dissemination used in magazine stands, bookshops, content delivery networks
(CDN), supply chains, etc.

92This was the motivation for cloud computing[SKAEMW13, Bur13a].
93VLSI or very large scale integration is the strategy of compressing multiple electronic components

into a single chip for commodity packaged scaling efficiency.
94Causally, the role of the server can be eliminated effectively by scaling, like in renormalization group

(see [Bur15a]).
95The recursion of agency is sometimes associated with the idea of ‘namespaces’ in information

technology.
96In a bus architecture, like the original Ethernet, where a single channel is shared between multiple

agents that need to coordinate their activity, data length and wavelength are connected. In Manchester
encoding, for instance, a wavelength means a bit of information. Frequency and wavelength play a role in
this tradeoff. Data therefore has a physical size on a wire, and contention resulting from the need to wait
for confirmation on a shared wire sets minimum requirements for transaction size.

97The meaning of ‘at the same time’ is itself ambiguous. Simultaneity in a system is one of the difficult
concepts in relativity, as it assumes a global definition of time, which might not be possible.

98Why doesn’t modularity consider the natural dynamical separation of system parts (such as one might
discover through Principal Component Analysis, or machine learning), or the network centrality regional
structure[SPB+03]? The main reason seems to be that we are more concerned with naming things, and
scoping out territorial claims on functionality than in actual emergent behavioural patterns. This is one
reason why performance analyses lead to refactorings, as an afterthought, than forming the basis for an
initial design.

99Everyone who ever got a multiple choice exam wrong knows that the perspective or promiser and
promisee are different: what is promised and what is received are two different things. You can try to make
something very simple (binary choices); but, if the receiver doesn’t interpret the semantics in the same
way, that countable certainty of a discrete menu is useless.

100In building systems, modules are designed with the end user in mind, but in software systems modules
are principally designed with the developers in mind.

NOTES 633

101I choose not to cite the ephemeral sources for these ‘quotes’ as they are easily found, sometimes
paraphrased, and pulled out of longer discussions. I hope readers agree that they are representative of the
state of thinking.

102I sometimes call them ballistic processes, because we tend to treat computation as if it behaves
something like a game of billiards: the mere sending of some data provokes an immediate involuntary
reaction, fully deterministic. This is used to argue for ‘push’ over ‘pull’ methods, for instance, and is
completely wrong.

103For a definition of proper time, see [Bur19a]
104The argument is that disk storage is cheap today, so why wouldn’t you store everything forever? There

are plenty of reasons. Our current experience with the crisis over cheap plastics should be a wake up call
for anyone advocating an end to garbage collection. For example the escalating power cost of storage
alone is a reason.

105See also the approach to network data consistency taken in [BBKK18].
106I suspect that the underlying and unspoken aim of advocating ‘stateless’ and ‘throw away nothing’

approaches is actually to linearize systems and make them as deterministic as possible by weak coupling.
Alas, the rising cost of this, in some cases, is prohibitive and ultimately unsustainable, so alternative
strategies should probably be considered.

107This idea was the built into the design of CFEngine, a realtime maintenance tool as a safety measure,
and was rarely understood by users.

108The relationship with the strategy used by CFEngine to define ‘convergent operators’[Bur95, Bur04c],
is interesting. If you deal with pure functions, you cannot have maintenance of persistent agents. You
redefine maintenance as the death and rebirth of an agent, with associated loss of runtime state. Runtime
state is contained mutable state. But for a memory process it affects the behaviour of the agent in ‘realtime’,
i.e. in band of the function’s I/O channel.

109This applies to the nodes in any state machine too.
110The example of observing the inconsistent state of a clock was discussed in reference [Bur19a].
111In band ‘self healing’ configuration engines are essentially noise error correction processes, on a fairly

long timescale of minutes to hours, which may be too slow to maintain invariance for busy processes.
112This is basically the reason why Continuous Delivery advocates recommend developing software in a

single branch. Contention can then be resolved in band, since software development is a largely stateful
process, in spite of modularity.

113Agents can be exchanged, by emission from one agent and absorption by another, as the actual
information of the promise body. This is how one models the exchange of forces in quantum theory, via
gauge bosons like the photon, or gluons, etc.

114In information technology, these maps are called variously directory services, name services, indirec-
tion tables, or data indices.

115This is somewhat like the way the immune system binds to cell sites.
116I’ve usually drawn agents schematically as atomic dots, but the shape of an agent is not defined.

Nothing prevents it from appearing as a shell.
117This is essentially how routers and switches forward datagrams in information infrastructure.
118This corresponds roughly to the design of the Border Gateway routing tables, for IP addressing, as

known from the Border Gateway Protocol BGP.
119One can see the historical reasons why the Internet was not designed as a Cartesian lattice, but modern

datacentre fabrics still have the opportunity to repair this choice.
120This is essentially the method of top-down decomposition used in procedural programming, but with

constraints that allow parallelized scaling of execution. One could imagine programming and representation

634 NOTES

languages that support this kind of model in many different walks of life. This is probably how we should
be teaching programming, and service management, instead of the linear imperative models of today. In
the final chapter, based on [Bur16c], we’ll see why the linear storyline approach has its own naturalness.

121In [Bur14] that motion of the second and third kinds distinguish between the idea that space and its
occupants are either: ii) a visitation by a separate entity, or iii) a change in the state of the same entity. In
other words, does space get filled by matter or does matter transform the nature of space?

122The description of services in [BB14a] treats clients and essentially faceless, generic entities.
123This happens frequently in merger and acquisition of companies of course.
124This is actually a hierarchy problem. At the lowest fundamental level of agency, there is no intermediate

solution to this: either agents are adjacent or they aren’t. We have to assume that they can sense and
discover one another somehow (see section 7.8.2).

125It seems likely that survival instincts and intelligence would evolve to be strongest in those species
that cannot find obvious safety in numbers.

126The vernacular ‘dis-aggregation’ is common.
127In data communications, so-called frequency division multiplexing is what corresponds to normal

parallel resource sharing of R
128The similarity to promise terminology should not be a surprise: the two ideas are very closely related.

BGP predates Promise Theory by many years, but through Promise Theory it gains a special clarity that
cannot be seen when focusing on its irrelevant protocol.

129At the time of writing, the construction of a standard switch has valency of 48 possible tenants
downwards, with fixed channel capacity, and a valency of two hosts upwards, each with greater capacity
than the downward channels, for allow for aggregation.

130An analogy might be the following: do we consider the mind to be a tenant of the body, or the body to
be a tenant of the mind? Dynamically (physically) the former makes sense, but semantically the latter is a
highly convenient viewpoint.

131DNS round robin load balancing works in this way, as a directory service. The simple average round
robin balancing algorithm works almost as well as more deterministic feedback algorithms at very low
cost[BU06].

132It is often quoted that a single woman can have a baby in nine months, but nine women cannot make
this happen in a month.

133Paxos, Raft, and other consistency algorithms involve processes of this type.
134The appearance negative contention can manifest when contentions between agents for common

resources are mitigated. This effect has also been observed in the scaling of cities[Bet13].
135It is interesting how there is a limit to social networks due to limited brain size cost, as well known

from the Dunbar hierarchy[Dun96, ZSHD04].
136Alternatively, if we think about the problem graph theoretically, we can also say that it behaves like a
D = N dimensional space, and a trajectory with Hausdorff dimension H = π/sigma. In a graph, the
node degree k = N is the effective dimension of spacetime at the point[Bur14].

137We usually reserve the term ‘service’ for bidirectional interactions, where the results of processing are
returned to the initiator.

138Anyone who has tried to download a large file from the Internet, and have it interrupted, knows how
important it is to not repeated work unnecessarily.

139Typical timescales recorded for Kafka 107 events per second[Wam16].
140Each agent in a chain of processing should be aware of its neighbours’ semantics in order to maximize

the intended meaning in its results, but it is sufficient to known the semantics of a single directional

NOTES 635

flow to be able to make some kind of promise about the result: one can push responsibility for outcome
downstream (see figure 2.4).

141The so-called Internet of Things plays an obvious role in equipping human spaces with smart ca-
pabilities. Information technology has a role to play in enhancing the design of infrastructure, both in
terms of control and monitoring. It is already widely used in transport systems, but many existing systems
are archaic and poorly standardized. It is worth remembering that processing may be carried out by
hardware or software. Programmable low level hardware can work orders or magnitude faster than high
level software (e.g. programmable ASICs, IBM True North chips, etc). Any kind of specialization of space
is a form of hard processing, where agents separate and gravitate to special areas by functional affinity.

Learning capabilities: computers do three things:

• Aggregate/disseminate data: the basis for learning or sharing.

• Transform data: the basis for automation / algorithms.

• Update and maintain software.

When we ask what computing can do for cities and other spaces, we are asking: what can we do with
learning and automated production? Automated learning sounds nice, but it is the computer that is learning,
not necessarily people! To make the computation useful to society, what is learned also has to be made
available, in the right context and at the right time.

Computers are only proxies for decision-making, they do not make decisions. Decisions are made by
human inputs to software or policies that become constraints on the outcomes of processes. Computation
encodes policy in programs that acts as proxies and evaluate the pre-programmed decisions. No matter
how much machine-learning or AI we apply, it is (human) policy decision-making that shapes the results.
This can be applied to people, things, information, or software. There are clearly ethical issues with the
use of automated reasoning in complex systems: what we intend is not always what we get.

142Regardless of where or how decisions are made, the agents that end up with responsibility for keeping
promises are:

People (behaviour, habits, desires, intentions, preferences, wellbeing, health, entertainment), Land
(semantics of land use, urban, green, woodland, agriculture, crops), bacteria, viruses, information (propa-
gation, misuse, illness), companies, institutions, groups (goods, services, products), transportation and
logistics (delivery systems, messengers, relocation), etc.

143There are many themes that one could raise under the aegis of around smart spaces. A few of them are
described below, under the following major themes:

• Access to infrastructure (utilities)

• Housing and workspaces

• Configurable and adaptive structures

• Waste processing

• Balancing privacy and sympathy

• Logistics, and tracking of resources

• Sharing economy

• Competitive economy

• Maintaining diversity to sustain economy and innovation

• Public safety, health, and welfare

• Emergency and disaster response

636 NOTES

• Skill and service availability

How do we make functional selections or decisions: What is the reason for a space?

• Pleasure,

• General use,

• Breathing room,

• Separation (focus)

• Mixing (catalysis)

• etc.
144Sharing allows us to minimize expensive waste, by increasing utilization of resources, but only when

certain conditions are met: For an economy of scale to make sense, there are two prerequisites:

• Moderately-saturated (sparse) demand.

• Moderately-saturated supply (delivery).

Transportation (communication) is the prerequisite key to unlocking this. When supply/demand are too
low, the cost of centralization (transportation) is too high for the central service. When the supply/demand
are too high, the cost of queueing/waiting at the central location is too high for the clients[Bur16b, Bet13,
BLH+07].

145Discrimination of agents for assigning identity is a key function of knowledge and reasoning. For
smart spaces, it means: what is the purpose and signal represented by each spatial location, at each time?
Discrimination of agents (locations), based on functional characteristics, is the way we create cooperative
systems, and encode information patterns (learning). In an information rich society, agents are competing
for attention, through their unique identities (brands) - this is how they establish agency in the assessment
of others. It is not the brands they promise, but the perception (assessment by others) of the brands that
matters.

146Ad hoc services and offerings can be made sense of using ordinary service registration, but spontaneous
events could also be recognized by sensors, without need for manual registration (like in white/yellow
pages). Distributed localization (proximity to resources) is the key to cheap scaling, and discovery helps
to identify both possibilities and efficiencies. Services are not binary, they scale according to costs and
returns.

“...on no account allow the engineering to dictate a building’s form. Place load
bearing elements...according to the social spaces...never modify the social spaces
to conform to the engineering structure...”
–Alexander et al, A Pattern Language[ea77]

Think about the scaling of Content Delivery Networks (CDN). This is classical distribution logistics.
Content-centric networking (CCN) or Name Data Networking (NDN) are also expressions of distributed
supply caching, with information based search capabilities, rather than address-based location.

The idea is to combine a directory service (white/yellow pages) with an address lookup system, like a
table of contents, so that we can look up by function instead of present location. This offers better support
for mobility.

147Hand-waving heuristics or ‘bad feelings’ are often used to cry foul. Bad feelings are not very useful
for engineering, but they cannot be dismissed either. Human intuition is mysterious, and can often sense
‘danger’ without being able to form a narrative to explain it.

148While there is low level causation at work in the system, it is not necessarily traceable as a convenient
human narrative of events.

NOTES 637

149The fighter jet is an example of this. In order to fly with great agility it is basically designed to be
unstable. It remains in control by correcting for these instabilities with very fast computer automation.
This is a case of very clever design around the edge of instability.

150The expression a ‘black swan’ event is sometimes used for rare unimagined occurrences. In this
analogy, you wouldn’t bother to promise that a swan is white, because it is so obvious.

151Science is about measurement, and it is usually unprejudiced about the behaviours of its subjects. In
the case of technology, the subjects are designed deliberately to have semantics; hence that becomes part
of their behaviour. A promise creates an abstract measuring scale for semantically charged, purposeful
outcomes.

152This model can be applied whether an agent is a human or some kind of proxy, machine, device,
etc. Ignoring the distinction makes sense because we humans experience any behaviour as if it were
anthropomorphic or ‘caused by agencies’: think of ‘the ghost in the machine’, or ‘Maxwell’s daemon’.
This is harmless, even practical, as long as we don’t read too much into what we mean by an agent.
Ultimately all agency stems from some human source, either by programming or direct control.

153Like the quote from the chaotician in Jurassic Park said, ‘nature will find a way’.
154Scaling is important because it is an enabler for opportunity: sexual mixing (male), discerning

selection (female), and then post mixing isolation (gestation) in which the arduous calculations work
through their constrained narrative processes. Random mutation might actually be promoted by separation
- isolated environments are less stable and test out mutations more quickly because in a small network,
each single agent is proportionally more important (too big to fail).

155It does not matter here whether we consider the force to be a Newtonian deterministic force, or a
probabilistic susceptibility for drifting closer, as in stochastic systems.

156One of the weaknesses of this simple model is that this is unclear, but we return to discuss this issue in
the next chapter

157In recent times, the idea of ‘chaos engineering’ has been used, often attributed to Netflix engineers.
The idea is to randomly search the space of possible catastrophes by wreaking chaos, switching things on
and off, and so on, in the hope of provoking the unexpected. This is a kind of Monte Carlo search method
for anticipating failure modes.

158Some would say ‘low probability’ but this is an abuse of terminology, as probability is only meaningful
under expectations and assumptions of essential system stability, i.e. in which future behaviours are
basically the same as past behaviours or are only slowly varying.

159It’s possible that other agents, merely in scope of a promise, might rely on it ‘unofficially’, but that is
an act of irresponsibility by the downstream principle.

160This problem was studied in [Dis07, BD07, BDS07] for autonomous self-healing repairs with depen-
dencies added.

161The example of using maggots to clean a wound comes to mind. We associate maggots with the
disgusting dirty flies they become, yet maggots eat only dead flesh and discriminate far more efficiently
than any artificial mechanism we have yet created.

162The CALM principle attempts to do this for more general processes, see section 5.12.3.
163The use of vector clocks is common to bring a notion of consistent serialization of changes in systems,

preserving order, but this is independent of the temporal consistency of global state, which is basically
impossible without locking in a highly disruptive manner. Thus a promise of consistency might be given at
the expense of a promise about availability. This is known as the CAP problem[Bre00].

164Text editors can do this as long as there is only a single journal of changes and a single user interacting
with the data. Local databases can likewise maintain process integrity.

638 NOTES

165This explains the value of in band configuration maintenance for security and safety in a live setting.
Instead of relying on isolation, one hopes for isolation but validates it with a competing immunity process
(‘trust but verify’).

166This distinction and its scale dependence was the basis for the configuration management wars of the
2000s. It was argued that an initial state process was required along with complete congruence of steps
(requiring total isolation at a high level)[Tra02]. The converse was argued: by creating closed operations in
which the outcome was assured at a low level, the dependence on exterior ordering could be relaxed (which
corresponds to a non-blocking execution policy)[Bur95, Bur04c]. The latter is just a micro-encapsulation
of the former. The process is the same on different scales, but the latter is ‘reactive’ in the sense of the
Reactive Manifesto[BFKT].

167There is a tradition of using logic to try to eliminate uncertainty in reasoning, which in turn has
brought an almost irrational focus to bear on logics that are quite ill-equipped to describe the real-world
situations.

168This is what Artificial Intelligence people refer to as unsupervised learning
169The term immutable process is sometimes used in computing to refer to the idea that what happens

inside a box, which only observes the outside world, does not affect the world outside the box, even though
it affects the world inside the box.

170Interestingly, the collection of observational measurements from a distributed system is related to
the far-more widely studied problem of data consensus, in Computer Science[Lam01, OO14]. The latter
considers how we may distribute multiple copies of information over a wide area, with integrity of order—
surely one of the most frequently revisited problems tackled in distributed systems. The fascination with
consensus stems from the attempt to cling onto approximate determinism.

171The contents of this chapter are basically derived from [Bur17c, Bur19a].
172In stable predictable systems, interaction scales are not strongly coupled. Strongly coupled systems

may be unpredictable and unstable.
173This section is based on the discussion in [Bur16c].
174In Einsteinian relativity, the term proper time is reserved for the time experienced by an observer

about its own states, so I keep to this convention here.
175The main approach to determining spacetime invariance in science is by the use of statistics (aggre-

gation or ‘learning’): by accumulating multiple samples, we hope to separate what is quickly varying
(fluctuation) from what is slowly varying (trend). Persistent concepts are what remains during or after a
process of learning has separated these processes.

176See reference [BB14a]. The law of intermediaries basically says that intermediate agents cannot be
relied upon to faithfully transmit promises or intent, because all agents are fundamentally autonomous.

177I won’t consider this here, but see the signals lemma in [BL19].
178The extent to which we have the ability to localize a causal influence is the essence of ‘root cause’

analysis: the ability to contain the process within a virtual boundary which itself can make promises on a
new level. This is part of the motivation for virtualization and containerization.

179We must be cautious and pay attention to the Promise Theory principle that just because one agent
promises to contain another or be followed by another, it does not imply that the agent concerned agrees
with this, and may not promise it. For example, firewalls may create a one-way glass effect that prevents
the inverse from being implemented)

180This is a principle that I have reiterated many times since CFEngine[Bur95] to stabilize and guide us
towards invariant meaning.

181The question of whether to invest in promising an expensive and late consensus over a coarse grain of
space, or whether to expose its divergences as a feature remains a policy choice—one that currently aligns

NOTES 639

with opposite poles of Dev and Ops.
182I keep extensive notebooks of observations and thinking instead of a diary.
1833GPP Technical Specification TS 23.003 Numbering, addressing and identification contains a section

defining the Identification of location areas and base stations, using LAI, LAC, RAI, RAC, CI, CGI, BSIC,
RSZI, LN, SAI. Also a section on Identification of mobile subscribers, using IMSI, TMSI, P-TMSI, LMSI,
TLLI.

640 NOTES

BIBLIOGRAPHY

[Abb92] L.F. Abbott. Acta Physica Polonica, B13:33, 1992.

[ABC+15] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R.J. Fernndez-
Moctezuma, R. Lax, S. McVeety, D. Mills, F. Perry, E. Schmidt, and
S. Whittle. The dataflow model: A practical approach to balancing
correctness, latency, and cost in massive-scale, unbounded, out-of-order
data processing. Proceedings of the VLDB Endowment, 8:1792–1803,
2015.

[ABH06] D. Aredo, M. Burgess, and S. Hagen. A promise theory view on the
policies of object orientation and the service oriented architecture. In
submitted to Science of Computer Programming, 2006.

[AHF+14] E. Arcaute, E. Hatna, P. Ferguson, H. Youn, A. Johansson, and M. Batty.
Constructing cities, deconstructing scaling laws. Journal of The Royal
Society Interface, 12(102), 2014.

[Amd67] G.M. Amdahl. Validity of a the single processor approach to achieving
large scale computer capabilities. In Proceedings of the AFTPS Spring
Joint Computer Conference, 1967.

[Ano14] Anonymous. Clos ip fabrics with qfx5100 switches: Building a flexible,
programmable datacenter network using layer 3 protocols and overlay
networking. Technical report, Juniper Networks, 2014.

[AR97] A. Abdul-Rahman. The pgp trust model. EDI-Forum: the Journal of
Electronic Commerce, 1997.

[Ash52] W.R. Ashby. Design for a brain. J. Wiley & Sons, 1952.

[Ash56] W.R. Ashby. An introduction to cybernetics. J. Wiley & Sons, 1956.

641

642 BIBLIOGRAPHY

[Asi50] Isaac Asimov. I, Robot. Doubleday?, ?, 1950.

[Axe84] R. Axelrod. The Evolution of Co-operation. Penguin Books, 1990
(1984).

[Axe97] R. Axelrod. The Complexity of Cooperation: Agent-based Models
of Competition and Collaboration. Princeton Studies in Complexity,
Princeton, 1997.

[Bar96] G.I. Barenblatt. Scaling, self-similarity, and intermediate asymptotics.
Cambridge, 1996.

[Bar03] G.I. Barenblatt. Scaling. Cambridge, 2003.

[BB06] J.A. Bergstra and M. Burgess. Local and global trust based on the con-
cept of promises. Technical report, arXiv.org/abs/0912.4637 [cs.MA],
2006.

[BB08] R. Badonnel and M. Burgess. Service load balancing with autonomic
servers: Reversing the decision making process. In Resilient Networks
and Services, Second International Conference on Autonomous Infras-
tructure, Management and Security, AIMS 2008, Bremen, Germany, July
1-3, 2008, Proceedings, pages 92–104, 2008.

[BB14a] J.A. Bergstra and M. Burgess. Promise Theory: Principles and Applica-
tions. χtAxis Press, 2014.

[BB14b] Jan Bergstra and Mark Burgess. Promise Theory. χtAxis Press, February
2014.

[BB19a] J. A. Bergstra and M. Burgess. A Promise Theoretic Account of the
Boeing 737 Max MCAS Algorithm Affair. arXiv.org/abs/2001.01543,
page 20 pages, 2019.

[BB19b] J.A. Bergstra and M. Burgess. A Promise Theoretic account of the
Boeing 737 Max MCAS algorithm affair. arXiv (submitted), 2019.

[BB20] J.A. Bergstra and M. Burgess. Candidate software process flaws for the
Boeing 737 max MCAS algorithm, and risks for a proposed upgrade.
arXiv (submitted), 2020.

[BBCD14] P. Borrill, M. Burgess, T. Craw, and M. Dvorkin. A promise theory
perspective on data networks. CoRR, abs/1405.2627, 2014.

BIBLIOGRAPHY 643

[BBCEM10] J. Bjelland, M. Burgess, G. Canright, and K. Eng-Monsen. Eigenvectors
of directed graphs and importance scores: dominance, t-rank, and sink
remedies. Data Mining and Knowledge Discovery, 20(1):98–151, 2010.

[BBKK18] P. Borrill, M. Burgess, A. Karp, and A. Kasuya. Spacetime-
entangled networks (i) relativity and observability of stepwise consensus.
arXiv:1807.08549 [cs.DC], 2018.

[BC03] M. Burgess and G. Canright. Scalability of peer configuration manage-
ment in partially reliable and ad hoc networks. Proceedings of the VIII
IFIP/IEEE IM conference on network management, page 293, 2003.

[BC04] M. Burgess and G. Canright. Scaling behaviour of peer configuration in
logically ad hoc networks. IEEE eTransactions on Network and Service
Management, 1:1, 2004.

[BC11] M. Burgess and A. Couch. On system rollback and totalized fields:
An algebraic approach to system change. J. Log. Algebr. Program.,
80(8):427–443, 2011.

[BCA+12] Md. Faizul Bari, Shihabur Rahman Chowdhury, Reaz Ahmed, Raouf
Boutaba, and Bertrand Mathieu. A survey of naming and routing
in information-centric networks. IEEE Communications Magazine,
50(12):44–53, 2012.

[BD07] M. Burgess and M. Disney. Understanding scalability in network ag-
gregation with continuous monitoring. In Lecture Notes on Computer
Science, Proc. 18th IFIP/IEEE Distributed Systems: Operations and
Management (DSOM 2007), volume (submitted). Springer, 2007.

[BDS07] M. Burgess, M. Disney, and R. Stadler. Network patterns in cfengine
and scalable data aggregation. In Proceedings of the 21st Conference on
Large Installation System Administration Conference, LISA’07, pages
22:1–22:15, Berkeley, CA, USA, 2007. USENIX Association.

[Bel09] M. Belbin. Team roles.
http://www.belbin.com/about/belbin, 2009.

[Bet13] L.M.A. Bettencourt. The origins of scaling in cities (with supplements).
Science, 340:1438–1441, 2013.

[BF07a] M. Burgess and S. Fagernes. Laws of systemic organization and collec-
tive behaviour in ensembles. In Proceedings of MACE 2007, volume 6
of Multicon Lecture Notes. Multicon Verlag, 2007.

644 BIBLIOGRAPHY

[BF07b] M. Burgess and S. Fagernes. Norms and swarms. Lecture Notes on
Computer Science, 4543 (Proceedings of the first International Con-
ference on Autonomous Infrastructure and Security (AIMS)):107–118,
2007.

[BF08] M. Burgess and S. Fagernes. Laws of human-computer behaviour and
collective organization. submitted to the IEEE Journal of Network and
Service Management, 2008.

[BFKT] J. Bonér, D. Farley, R. Kuhn, and M. Thompson. The reactive manifesto.
https://www.reactivemanifesto.org/.

[BHRS01] M. Burgess, H. Haugerud, T. Reitan, and S. Straumsnes. Measuring
host normality. ACM Transactions on Computing Systems, 20:125–160,
2001.

[BK07] M .Burgess and L. Kristiansen. Handbook of Network and System
Administration, chapter On the Complexity of Change and Configuration
Management. Elsevier, 2007.

[BL19] M. Burgess and W. Louth. Preserving the significance of distributed
observations. unpublished, 2019.

[BLH+07] L.M.A. Bettencourt, J. Lobo, D. Helbing, C. Hühnert, and G.B. West.
Growth, innovation, scaling and the pace of life in cities. Proceedings
of the National Academy of Sciences, 104(107):7301–7306, 2007.

[Bon16] J. Bonér. Life beyond the illusion of the present (talk at voxxeddays,
zurich). 2016.

[Bon19] J. Bonér. Serverless needs a bolder, stateful vision. The Newstack,
Serverless, 2019.

[BP19] M. Burgess and E. Prangsma. Koalja: from data plumbing to smart
workspaces in the extended cloud. arXiv:1907.01796 [cs.DC], 2019.

[Bre00] E. Brewer. Towards robust distributed systems. In Keynote, Symposium
on Principles of Distributed Computing (PODC)., 2000.

[Bre18] C. Breck. From a time-series database to a key operational technology
for the enterprise: Part ii, March 2018.

[BS97] M. Burgess and D. Skipitaris. Adaptive locks for frequently scheduled
tasks with unpredictable runtimes. Proceedings of the Eleventh Systems

BIBLIOGRAPHY 645

Administration Conference (LISA XI) (USENIX Association: Berkeley,
CA), page 113, 1997.

[BU06] M. Burgess and G. Undheim. Predictable scaling behaviour in the data
centre with multiple application servers. In Lecture Notes on Computer
Science, Proc. 17th IFIP/IEEE Distributed Systems: Operations and
Management (DSOM 2006), volume 4269, pages 9–60. Springer, 2006.

[Bur4 a] M. Burgess. A Treatise on Systems: Volume 1: Analytical description of
human-information networks. in progress, 2004-.

[Bur4 b] M. Burgess. A Treatise on Systems: Volume 2: Intentional systems with
faults, errors, and flaws. in progress, 2004-.

[Bur95] M. Burgess. A site configuration engine. Computing systems (MIT
Press: Cambridge MA), 8:309, 1995.

[Bur98] M. Burgess. Computer immunology. Proceedings of the Twelth Systems
Administration Conference (LISA XII) (USENIX Association: Berkeley,
CA), page 283, 1998.

[Bur00a] M. Burgess. The kinematics of distributed computer transactions. Inter-
national Journal of Modern Physics, C12:759–789, 2000.

[Bur00b] M. Burgess. Thermal, non-equilibrium phase space for networked
computers. Physical Review E, 62:1738, 2000.

[Bur02] M. Burgess. Two dimensional time-series for anomaly detection and
regulation in adaptive systems. Lecture Notes in Computer Science,
IFIP/IEEE 13th International Workshop on Distributed Systems: Oper-
ations and Management (DSOM 2002), 2506:169, 2002.

[Bur03] M. Burgess. On the theory of system administration. Science of Com-
puter Programming, 49:1, 2003.

[Bur04a] M. Burgess. Analytical Network and System Administration — Manag-
ing Human-Computer Systems. J. Wiley & Sons, Chichester, 2004.

[Bur04b] M. Burgess. Configurable immunity for evolving human-computer
systems. Science of Computer Programming, 51:197, 2004.

[Bur04c] M. Burgess. Configurable immunity model of evolving configuration
management. Science of Computer Programming, 51:197, 2004.

646 BIBLIOGRAPHY

[Bur04d] Mark Burgess. Analytical Network and System Administration — Man-
aging Human-Computer Systems. J. Wiley & Sons, Chichester, 2004.

[Bur05a] M. Burgess. A tiny overview of cfengine: convergent maintenance
agent. In Proceedings of the 1st International Workshop on Multi-Agent
and Robotic Systems, MARS/ICINCO, 2005.

[Bur05b] Mark Burgess. An approach to understanding policy based on autonomy
and voluntary cooperation. In IFIP/IEEE 16th international workshop
on distributed systems operations and management (DSOM), in LNCS
3775, pages 97–108, 2005.

[Bur09] Mark Burgess. Knowledge management and promises. Lecture Notes
on Computer Science, 5637:95–107, 2009.

[Bur13a] M. Burgess. In Search of Certainty: the science of our information
infrastructure. Xtaxis Press, 2013.

[Bur13b] Mark Burgess. In Search of Certainty - The Science of Our Information
Infrastructure. χtAxis Press, November 2013.

[Bur14] M. Burgess. Spacetimes with semantics (i).
http://arxiv.org/abs/1411.5563, 2014.

[Bur15a] M. Burgess. Spacetimes with semantics (ii).
http://arxiv.org/abs/1505.01716, 2015.

[Bur15b] Brendan Burns. How kubernetes changes operations. ;login:, 40(5),
2015.

[Bur16a] M. Burgess. A promise theory approach to understanding resilience:
faults, errors, and tolerance within systems. Technical report, Available
at markburgess.org, 2015-2016.

[Bur16b] M. Burgess. On the scaling of functional spaces, from smart cities to
cloud computing. arXiv:1602.06091 [cs.CY], 2016.

[Bur16c] M. Burgess. Spacetimes with semantics (iii).
http://arxiv.org/abs/1608.02193, 2016.

[Bur17a] M. Burgess. From observability to significance in distributed informa-
tion systems.
https://arxiv.org/abs/1907.05636, 2017.

BIBLIOGRAPHY 647

[Bur17b] M. Burgess. Locality, statefulness, and causality in distributed informa-
tion systems (concerning the scale dependence of system promises).
https://arxiv.org/abs/1909.09357, 2017.

[Bur17c] M. Burgess. A spacetime approach to generalized cognitive reasoning
in multi-scale learning.
https://arxiv.org/abs/1702.04638, 2017.

[Bur18] M. Burgess. Notes of data pipelines. Technical report, Aljabr Inc., June
2018.

[Bur19a] M. Burgess. From observability to significance in distributed systems.
arXiv:1907.05636 [cs.MA], 2019.

[Bur19b] M. Burgess. Locality, statefulness, and causality in distributed infor-
mation systems (concerning the scale dependence of system promises).
arXiv:1909.09357 [cs.DC], 2019.

[Bur19c] M. Burgess. Smart Spacetime. χtAxis Press, 2019.

[Buz73] J.P. Buzen. Computational algorithms for closed queueing networks
with exponential servers. Communications of the ACM, 16:527, 1973.

[BW15] M. Burgess and H. Wildfeuer. Technical report, IRTF,
https://tools.ietf.org/html/draft-burgess-promise-iot-arch-00.txt,
Oct 19 2015.

[Car18] K. Carter. Broken promises (talk at jfokus). 2018.

[CB09] A. Couch and M. Burgess. Compass and direction in topic maps. (Oslo
University College preprint), 2009.

[CG00] David R. Cheriton and Mark Gritter. Triad: A scalable deployable
nat-based internet architecture. Technical report, 2000.

[CHIK03] A. Couch, J. Hart, E.G. Idhaw, and D. Kallas. Seeking closure in an open
world: A behavioural agent approach to configuration management.
Proceedings of the Seventeenth Systems Administration Conference
(LISA XVII) (USENIX Association: Berkeley, CA), page 129, 2003.

[Cho59] N. Chomsky. On certain formal properties of grammars. Information
and Control, 2(2):137–167, 1959.

648 BIBLIOGRAPHY

[CL99] Hyoung-Kee Choi and John O. Limb. A behavioral model of web
traffic. In ICNP ’99: Proceedings of the Seventh Annual International
Conference on Network Protocols, page 327, Washington, DC, USA,
1999. IEEE Computer Society.

[Clo53] C. Clos. A study of non-blocking switching networks. Bell System
Technical Journal, 32(2):406–424, 1953.

[Coc06] A. Cockcroft. Utilization is virtually useless as a metric! In Proceedings
of Int. CMG Conference, pages 557–562, 2006.

[Coc19] A. Cockcroft. Failure modes and continuous resilience. Medium, 2019.

[CT91] T.M. Cover and J.A. Thomas. Elements of Information Theory. (J.Wiley
& Sons., New York), 1991.

[D9̈6] D. Dörner. The Logic of Failure. Basic Books, New York, 1996.

[DA94] R. David and H. Alla. Petri nets for modelling of dynamic systems — a
survey. Automatica, 30:175–202, 1994.

[Dat99] C.J. Date. Introduction to Database Systems (7th edition). Addison
Wesley, Reading, MA, 1999.

[DCP17] G.M. D’Ariano, G. Chiribella, and P. Perinotti. Quantum Theory From
First Principles. Cambridge, 2017.

[Dek06] S. Dekker. The field guide to understanding human error. Ashgate
Publishing, Surrey, 2006.

[Dek11] S. Dekker. Drift Into Failure. Ashgate Publishing, Surrey, 2011.

[DEKM98] R. Durbin, S. Eddy, A. Krigh, and G. Mitcheson. Biological Sequence
Analysis. Cambridge, Cambridge, 1998.

[DF98] D. Dasgupta and S. Forest. An anomaly detection algorithm inspired by
the immune system. Artifical immune systems and their applications,
page 262, 1998.

[DH06] D.D.Woods and E. Hollnagel. Joint Cognitive Systems: Patterns in
Cognitive Systems Engineering. Taylor & Francis, New York, 2006.

[DHS10] F. Dowker, J. Henson, and R. Sorkin. Discreteness and the transmission
of light from distant sources. arXiv:1009.3058 [gr-qc], 2010.

BIBLIOGRAPHY 649

[Dia97] J. Diamond. Guns, Germs, and Steel. Vintage, 1997.

[Die02] R.H. Dieck. Measurement and Uncertainty (Methods and Applications).
Instrument, Systems and Automation Society, Triangle Park, North
Carolina, third edition edition, 2002.

[Dis07] M. Disney. Exploring patterns for scalability of network administration
with topology constrants. Master’s thesis, Oslo University College,
2007.

[Dow08] F. Dowker. Causal sets and the deep structure of spacetime. arXiv:gr-
qc/0508109, 2008.

[DS05] M. Dam and R. Stadler. A generic protocol for network state aggregation.
RVK 05, Linkping, Sweden, June 14-16, 2005.

[Dun96] R. Dunbar. Grooming, Gossip and the Evolution of Language. Faber
and Faber, London, 1996.

[ea77] C. Alexander et al. A Pattern Language: Towns, Building, Construction.
Oxford University Press, 1977.

[Eve56] H. Everett. Theory of the Universal Wavefunction. PhD thesis, Princeton,
1956.

[Fey49] R.P. Feynamn. Space-time approach to quantum electrodynamics. Phys-
ical Review, 76:769, 1949.

[FLP85] M.J. Fischer, N.A. Lynch, and M.S. Paterson. Impossibility of dis-
tributed consensus with one faulty process. J. ACM, 32(2):374–382,
April 1985.

[For75] D. Forster. Hydrodynamic Fluctuations, Broken Symmetry and Correla-
tion Functions. (Addison Wesley, California), 1975.

[GH98] Donald Gross and Carl M. Harris. Fundamentals of queueing theory.
John Wiley & Sons, Inc., New York, NY, USA, 3 edition, 1998.

[GL06] Jim Gray and Leslie Lamport. Consensus on transaction commit. ACM
Trans. Database Syst., 31(1):133–160, March 2006.

[Gol92] N. Goldenfeld. Lectures On Phase Transitions And The Renormalization
Group. Addison Wesley, 1992.

650 BIBLIOGRAPHY

[Gor68] J.E. Gordon. The New Science of Strong Materials, or Why You Don’t
Fall Through the Floor. Penguin Books, London, 1968.

[GPT15] N.J. Gunther, P. Puglia, and K. Tomasette. Hadoop superlinear scalabil-
ity: The perpetual motion of parallel performance. ACM Queue, 13(5),
2015.

[GS01] G.R. Grimmett and D.R. Stirzaker. Probability and random processes
(3rd edition). Oxford scientific publications, Oxford, 2001.

[Gun93] N. J. Gunther. A simple capacity model of massively parallel transaction
systems. In CMG National Conference, 1993.

[Gun08] N.J. Gunther. A general theory of computational scalability based on
rational functions. Technical report, arXiv:0808.1431, 2008.

[HA19] J.M. Hellerstein and P. Alvaro. Keeping calm: When distributed consis-
tency is easy. arXiv:1901.01930 [cs.DC], 2019.

[Har11] Y.N. Harari. Sapiens. Vintage, 2011.

[HBS73] C. Hewitt, P. Bishop, and R. Steiger. A universal modular actor formal-
ism for artificial intelligence. In Proc. of the 3rd IJCAI, pages 235–245,
Stanford, MA, 1973.

[Hel96] J.L. Hellerstein. An approach to selecting metrics for detecting per-
formance problems in information systems. Performance Evaluation
Review, 24:266, 1996.

[Hel07] P. Helland. Life beyond distributed transactions: an apostate’s opinion.
ACM Queue (Distributed Computing), 14(5), 2016 (2007).

[Hel16] P. Helland. Immutability changes everything. ACM Queue (Databases),
13(9), 2016.

[HF10] J. Humble and D. Farley. Continuous Delivery: Reliable Software
Releases Through Build, Test, and Deployment Automation. Addison
Wesley, New Jersey, 2010.

[Hic09] R. Hickey. Are we there yet? Talk at QConn, 2009.
http://www.infoq.com/presentations/Are-We-There-Yet-Rich-Hickey.

[HL93] P. Hoogenboom and J. Lepreau. Computer system performance prob-
lem detection using time series models. Proceedings of the USENIX
Technical Conference, (USENIX Association: Berkeley, CA), page 15,
1993.

BIBLIOGRAPHY 651

[Hog95] C Hogan. Metrics for management. Proceedings of the Ninth Systems
Administration Conference (LISA IX) (USENIX Association: Berkeley,
CA, page 125, 1995.

[HPFS02] R. Housley, W. Polk, W. Ford, and D. Solo. Internet x.509 public key
infrastructure: Certificate and certificate revocation list (crl) profile.
http://tools.ietf.org/html/rfc3280, 2002.

[HR94] A. Høyland and M. Rausand. System Reliability Theory: Models and
Statistical Methods. J. Wiley & Sons, New York, 1994.

[HWL06] E. Hollnagel, D.D. Woods, and N. Leveson, editors. Resilience Engi-
neering. Ashgate Publishing, Surrey, 2006.

[IEE] IEEE. A standard classification for software anomalies. IEEE Computer
Society Press, 1992.

[Inc] Aljabr Inc. Koalja history package.
https://github.com/AljabrIO/ koalja-operator/tree/master/pkg/history.

[IT93] ITU-T. Open Systems Interconnection - The Directory: Overview of
Concepts, models and service. Recommendation X.500. International
Telecommunications Union, Geneva, 1993.

[Kan03] L. Kanies. Isconf: Theory, practice, and beyond. Proceedings of the
Seventeenth Systems Administration Conference (LISA XVII) (USENIX
Association: Berkeley, CA), page 115, 2003.

[Kle76] Leonard Kleinrock. Queueing Systems: Computer Applications, vol-
ume 2. John Wiley & Sons, Inc., 1976.

[KMS06] T. Konopka, F. Markopoulou, and L. Smolin. Quantum graphity.
arXiv:hep-th/0611197v1, 2006.

[Kri63] S.A. Kripke. Semantical considerations in modal logic. Acta Philosoph-
ica Fenica, 16:83–94, 1963.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 21(7):558–565, July 1978.

[Lam01] Leslie Lamport. Paxos Made Simple. SIGACT News, 32(4):51–58,
December 2001.

[Lay06] Richard Layard. Happiness: Lessons from a New Science. Penguin,
2006.

652 BIBLIOGRAPHY

[LGZ+14] H. Li, A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica. Tachyon:
Reliable, memory speed storage for cluster computing frameworks. In
Proceedings of the ACM Symposium on Cloud Computing, SOCC ’14,
pages 6:1–6:15, New York, NY, USA, 2014. ACM.

[LLG+09] M. Liu, M. Li, D. Golovnya, E. A. Rundensteiner, and K. Claypool.
Sequence pattern query processing over out-of-order event streams. In
2009 IEEE 25th International Conference on Data Engineering, pages
784–795, March 2009.

[LP97] H. Lewis and C. Papadimitriou. Elements of the Theory of Computation,
Second edition. Prentice Hall, New York, 1997.

[Mar98] F. Markopoulou. The internal description of a cause set: What the
universe looks like from the inside. arXiv:gr-qc/9811053v2, 1998.

[MB04] G. Canright M. Burgess. Scalability of peer configuration management
in logically ad hoc networks. Network and Service Management, IEEE
Transactions on, (1):21 – 29, 2004.

[Mil09] R. Milner. The space and motion of communicating agents. Cambridge,
2009.

[MK05] Mark Burgess and Kyrre Begnum. Voluntary cooperation in pervasive
computing services. In LISA’05, 2005.

[MMS85] J.F. Meyer, A. Movaghar, and W.H. Sanders. Stochastic activity net-
works: structure, behavior and application. Proceedings of the Interna-
tional Conference on Timed Petri Nets, page 106, 1985.

[Moo02] T. Moors. A critical review of ”end-to-end arguments in system design”.
In 2002 IEEE International Conference on Communications. Confer-
ence Proceedings. ICC 2002 (Cat. No.02CH37333), volume 2, pages
1214–1219 vol.2, April 2002.

[Myr78] J. Myrheim. Statistical geometry. CERN preprint TH.2538, August
1978.

[Nar88] M.J. Narasimha. The batcher-banyan self-routing network: univer-
sality and simplification. Communications, IEEE Transactions on,
36(10):1175–1178, Oct 1988.

[Nat98] B. Natvig. Pålitelighetsanalyse med teknologiske anvendelser. Univer-
sity of Oslo Compendium, Oslo, Norway, 1998.

BIBLIOGRAPHY 653

[Nel95] Randolph Nelson. Probability, stochastic processes, and queueing
theory: the mathematics of computer performance modeling. Springer-
Verlag New York, Inc., New York, NY, USA, 1995.

[New03] M.E.J. Newman. The structure and function of complex networks. SIAM
Review, 45:167–256, 2003.

[NLK13] E. Nkposong, T. LaBerge, and N. Kitajima. Experiences with bgp in
large scale data centers: Teaching an old protocol new tricks. Technical
report, Microsoft, 2013.

[NRC81] U.S. Nuclear Regulatory Commission NRC. Fault Tree Handbook.
NUREG-0492, Springfield, 1981.

[OO14] Diego Ongaro and John Ousterhout. In search of an understandable
consensus algorithm. In Proceedings of the 2014 USENIX Conference
on USENIX Annual Technical Conference, USENIX ATC’14, pages
305–320, Berkeley, CA, USA, 2014. USENIX Association.

[pap19] White paper. The new rules of sampling. Technical report, Honey-
comb.com, 2019.

[PBMW98] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank cita-
tion ranking: Bringing order to the web. Technical report, Stanford
University, Stanford, CA, 1998.

[Pea88] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgen Kaufmann, San Francisco, 1988.

[Pea00] J. Pearl. Causality. Cambridge University Press, Cambridge, 2000.

[PS06] A. Gonzalez Prieto and R. Stadler. Adaptive distributed monitoring with
accuracy objectives. ACM SIGCOMM workshop on Internet Network
Management (INM 06), Pisa, Italy, 2006.

[Rea90] J. Reason. Human Error. Cambridge, Cambridge, 1990.

[Rec97] ITU-T Recommendation. X.509 (1997 e): Information technology -
open systems interconnection - the directory: Authentication framework.
Technical report, 1997.

[SBS99] R. Sekar, T. Bowen, and M. Segal. On preventing intrusions by pro-
cess behaviour monitoring. Proceedings of the workshop on intrusion
detection and network monitoring, USENIX, 1999.

654 BIBLIOGRAPHY

[SC07] Yizhan Sun and Alva Couch. Handbook of Network and System Admin-
istration, chapter Complexity of System Configuration Management.
Elsevier, 2007.

[Sea83] J.R. Searle. Intentionality. Cambridge University Press, Cambridge,
1983.

[Sha40] C.E. Shannon. An algebra for theoretical genetics. Massachusetts
Institute of Technology, Dept. of Mathematics, 1940.

[SKAEMW13] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes.
Omega: Flexible, scalable schedulers for large compute clusters. In Pro-
ceedings of the 8th ACM European Conference on Computer Systems,
EuroSys ’13, pages 351–364, New York, NY, USA, 2013. ACM.

[Sor03] R.D. Sorkin. Causal sers: Discrete gravity. arXiv:gr-qc/0309009, 2003.

[SPB+03] T.H. Stang, F. Pourbayat, M. Burgess, G. Canright, K. Engø, and
Å. Weltzien. Archipelago: A network security analysis tool. In Pro-
ceedings of The 17th Annual Large Installation Systems Administration
Conference (LISA 2003), San Diego, California, USA, October 2003.

[SS97] M.I. Seltzer and C. Small. Self-monitoring and self-adapting operating
systems. Proceedings of the Sixth workshop on Hot Topics in Operating
Systems,Cape Cod, Massachusetts, USA. IEEE Computer Society Press,
1997.

[SS03] M. Steinder and A. Sethi. A survey of fault localization techniques in
computer networks. Science of Computer Programming, 53:165, 2003.

[Sto86] M. Stonebraker. The case for shared nothing architecture. Database
Engineering, 9(1), 1986.

[SW49] C.E. Shannon and W. Weaver. The mathematical theory of communica-
tion. University of Illinois Press, Urbana, 1949.

[Tai88] J. Tainter. The Collapse of Complex Societies. Cambridge, 1988.

[Tal12] N.N. Taleb. Antifragile: Things that Gain from Disorder. Allen Lane,
London, UK, 2012.

[TDW+12] A. Thomson, T. Diamond, S.C. Weng, K. Ren, P. Shao, and D.J. Abadi.
Calvin: Fast distributed transactions for partitioned database systems.
In Proceedings of the 2012 ACM SIGMOD International Conference on

BIBLIOGRAPHY 655

Management of Data, SIGMOD ’12, pages 1–12, New York, NY, USA,
2012. ACM.

[TH98] S. Traugott and J. Huddleston. Bootstrapping an infrastructure. Pro-
ceedings of the Twelth Systems Administration Conference (LISA XII)
(USENIX Association: Berkeley, CA), page 181, 1998.

[t’H14] G. t’Hooft. The cellular automaton interpretation of quantum mechanics.
arXiv:1405.1548 [quant-ph], 2014.

[Top72] J. Topping. Errors of Observation and their Treatment. Chapman and
Hall, 1972.

[Tra02] S. Traugott. Why order matters: Turing equivalence in automated
systems administration. Proceedings of the Sixteenth Systems Admin-
istration Conference (LISA XVI) (USENIX Association: Berkeley, CA),
page 99, 2002.

[VGS+17] A. Verbitski, A. Gupta, D. Saha, M. Brahmadesam, K. Gupta, R. Mittal,
S. Krishnamurthy, S. Maurice, T. Kharatishvili, and X. Bao. Amazon au-
rora: Design considerations for high throughput cloud-native relational
databases. In Proceedings of the 2017 ACM International Conference
on Management of Data, SIGMOD ’17, pages 1041–1052, New York,
NY, USA, 2017. ACM.

[Wam16] D. Wampler. Fast Data Architectures for Streaming Applications.
O’Reilly, 2016.

[WDSC07] F. Wuhib, M. Dam, R. Stadler, and A. Clemm. Robust monitoring
of network-wide aggregates through gossiping. In 10th IFIP/IEEE
International Symposium on Integrated Management (IM 2007), 2007.

[Wes99] G.B. West. The origin of universal scaling laws in biology. Physica A,
263:104–113, 1999.

[WF45] J.A. Wheeler and R.P. Feynman. Interaction with the absorber as the
mechanism of radiation. Reviews of Modern Physics, 17:157–161, 1945.

[WG06] IEEE 1044 WG. Ieee standard classification for software anomalies,
1992-2006.

[Wig17] A. Wiggins. The twelve-factor app. 12factor.net, 2017.

[Wik17] Wikipedia. Wirth’s law. Wikipedia, 2017.

656 BIBLIOGRAPHY

[ZKT19] H. Zenil, N.A. Kiani, and J. Tegnér. The thermodynamics of network
coding and an algorithmic refinement of the principle of maximum
entropy. Entropy, 21(560), 2019.

[ZSHD04] W.X. Zhou, S. Sornette, R.A. Hill, and R.I.M. Dunbar. Discrete hierar-
chical organization of social group sizes. Proc. Royal Soc., 272:439–444,
2004.

INDEX

M/M/1 queue, 445
M/M/m queue, 550
λ arrival rate, 550
µ service rate, 550
q microstate, 19
3 F’s, 69, 480, 536
4 R’s, 536

A/B testing, 566
Absorbing an agent, 53
Absorption, 68, 628

Defined, 173
Accountability, 39

Democratic, 39
Accuracy, 492
Accusation, 37
ACID-BASE

In databases, 215
Actor model, 367
Actual time, 147
Ad hoc monitoring, 88
Ad hoc system, 88
Address

Numerical, 385
Post, 387
Semantic, 385

Addressability, 326, 382
Indirection, 324
Scaling, 327
Security, 416

Virtual, 324
Adiabatic, 367
Adiabatically smooth systems, 216
Adjacency, 107

Meaning, 119
Promise, 108, 119
Residency, 170
Superagent, 377
To superagent, 375
Types of, 601

Adjacency matrix, 518
Advanced boundary condition

CALM conjecture, 214
Advanced causality, 138
Advanced process

Defined, 199
Advertisement, 377
Advertising, 34
Aerodynamics, 557
Agency

Scaling, 166
Agent

Atomic unit of process, 100, 251
Bare, 167
Boundary, 53
Composition, 128
Discrete composition, 334
Distance concept, 132
Dressed, 168
Fidelity, 59, 483, 491, 520

657

658 INDEX

Hierarchy, 68, 371
Independent, 167
Intermediate, 27, 40, 86, 90, 359
Irreducible, 128, 230, 296
Master, 317
Order, 116
Partitioned, 368
Preparedness, 537
Reducibility, 296
Redundant, 367
Rigid, 547
Scale, 174
Scale and cities, 472
Scaling, 330
Slave, 317
State of, 366
Sub, 169, 336
Super, 336
Superagent, 21

Agent scaling
Example, 174

Agents, 1
Aggregation, 178, 266, 294, 332, 338, 462,

550, 592
And scale, 330
Data, 469
Promises, 166

Aggression, 25, 27, 30, 34–37
Agility

Defined, 557
Agreement

Service Level, 614
AI, 577
Alarm, 497
Alcohol, 491
Algebra, 2
Alphabet for change, 561
Alternatives, 506

Amdahl’s law, 139, 452
Amplification, 248, 288, 291

Staged, 565
Anomaly, 155, 484, 493, 538

Dynamical, 494
IEEE standard, 484
Performance, 263
Semantic, 263, 493

Anthropology, 339
Anthropomorphism, 3, 18, 637
Antibiotics, 512
Antifragile, 574, 622
Antisymmetry property in order, 97
Appeal, 28
Application

Stateful, 352–354, 360
Stateless, 352

Approximation, 264
Current, 453
Flow, 453

ARP, 325
Arrival process, 444, 461, 591

Defined, 463
AS in BGP, 156, 421
Ashby, W. Ross, 84
Asimov’s Laws, 23
Asimov, Isaac, 23
Assessment, 5, 18, 19, 87, 493

Arbitrariness, 87
Defined, 5, 79
Subjective, 43, 299

Assistance in keeping promises, 50
Assumption

Default promise for tenant segrega-
tion, 415

Discreteness of promise body encod-
ings, 254

Emission and absorption, parent-child

INDEX 659

relationships, 172
Graph space, 16
Host:tenant binding is 1:N, 393
Of Continuity, 159, 442, 540, 573
Of Reliability, 521
Promise manifesto, 362
Promisee autonomy is preserved in

superagency, 378
Promisees are independent, 392
Shared, 500
Spacetime homogeneity, 130
Spacetime in Promise Theory, 138

Asymmetry
Functionality, 406

Asynchronous process, 358
ATM, 324
Atomic clock, 143
Atomicity, 229
Atoms, 330
Attack, 25, 27, 30, 34–37
Attack surface, 576
Authoritarianism, 222
Authority, 51–53

Brute force, 55
Central, 56
Decentralized, 56
Defined, 53
Delegation, 55
Over others, 54

Automation, 558
Autonomous behaviour, 314
Autonomy

As causal independence, 100
Assumption, 378
By locality, 45
Compromise, 311
Of agents, 6

Availability, 94

Averaging for tolerance, 507
Aviation accidents, 580
Avoidance, 557
Awareness, 69, 285, 304, 491
Axelrod, Robert, 59, 481, 581
Axial symmetry, 414
Axial symmetry, 406

Balanced line, 570
Ballistic system, 442
Bank, 372
Bank (example), 264
Bare (super)agent

Defined, 167
Batch forwarding, 466
Batch job

Defined, 465
Bayesian probability, 481, 585
Behaviour

Autonomous, 314
Collective, 250, 498
Emergent, 498, 513
Regulation and scaling, 186
Self-driven, 314

Benefit
Defined, 42

BGP, 417, 421
Unnumbered interfaces, 156

Big data, 4
Big Bang, 155
Big hammers, 615
Bigraph, 372
Biological organisms

Scaling, 221
Biology

Cell membrane, 328
Organisms, 266

Black box, 18, 46
Black swan event, 637

660 INDEX

Blame, 42
Reason for, 48

Blockchain, 213, 469
Blocking promises, 225
Boeing MCAS system, 95
Boole, George, 341
Boolean

Algebra, 341
Reasoning, 572

Border Gateway Protocol, 417
Boss, 52
Bottleneck, 446

Service provision, 316
Bottom-up, 11

Scaling concepts, 351
Boundary, 8, 302, 336

Agent, 53
Condition, 576
Superagent, 68, 302, 338, 512
Surface, 170
Tenancy, 418
Trusted, 269, 302

Brain model, 94, 220, 306
Branching

Hierarchy, 427
Branching process, 288, 291, 411
Brand

Identity scaling, 438
Breach of security, 497
Brittle

Failure, 550
Brittleness

Brittleness, 545
Broadcast, 28, 322, 373
Broken

Symmetry, 406
Buckingham Pi Theorem, 333
Buffers

Tolerance, 484
Bug, 559

Defined, 513
Building

Smart, 470
Built to order, 316
Bulk promises, 337
Bulk property, 19, 544
Bursty, 76
Bus architecture, 374
Byzantine behaviour, 151

Cable network, 16
Caching, 75, 297, 317, 459

Consistency, 515
Calculus, 68
Calibrated

Standard, 79
Calibration, 6, 53, 204, 543

Consistency of promises, 204
CALM conjecture, 214
CAP conjecture, 94, 512
Capacitor, 341
Car park, 400

Entropy, 409
Cars

Last mile transport, 329
Cascade, 261, 267, 270, 459, 554
Case study

The GP problem, 133
Catalyst, 514
Catastrophe, 270, 489, 536, 542
Category Theory, xviii, 203
Causal influence

Separation, 78
Causal set, 80, 84, 99, 106, 120
Causality, 43, 45, 47, 96, 198, 594, 598

Defined, 97
Loop, 267

INDEX 661

Observing, 109, 579
Prevention, 191
Push and pull, 300
Scale dependence, 198
Scaling of, 114

Causation, 264, 579
Advanced, 199
Retarded, 199

Cause
Root, 267, 270, 299

CCN, 636
CCTV, 573
CDN, 636
Cells, 172
Cellular automaton, 109
Central authority, 56
Centrality

Graph regions, 632
Network, 489

Centralization, 56, 89, 94, 140
Efficiency, 479
Meaning of, 216
Move as one, 206
Resources, 473

Centralized, 204
Intent, 268, 543
Scaling, 232
System, 232, 268, 345, 543

Centralized system
Defined, 217

Cephalization, 406, 414
CFEngine, 15, 202, 295, 369, 509, 568,

579, 633
Classes, 572
Convergent operators, 203
Example, 613
Fault tolerance, 576

Cgroup, 266, 284

Chain, 44, 277, 570
Causal, 169, 292
Cause and effect, 579
Dependency, 169, 292
Push and pull, 297
Reaction, 341
Supply, 47

Change
Alphabet, 561
Congruent, 568
Delta or diff, 70, 74, 77, 159, 206,

271, 291, 320, 356, 460, 462,
463, 538, 545, 561, 616

Observability semantics, 293
Self, 73
To a promise, 271

Channel, 17
Separation, 86

Chaos, 468
Engineering, 637

Chinese whispers, 285
Chomsky, Noam, 628
Chubby, 563
CIDR

Prefix, 387
Summarization, 387

Circuits
Virtual, 324

Cities, 332, 339
Agent scale, 472
Interaction scales, 475
Scaling, 239
Smart, 470, 584

Citizens, 475
Class based programming, 342
Classifier, 438
Client

Expected, 313

662 INDEX

Opportunistic, 313
Clock

Atomic, 143
Consensus, 145
Defined, 81
Observer, 265
Proper time, 199
Scaling of, 143
Vector, 83, 142

Cloning, 219
Clos network, 417, 552
Closed circuit TV, 573
Closed service, 313
Closed system, 575
Closure, 298, 489, 509, 559, 567, 576, 606,

633
Operator, 203

Cloud computing
Energy, 479

Cloud computing, 76, 77, 448, 632
Elastic scaling, 448
Infrastructure, 429
Network virtualization, 325
State, 352

Club membership, 395
Co-dependence, 125, 227, 230
Co-time, 129
Coalition, 26, 27
Coarse changes, 615
Coarse graining, 19, 331, 359, 544, 594

Defined, 164
Promises, 178

Coercion, 28
Cognition, 340
Cognitive system, 583, 584
Cohomology, 124
Coin sorting

Example, 383

Collapse, 270, 536
Collective

Behaviour, 250, 498
Collective good, 471
Combinatoric mutation, 514
Command, 27

And control, 24
Commit, 308
Common knowledge

Scope defined, 287
Communications channel, 17
Communications network, 319
Complementarity

Of promise interpretation, 103
Complex Adaptive System, 149
Complex Adaptive Systems, 628
Complex system, 487
Complexity, 487

As stress, 59
Software, 284

Compliance, 29
Components, 166

Black box, 18, 46, 575
Promise Roles, 575

Composition, 167
Transactions, 563

Concentrated
Stress, 549

Concerns
Separation of, 342, 514, 595, 620

Conditional promise, 43, 241, 273, 522,
596

Defined, 111
Configuration space, 15
Configuration space, 138
Conflict, 306

Dependency, 306
Human, 59

INDEX 663

Promises, 303
Conflict of interest, 50
Confusion, 59
Congruence, 213

Change, 568
Conquer, 55
Conquering, 53
Consciousness, 2
Consensus, 141, 208

Data source, 89
Protocols, 94
Quorum, 93
Sampling, 91
Stability of reasoning, 75

Conservation principle, 12, 114, 120
Consistency, 93, 287, 509

Caching, 515
Eventual, 94, 234, 308
Many worlds, 307
Scale calibration, 204

Consistent Knowledge Theorem, 285
Consolidation, 450
Constant

Of a system, 72
Constitution, 628
Consul, 378
Consultants

Working with, 65
Container, 568
Containers

Software, 284
Containment, 191, 284
Contains, 600
Content Centric Networking, 636
Content Delivery Network, 636
Contention, 306
Context, 41, 250, 576

Defined, 586

Events, 596
Exterior, 586
Impartiality, 4
Interior, 586
Selection, 69

Continuity
Assumption of, 159, 442, 540, 573

Continuous Repair, 540
Continuous Delivery, 633
Continuous improvement, 558
Continuous Repair, 505, 510, 558, 573
Continuous system, 333, 442, 505, 540,

558, 573
Continuum models

Scaling, 333
Continuum models

Scaling, 442
Contractor, 31

Working with, 65
Contracts, 71
Control

Human influence, 24
Convergence, 213, 298, 361, 489, 509, 559,

567, 576, 606, 633
Of data, 606

Convergent operator, 567
Convergent operators, 203
Convolution, 462
Cooperation, 100, 423, 581

And promise polarity, 40
Perfect limit, 520
Seeking, 26
Voluntary, 378

Cooperative society, 300
Coordinates, 15, 80, 87, 132

Naming, 385
Semantic, 132, 156
Signpost approach, 155

664 INDEX

Correctness, 317, 470
Cost, 17
Counter

Monotonic, 144
Counting

As explanation of behaviour, 17
Coupling, 10

Strength, 77, 150
Strong, 77, 150
Strong entangled, 126
Superagent, 377
Weak, 77, 150

Covalent interaction, 514
CPT symmetry, 103
CPU

Power consumption, 477
Crack, 335, 553
Crash, 270, 536

System, 263
Credential, 481
Crime

Tolerance, 186
Criteria

Effective system, 583
Critical phenomenon, 489
Critical section, 284, 560
Crosstalk, 86
Crystal lattice, 117
Crystalline structure, 335
Cumulative

Failure, 267
Response, 291

Current, 12
Electric, 476

Current approximation, 453
Cybernetics, xvii, 84

DAG, 317, 340, 442, 459
Data

Don’t lie, 4
Frame, 465
Never throw away, 355, 633
Ordering, 466
Pipeline, 457, 543
Scaling of order, 468
Type, 320
Types, 296

Database, 76
ACID-BASE, 215
Replication, 76, 208

Datacentre
Power consumption, 477

Deadlock, 31, 127
Decentralization, 140
Decentralized

Intent, 268, 543
Scaling, 232

Decentralized system, 56, 221
Default

Route, 386
Definition, 131

Absorption, 173
Adjacency promise, 108
Advanced process, 199
Agility, 557
Arrival process, 463
Assessment, 5, 79
Authority, 53
Authority over others, 54
Bare (super)agent, 167
Batch job, 465
Benefit to an agent, 42
Brittleness, 545
Bug, 513
Calibrated consistency of promises,

204
Causality, 97

INDEX 665

Centralized system, 217
Clock, 81
Closed system, 10
Coarse graining, 164
Conditional promise, 111
Context, 586
Data frame, 465
Design, 70
Design flaw, 483
Distance, 132
Distributed data frame, 465
Dressed (super)agent, 168
Elasticity, 546
Emission, 172
Error, 482
Exterior feedback, 200
Exterior process, 100
Exterior promise, 168
Exterior time, 82, 143
Fault, 484
Fault tolerant, 484
Flaw, 483
Fragility, 545
Horizontal scaling, 447
Ignorable

Perturbation, 540
Imposition, 5
Independent agent, 167
Instantaneous gain, 282
Intent, 2
Intentional system, 3
Interior feedback, 200
Interior process, 100
Interior promise, 168
Interior time, 82
Job, 463
Learning, 585
Locally stateful, 189

Long and short range coupling, 336
Macrostate, 19
Markov chain, 192
Microstate, 19
Mission critical, 489
Monolithic system, 217
Namespace, 426
Non-locally stateful, 189
Obligation, 5
Observability, 590
Occupancy, 391
Open system, 10
Opportunity, 42
Order relation, 98
Parallel, 16
Performance measure, 581
Perturbation, 538
Plasticity, 545
Poset, 98
Predictability, 148
Preorder, 98
Privilege of X , 49
Process, 20
Process velocity, 133
Promise, 4
Promise matrix, 518
Protocol, 319
Pull, 301
Push, 301
Random Walk, 133
Realtime pipeline, 462
Reasoning, 590
Recovery, 540
Redundant dependency, 505
Remote change (subordinated), 73
Repair, 540
Replacement, 540
Residency, 169

666 INDEX

Response, 539
Response time, 132
Responsibility, 47
Retarded process, 199
Right to X , 49
Rigidity, 545
Robustness, 541
Rollback, 564
Rollout, 564
Sampling process, 463
Security, 571
Self change, 73
Semantic agent scales, 174
Single point of failure, 291, 489
State, 19
Stiffness, 546
Strain, 548
Strength, 546
Stress, 547
Strongly stateless process, 196
Subspace, 166
Superagent, 336
Surface, 171
System, 7
Tolerance, 505
Trajectory, 20, 139
Transaction, 197, 562
Transparency, 171, 372
Trust, 11
Variable, 365
Vertical scaling, 447
Weakly stateless process, 196
Window process, 468

Dekker, Sydney, 21, 481
Delegation of authority, 55
Delivery

Just In Time, 316
Delta or diff change, 74

Delta or diff change, 70, 77, 159, 206, 271,
291, 320, 356, 460, 462, 463,
538, 545, 561, 616

Demand, 266, 537, 539
Demanding, 51
Democracy, 26, 39, 54
Denial of Service, 582
Deontic logic, 5, 628
Departments

Modular, 284
Dependency, 169, 241, 263, 297, 522, 600

Completeness, 469
Conflict, 306
Correctness, 470
Fragility, 249, 522, 622
Serial, 554
Slow, 77
Tracking, 616

Deployment
Software, 566

Design
And flaws, 485
Conflict of interest, 513
Defined, 70
Flaw, 499, 574

Design flaw
Defined, 483

Designed to fail, 71
Desired state, 191
Detailed balance, 509, 559, 567
Determinism, 5
DHCP, 388
Diagnosis, 589
Diagram

Flow, 522
Diff or delta change, 70, 74, 77, 159, 206,

271, 291, 320, 356, 460, 462,
463, 538, 545, 561, 616

INDEX 667

Differentiation
Cell, 406

Dimension
Fractal, 237, 239
Hausdorff approximation, 239

Dimensionless ratio, 310
Dimensionless ratios, 136, 332
Directed Acyclic Graph, 317, 340, 442,

459
Directed invitation, 30
Direction

In a graph or network, 123, 250
Directory, 179, 372

Service, 633
Directory service, 378
Directory services, 246
Disaster recovery, 76
Discrete system, 334
Discreteness of promise body encodings

Assumption of, 254
Discrimination, 383
Discriminator, 577
Dispatch, 373
Dispatcher, 381
Disposable materials, 476
Disruption, 36, 37
Distance

Defined, 132
Semantics of, 162

Distinguishability, 85, 101, 111, 157, 251,
324, 363, 367

Of paths, 124
Distortion, 86
Distributed

Intent, 268, 543
Distributed data frame

Defined, 465
Distributed system, 15

Distributive promise, 372
DNS, 311, 350, 432, 634

Gateways, 378
Docker, 284, 369, 568
Doctor-patient example, 43
Domain

Fault, 284, 340, 351, 511
Dorsal symmetry, 406
Doubt, 83
Downstream, 44
Downstream principle, 14, 45, 93, 637

Project method, 39
Risk, 542

Dressed (super)agent
Defined, 168

Drift
Info failure, 21
Promise, 481, 537

Drinking, 491
Dropped data, 83
Dumb agent, 492, 583
Dunbar hierarchy, 581, 634
Dynamic

Redundancy, 575
Security, 572
Test, 566

Dynamic scaling, 462
Dynamical similitude (similarity), 333
Dynamics, 88, 344

Of system, 262, 270, 344, 493

Eastern civilization, 471
Eating, 491
Economies of scale, 236
Economy of scale, 438, 450, 472

Job size, 329
Edge computing, 478
Education, 34
Effectiveness, 581, 583

668 INDEX

Efficiency, 581, 583
Faults and flaws, 582

Efficiency of scale, 478
Eigenvalue problem, 605
Einstein, Albert, 84, 201
Elastic

Defined, 546
Elastic scaling, 448
Electrical plug, 269
Electrodynamics, 278
Electron cloud, 117
Embedding space, 237
Emergent behaviour, 498, 513

Routing, 323
Emergent fault, 484
Emergent promise, 11
Emission, 628

And residency, 172
Defined, 172

Emission and absorption
Assumptions, 172

Employment, 395
Empty state, 173
Encapsulation, 229
Encoding

Characters, 501
Encryption, 269
End justifies means, 38
End-to-end delivery, 328
Energy, 476
Ensemble, 332, 592
Entangled agent, 128
Entanglement, 125, 227, 230

Coupling, 126
Entity, 9
Entropy, 157, 266

Centralization, 204
Fixed point, 204

Mixing, 593
Environment

Unpredictable, 483
Epidemic, 489, 554
Episodes, 594
Equilibration, 208
Equilibration time, 234
Equilibrium, 127, 509, 559
Error, 59, 69, 299, 480

Correction, 509, 561
Logical, 574
Random, 482
Systematic, 482
Usefulness, 485

Error (of execution)
Defined, 482

Estimation
By embedding volume, 237

etcd, 378
Ethernet, 320, 374
Euclidean, 15, 132
Euclidean approximation

To network, 239
Euclidean space, 68
Event, 82, 459, 591

Black swan, 637
Context for, 596
Driven, 83, 142, 158, 198, 228, 301,

444, 596
Horizon, 201
Significant, 155

Events, 538
Significant, 538

Eventual consistency, 94, 210, 308
Blockchain, 213
Synchronous transmission, 213

Everett, Hugh, 198
Example

INDEX 669

Agent scaling, 174
Falling on ice, 557
Fighter jet, 557
Molecules, 171
Steady course, 559
Upgrades and patches, 559

Expectation, 21
Active, 537
Imposition, 537
Unfulfilled, 484

Expected client, 313
Expected service, 313
Expecting too much, 483
ExpireAfter, 583
Exploit weakness, 499
Exploration, 513
Explosion, 341, 489
Expresses, 600
Exterior, 167

Context, 586
Feedback defined, 200
Promise defined, 168
Time, 82, 143
time, 225

Exterior time, 84, 126
Exterior trajectory, 275

Fabric
Network, 552
Spacetime, 417

Factory process, 341
Facts, 201
Failure

Brittle, 550
Cumulative, 267
Designed for, 71
Domain, 284, 340, 351, 511
Drift, 21, 481, 537
Scalability, 425

Single point of, 489
Failure mode, 495
Fair viewpoint, 17
Falling on ice example, 557
Fault, 69, 155, 299, 444, 480, 538

Agent fidelity, 491
Defined, 484
Domain, 284, 340, 351, 511
Emergent, 484, 574
Envelope, 576
Logical errors, 574
Prevention, 558
Propagation, 270, 510
Random, 484
Real examples, 613
Surface, 576
Systemic, 484
Tolerant, 281, 308, 484, 505, 507,

550
Tree analysis, 531
Usefulness, 485

Fault tolerant
Defined, 484

Faults
Efficiency, 582

Favours, 29
FCFS, 569
Feedback, 267
Feynman diagrams, 627
Fidelity

Agent, 59, 483
Agents and faults, 491
Of agents, 520
System, 491

Fighter example, 557
Fighter jet, 637
File system change notification, 312
Filter, 511

670 INDEX

Finite State Machine, 265
Firewall, 191, 329, 410, 511, 559

One way glass, 638
Reversibility, 565

Fixed point, 204, 361, 489, 509, 559, 567,
569, 576, 606

Flaw, 69, 480, 574
Defined, 483
Design, 499, 574
Efficiency, 582
Scaling, 335
Usefulness, 485

Flooding, 28, 322, 373
Flow

Approximation, 453
Diagram, 522

FLP result, 150
Follows, 600
Force, 27, 53, 515, 633, 637
Forensics, 574
Forgetfulness, 59
Forgetting, 606
Fork, 307
Forwarding

Scaled, 466
Forwarding of messages, 322
Fourier modes, 476
Fractal

Dimension, 237, 239
Fragility

Defined, 545
Frame

Size, 329
Frame relay, 324
Free software

Example, 538
Free speech, 51
Freedom

Scaling, 186
Freewill, 2
Frequency

Scaling, 477
Fuel, 500
Function

As a service, 582
Structure, 520

Functional programming, 356
Functional scalability, 331
Functional system, 7, 87
Functor, 203
Funnel, 550

Gain
Example, 289
Instantaneous, 282

Game Theory, 27
Garbage collection, 476
Gas phase, 430
Gated community, 389
Gateway, 288, 373, 377, 406, 414, 418, 420

BGP, 417
Scale transducer, 378
Tenancy, 416

Gauss’ law, 68
General practitioner problem, 133
Geometry and topology, 245
Global symmetry, 219
Gluon, 250
God’s eye view, 17, 68, 80, 115, 282
Golden image, 359
Governance, 475
Gradient field, 110
Granted

Taking for, 70
Graph

Dependency, 338
Directed, 250

INDEX 671

Directed Acyclic (DAG), 317, 340,
442, 459

Direction, 123, 250
Promise Theory, 16
Total, 169, 337

Gravity, 632
Ground state, 173
Group membership, 337
Gunther’s law, 139, 240

Relevance to scaling, 240

Halting
Process, 225

Hamming code, 509
Hands on, 39
Happiness, 64
Hausdorff dimension, 239
Heat

Recycling, 478
Help desk, 381
Hierarchhy, 411
Hierarchy, 140, 371

And language, 581
Namespace, 426
Of agents, 68

High Performance Computing, 452
Hints, 599
Histogram, 152, 162
History, 598
Holonomy, 124
Homogeneity

Assumption of, 130
Horizontal scaling, 446

Defined, 447
Horse rider, 393
Host

Boundary, 418
Hot replacement, 541
House of Lords, 39

How to use, 22
Human

Agents, 491
Citizen, 475
Governance, 475
Participation, 475
Power consumption, 477
Reasoning, 290
Rights, 48
Skilled, 579
Spaces, 470

Human values, 64
Hydrodynamics, 278
Hypothesis

Lowest level of hierarchy, 173

I/O, 77
IBM z-series, 448
Idempotence, 559, 567, 569, 606
Identity, 324

Brand, 438
IEEE anomaly standard, 484
Ignorable perturbation

Defined, 540
Ignorance, 59
Image

Golden, 359
Immune system, 633
Immutability, 293, 358
Immutable data, 212
Impact

Of change, 616
Impartiatlity, 480
Impatience, 59
Imposition, 5, 53, 264, 565

And power, 52
As active expectation, 537
Defined, 5
Dependency, 307

672 INDEX

Forced chain, 297
Leads to uncertainty, 537
Queueing, 297, 311, 464
Remote, 73

Improvement
Continuous, 558

Independent agent
Defined, 167

Index (look up), 372
Index (lookup), 432
Indices, 246
Indirection, 246

Addressing, 324
Network addresses, 324

Indistinguishability, 101, 251
Of paths, 124

Individualism, 471
Inference

Statistical, 631
Influence, 250

Humans, 24
Propagation, 24, 103, 139, 250, 261,

272, 510
Push and pull, 300
Transmission of, 97

Information
Limited access, 17

Infrastructure, 220
Cloud computing, 429

Innovation, 39, 472, 513
Input, 576
Input/Output, 77
Inside an agent, 167
Instability, 486
Instantaneous gain

Defined, 282
Instantaneous response function, 278
Instrumentation, 154, 579

Intensity
Traffic, 310

Intent, 480
Centralized, 268, 543
Defined, 2
Knowledge, 588
Publishing, 28, 301
Purpose, 18, 568
Security, 572
To disrupt, 36

Intention, 2
Intentional system, 3, 18, 513
Intentionality, 2
Interaction, 9, 29, 77, 150

As a primitive, 250
Covalent, 514
Scale, 472

Interference
Process, 284

Interior, 167
Context, 586
Feedback defined, 200
Promise defined, 168
Time, 82
time, 225

Interior time, 84, 126, 201, 275
Scaling, 231

Intermediate agent, 90
Intermediate agents, 27, 86

Accountability, 40
Internet of Things, 269, 460, 635
Internet protocol, 322
Intrusion, 28
Invariance, 269, 358, 368

Dynamical, 344
Semantic, 344

Invariant, 72
Promise, 369

INDEX 673

Proper, 362
Invisible hand, 346
Invitation, 27, 537

As imposition or promise, 32
Directed, 30, 33
Layers of, 35
Open, 28, 30

IP, 322
IP address, 385

BGP, 156
Routing, 156

IPv4, 326
Irreducibility

Of agents, 296
Irreducible agent, 128, 230
Isolation

Of process, 569
Process, 266, 284
System, 575

Jet example, 557
Jet fighter, 637
Jevon’s paradox, 478
Job

Batch, 465
Defined, 463

Jockey, 393
Journal, 598
JSON, 342
Judge, 53
Judgement, 37
Jurassic Park, 637
Just In Time, 316, 471–473

Delivery, 316, 474
Smart concept, 583

Kernel, 266, 284, 324
Isolation, 560

Key Performance Indicator, 70

Key-value pair, 157
Kirchoff’s law, 12
Knowing, 581
Knowledge

As a relationship, 580
Intent, 588
Scope, 605

Knowledge modelling, 437
KPI, 70
Kripke, Saul, 198
Kubernetes, 284, 353, 443

Laissez faire, 39
Lamport, Leslie, 355
Language

Composability, 581
Promise, 253, 429

Last mile, 301, 329
LastSeen, 583
Latency, 336
Lattice

Crystal, 117
Law

Amdahl, 452
Busy and stable is predictable, 556
Continuity law, 574
Fitness for purpose and incomplete

information, 488
Gunther, 454
Hosting of input and output leads to

axial symmetry, 416
Intermediate agent, 40
Moore, 332
Nyquist frequency for promise main-

tenance, 498
Of agent autonomy, 300
Ohm’s, 476
Rollback is unreliable, 564
Wirth, 332

674 INDEX

Laws of Robotics, 23
Lazy evaluation, 316, 317
LDAP, 378
Leadership, 25, 342
Learning, 585, 594

Bayesian, 585
Cross sectional, 585
Defined, 585
Fragility, 622
Longitudinal, 585
Time, 585
Unsupervised, 638

Legal vs social rights, 50
Lemma

Causation is partially ordered by pre-
requisite dependency, 394

Composition of entangled links, 128
Composition of transactions, 563
Conditions for a uniform coordinate

covering of an ensemble of agents,
385

Disruption implies dependency, 37
Distributed tenancy law, 405
Dynamical requirements for coupling

between external agent and su-
peragent, 380

Emission and residency, 172
Events count time, 142
Expected and unexpected events, 539
Interior consensus of clocks, 145
Linear promises and weak coupling,

195
Locality and the completeness of in-

formation, 305
New data at all scales, 593
Observability of change depends on

memory, 85
Open systems have unpredictable states

and trajectories, 20
Promised Order Propagation, 146
Proper clocks, 81
Quantitative response, 281
Quick repair is indistinguishable from

avoidance, 558
Resilience as scale invariance, 544
Resolvability of superagent detail, 181
Reversibility, 160
Significance vs information, 157
Synchronous or asynchronous events,

228
Tenancy flows in the direction of the

resource being used, 393
The boundary of a system is indeter-

minate, 10
The locality of pull vs push, 304
The maximum gain of any superagent

interaction, 282
The scope of a promise to a supera-

gent, 377
The speed of response for pull vs push,

303
The uncertainty of pull vs push, 303
Traceability, 160
Transactions are repeatable, 562

Lens, 549
Liability, 42
Linear scaling, 232
Linear system, 357
Linearity

Of process, 193
Lingua franca, 499
Link

Meaning, 119
Linux

Kernel cgroup, 284
Litter

INDEX 675

Don’t drop, 32
Load balancer, 329
Load balancing, 311, 446, 551
Load bearing, 551
Local observer view, 80
Locality, 628

As autonomy, 45
As causal independence, 100
Scaling of, 125, 352

Locally stateful
Defined, 189

Lock, 568
Lock-free synchronization, 367
Locking, 304
Log, 598
Logic, 83, 532
Logistics, 317
Logs, 596
Long and short range coupling, 336
Long memory process, 195
Long range

Effect, 335
Long range order, 383
Long tail behaviour, 538
Look up table, 179

MAC address, 320
Mach’s principle, 120
Machine learning, 577
Macrostate, 19
Magnetism, 632
Mainframe computer, 448
Maintenance, 559, 567

Theorem, 559
Window, 563

Makefile, 297
Management, 25
Manager, 52
Mandate, 25, 53, 54

Manufacturing, 341
Many worlds, 198, 411
Map-Reduce, 470
Marketing, 24
Markitechture, 340
Markopolou, Fotini, 84
Markov chain, 116

Defined, 192
Markov process, 67, 111, 192, 466, 570
Mashed Potato theorem, 594
Master agent, 317
Material science, 335, 337
Maxwell’s daemon, 637
Mean field models, 231
Mean Time

Before Failure, 70
To Keep a Promise, 70
To Repair, 70

Meaning, 157
Meaning of link, 119
Measurement, 68, 84, 265, 580

Knowledge, 580
Measuring stick, 68
Membership, 9, 395

In group, 337
Membrane

Cell, 328
Memory

Impact on agent, 490
Process, 67

Memory processes, 191
Memoryless, 355, 569

Agility, 360
Memoryless process, 362
Message, 319

Quantization, 329
State propagation, 186

Message driven, 83, 142, 158, 198, 301,

676 INDEX

444, 596
Metcalfe’s law, 235
Metric distance, 162
Micromanagement, 39
Microservices, 284, 348

Faults, 350
Software bloat, 582

Microstate, 271, 284
Mission critical

Defined, 489
Misunderstanding, 59
Mixed strategies, 507
Mixing

Entropy, 593
Mixing as mutation, 514
Model

Extraction, 599
Models, 606
Modularity, 10, 248, 284, 339, 340, 512

Scale dependence, 341
Smart cities, 472

Molecular systems, 330
Molecules

Example, 171
Monad, 203, 298, 489, 509, 559, 567, 576,

606, 633
Monitor

Critical section, 560
Monitoring, 497
Monolithic

System, 141, 345, 442, 543
Monolithic system

Defined, 217
Monotonic behaviour, 203
Monotonic counter, 144
Monte Carlo method

Failure mode search, 637
Monte Carlo search, 376

Moore’s law, 332
Moral assessment, 45
Morphogenesis, 406
Mouth, 406, 414
Move as one, 206
MPLS, 324
MSTR, 512
MTBF, 70, 270
MTTKP, 70
MTTP, 581
MTTR, 70, 291, 509, 512, 614
Multi-pole distortion, 117
Multi-tenancy, 324, 397, 410

Application, 428
Spacetime fabric, 417

Multiplexing
Dimensional, 237

Mumford
Lewis, 1

Mutation, 514
Mutex, 568

Name
Surname, 426

Name Data Networking, 636
Namespace, 266

Defined, 426
Hierarchy, 426

Namespaces, 326
Naming, 156, 385

Semantic coordinates, 156
Narrative, 11
NDN, 636
Near (proximity) , 600
Netflix

Chaos engineering, 637
Network

Addressing, 326
ARP, 325

INDEX 677

ATM, 321, 324
Cable, 16
Centrality, 489
Clos, 417, 552
Communications, 319
Content delivery, 327
Direction, 123, 250
Ethernet, 320
Euclidean approximation, 239
Fabric, 552
Frame, 329
Frame relay, 321, 324
Hierarchy, 140
Internet protocol, 322
IP, 322
MAC address, 320
MPLS, 321, 324
Of promises, 270
Overlay, 324
Packet, 329
Partition, 386
Sessions, 324
Signalling, 327
Software defined, 422
Tunnelling, 325
Virtual, 405
VLAN, 324
WAN, 322
Wireless, 16, 73

Neural network, 577
Newton’s laws, 271
Noether’s theorem, 107, 159
Noise, 583
Non-blocking promises, 225
Non-cooperation, 581
Non-locally stateful

Defined, 189
Notification

File system change, 312
Push, 301, 310, 327

Now, 199
Numbers

Don’t lie, 538
Nyquist law

Risk, 543
Nyquist theorem, 100, 211, 265, 359, 462,

498, 558, 573, 574, 628

Object Oriented Programming, 340
Obligation, 5, 29

And rights, 49
Defined, 5

Observability, 85
Defined, 590

Observation, 18, 67, 68, 80, 84, 85, 109,
126, 152, 579

In band, 588
Observed state, 366
Observed time, 147
Observer

Clock, 265
Occupancy, 390

Defined, 391
Scaling, 400

Offence/Offense, 37
Ohm’s law, 476
Once-only delivery, 231
OO, 340
Open invitation, 28, 30
Open service, 313
Open source, 514
Opportunistic client, 313
Opportunistic service, 313
Opportunity

Defined, 42
Optimization, 64, 135

Objective and subjective, 17

678 INDEX

Order
Civil, 25, 54
Defined, 98
Of agents, 116
Symmetry, 408

Order of data, 466
Scaling, 468

Ordered phase, 376
Organism, 206
Organization, 166
Orthogonal

Variables, 441
OSI model, 394
Outcome

Assured, 25
Atomicity, 229
Importance of, 19
Of promise, 19, 87, 250, 270, 294,

487, 493, 576
Output, 576
Outside an agent, 167
Outsourcing, 224
Overlap

Of system regions, 10, 284
Overlay

Network, 324
Oversampling, 153
Oversight

Of supplier, 47
Ownership, 390

And rights, 50

Packet
Size, 329

PageRank, 605
Parallel

vs serial, 505
Parallel process, 442

Defined, 16

Resilience, 543
Parallelism, 331
Parking, 75, 400
Parking lot, 400

Entropy, 409
Partial order, 97, 510
Participation

In system, 475
Particle, 80
Particles, 172
Partition

Network, 94, 386
Partitioning, 90, 266, 367
Passenger jet example, 557
Past, 199
Path, 169

Tenancy, 374
Path independent, 355
Paxos, 141, 563
Percolation, 489, 517
Performance, 70, 263

Defined, 581
Refactoring, 632

Permission, 48, 51
Perturbation, 104

Defined, 538
Ignorable, 540

Pet project, 39
Petri net, 442
PGP, 55
Phase

Averaging, 570
Gas, 430
Ordered, 376
Solid, 382, 430

Phase transition, 449
Photon, 250, 633
Physics, 27, 31, 36, 580

INDEX 679

Of systems, 138
Pi Theorem (Buckingham), 333
Pipeline, 292, 295, 317, 442, 543

Data, 457, 543
Timescales, 460
Topology, 457

Plastic waste, 476
Plasticity

Defined, 545
Plug

Electrical, 269
Plugins, 249
Pointers, 324
Poisson process, 445, 461, 520, 538, 542,

591
Polarity

And cooperation, 40
Promise, 6, 103, 306, 493

Police, 573
Policy

Partitioning, 363
Policy decision, 94
Politics, 48, 475
Poset

Defined, 98
Postal address, 387
Power, 501

Centralized, 222
Scaling, 234
To influence, 52

Power consumption, 476
Power law, 456, 538
Power outlet, 269
Predictability, 21

By fixed point, 567
Timescales, 148

Predictability defined, 148
Preorder

Defined, 98
Prepared agent, 537
Present, 199
Pretty Good Privacy, 55
Prevention, 558

Security, 572
Principal Component Analysis, 632
Principle

Autonomy, 101, 300, 620
Conservation of transmitted informa-

tion, 13
Convergent data, 606
Downstream, 45
Downstream risk, 542
Risk assessment, 542
Sampling rate, 153
Separation of scales, 74, 75, 148, 164,

620
Principle of distance semantics, 162
Privacy, 269
Privilege, 48, 51

And rank, 50
Definition, 49

Probability, 264
And Risk, 542
Interpretation, 521

Process
And Promise Theory, 96
Arrival, 444, 461, 591
Asynchronous, 358
Branching, 288, 291, 411
Clock, 81, 265
Exterior, 100
Interference, 284
Interior, 100
Isolation, 266, 284, 569
Long memory, 195
Markov, 67, 111, 466, 570

680 INDEX

Memory, 67
Memoryless, 355, 362
Parallel, 16, 163
parallel, 442, 543
Poisson, 445, 461, 520, 538, 542, 591
Renewal, 556
Resilience, 541
Scaling, 118
Serial, 163
Short memory, 193
Stability, 367
Stages, 459, 551, 565
Synchronous, 358
Tick, 80, 84
Time, 80
Time-series model, 141, 155
Timescales, 460
Trajectory, 20, 271, 274, 499
Transport, 14, 597
Waiting, 225

Process velocity
Defined, 133

Processes, 442
Production line, 297
Programming

Functional, 356
Project

Management, 39
Pet, 39

Prometheus, 598
Promise, 4

Adjacency, 108, 119
Bulk, 337
Change, 271, 566
Complementarity, 103
Conditional, 43, 111, 241, 273, 522,

596
Conflict, 303

Continuity, 540
Defined, 4
Distributive, 372
Enables preparation, 537
Exterior, 168
Failure modes, 495
Interior, 168
Invariant, 358, 369
Language, 253, 429
Network, 270
Not kept and responsibility, 43
Outcome, 19, 87, 250, 270, 294, 487,

493, 576
Polarity, 6, 103, 306, 493
Responsibility, 43
Scope, 377
Time to keep, 70
Valency, 288
Vector, 68
Versus requirement, 22

Promise adjacency matrix
Defined, 518

Promise manifesto, 362
Promise polarity

And cooperation, 40
Promise Theory, 1

Agents, 1
Promisee

Independence assumption, 392
Promises

Coarse graining, 178
Propaganda, 24, 34
Propagation, 86, 261, 294, 510

Faults, 270, 510
Impediments, 283, 341
Limits, 341
Of influence, 24, 103, 139, 186, 250,

261, 272, 510

INDEX 681

Rate, 270, 510
Speed, 282, 510
Uncertainty, 280

Proper time, 82, 84, 588, 633
Clocks, 199

Protocol, 2, 501
Defined, 319

Provenance, 43, 299
Proximity, 604, 676

Smart spaces, 474
Virtual, 474

Public
Discourse, 481, 580
Service, 475

Publication time, 147
Publish-subscribe, 305, 308
Publishing of intent, 28, 301, 566
Pull, 263, 297, 460

Defined, 301
Properties, 302
Scaling, 308
Stability, 305
vs push, 300, 302, 566, 633

Pull request, 213
Purchase order, 31
Purpose

Of a system, 480
Push, 264, 297, 460

Changes, 322, 565
Commit, 308
Defined, 301
Illusory, 297
Notification, 301, 327
Properties, 302
Scaling, 308
Stability, 305
vs pull, 300, 302, 566, 633

Push changes, 15

Push notification, 310
Push request, 213
Push-pull hybrid, 309

Qualitative, 68, 79
Qualitative description, 538
Quantitative, 68, 79
Quantitative description, 538
Quantitative scaling, 231
Quantum gravity, 80
Quantum mechanics, 100
Quantum theory, 633
Queue, 381, 442, 550
Queueing, 135, 210, 310, 347, 531, 550

M/M/1, 445
Utilization, 447

Quorum, 77, 91

Radio
Example superagent, 378

Raft, 141, 563
Random errors, 482
Random fault, 484
Random Walk

Defined, 133
Random walk, 569
Rank

And Privilege, 50
RBAC, 615
RC networks, 476
Reactive Manifesto, 226
Reactive system, 301, 444, 596
Realtime, 461
Realtime pipeline

Defined, 462
Reasoning

Defined, 590
Human, 290

Reception desk, 381

682 INDEX

Recovery, 536
Defined, 540

Recycling
Heat, 478

Reducibility
Of agents, 296

Redundancy, 336, 367, 524
Alternatives, 506
Dynamical, 575
Semantic, 576
vs repair, 291

Redundant dependency
Defined, 505

Reflexivity, 97
Region

Scaling, 166
Singular, 204

Regulating behaviour, 186
Relationship

Knowledge, 580
Spacetime, 600

Relativity, 84, 88, 638
Semantic, 198
Time, 266

Relaxation time, 234
Reliability, 162, 520

Assumption of, 521
Classical theory, 520, 575
Quantitative, 522
Shortcomings of classical theory, 533

Remote change, 73
Renewal process, 556
Renormalization, 331, 335
Repair, 536

Continuous, 505, 510, 540, 558, 573
Defined, 540
Network, 554
vs Redundancy, 291

Repeatability, 562, 569
Replacability, 335
Replacement, 536

Defined, 540
Hot, 541

Replica
Agent, 89

Replica sets, 91
Replication

Database, 76, 208
Reprimand, 42
Reproducibility, 360, 489
Reproduction, 406
Requirement, 537

Versus promise, 22
Reset, 568
Residency

Defined, 169
Emission, 172

Resilience, 536
Process, 541
Scaling, 543

Resistor, 341
Resolution

Of detail, 372
Resource usage, 582
Resources

Shared, 154
Response, 132

Cumulative, 291
Defined, 539
Function, 278
Rate, 302, 303
Speed, 232, 302, 303

Response function, 539
Response time

Defined, 132
Responsibility, 25, 38, 42, 490

INDEX 683

Assuming, 47
Conditional promises, 43
Defined, 47, 299

Retarded causality, 138
Retarded process

Defined, 199
Reversibility, 157, 160, 560

Required promises, 160
Reversible processes

Energy, 476
Right

To impose, 54
Rights, 48

And ownership, 50
Bill of, 628
Definition, 49
Demanding, 51
Free speech, 51
I know my..., 51
Seeking, 51
Social versus legal, 50

Rigid, 347
Agents, 547

Rigidity
Defined, 545

Risk, 542
And probability, 542
Human, 473
Nyquist law, 543

Risk assessment, 542
Robot, 23
Robustness, 75, 148

Defined, 541
Role

Collaborative, 337
Role Based Access Control, 615
Roles, 515

By appointment, 55

Components, 575
Rollback, 564, 565, 567

Defined, 564
Rollforward, 567
Rollout, 564

Defined, 564
Phased, 565

Root cause, 267, 270, 299
Root Cause Analysis, 160
Root Cause Analysis, 45, 270, 299
Round robin, 634
Route

Default, 386
Routing, 322, 371, 420
RSVP, 302
Rule

Selection, 604
Rules based system, 559

S-curve, 450
Safety, 293

Net, 565
Type, 296

Sampling, 100
Rate, 152, 211, 230, 462, 498, 558,

573, 574, 593
Rate vs repair, 291

Sampling process
Defined, 463

Sampling time, 147
Scalability

Failure, 425
Functional, 331
vs Scaling, 331

Scalar trajectory, 274
Scale

Aggregation, 330
Defined, 330
Dependence, 198

684 INDEX

Economy of, 329, 438, 450
Human interaction, 472
Local state, 352
Of an agent, 174
Statelessness, 352
Transduced or gateway, 378

Scale dependence, 248
Scale dependence

Causality, 198
Modularity, 341
State, 198

Scale invariance, 139, 248, 341
Scale model, 331
Scale-free behaviour, 139, 248, 341
Scales, 71, 88

Separation of, 74, 75, 164, 620
Scaling

Addressability, 327
Agent, 166
Agents in BGP, 156
Cities, 239
Dynamical, 462
Elastic, 448
Flaw, 335
Horizontal, 446
Occupancy, 400
Of agents, 330
Of Clocks, 143
Of locality, 125, 352
Of processes, 118
Of regions, 125, 166, 352
Of state, 188, 284
Power, 234
Push vs pull, 308
Relations, 332
Resilience, 543
Team, 206
Tenancy, 400

Transducer, 381
Universal, 331
Vertical, 446
vs scalability, 331
Workload, 331

Scaling of biological organisms, 221
Scope, 284, 340

Common knowledge, 287
Knowledge, 605
Of promise, 377

Searle, John, 3
Security, 45, 48, 55, 570

Breach, 497
Conflict of interest, 513
Defined, 571
Dynamic, 572
Exploit, 499
False sense of, 481
Intent, 572
Prevention, 572
Semantic, 572
Transactional, 563
Trust, 481
Vulnerability, 499

Security engineering, 513
Selection rule, 604
Self change, 73
Self-driven behaviour, 314
Self-service, 314

Defined, 314
Illusion of scale, 316

Semantic
Redundancy, 576
Security, 572
Spacetime, 470
Test, 566

Semantic addressing, 385
Semantics, 88, 344

INDEX 685

Distance, 162
Of cities, 470
Of spacetime, 138, 470
Of spacetime topology, 105, 124, 599
Of system, 86, 105, 262, 270, 344,

493
Separation of, 342, 514, 595, 620
Spacetime, 600
Tolerance, 507

Sensor, 583
Smart, 597

Separation
Channels, 86

Separation of concerns, 342, 595, 620
Separation of scales, 74, 75, 164, 620

Time, 148
Sequences, 366
Serial

vs parallel, 505
Serial process

Resilience, 543
Serialization, 304
Service

Closed, 313
Expected, 313
Negotiation, 31
Open, 313
Opportunistic, 313
Oriented system, 346
Public, 475
Self, 314
To order, 316

Service Level Agreement, 614
Service Oriented Architecture, 340
Services, 312
Sessions, 324
Shannon

Communication Theory, 12, 561, 594

Shannon, Claude, 79
Shannon-Nyquist theorem, 100, 211, 265,

359, 462, 498, 558, 573, 574,
628

Sharding, 606
Shared

Resources, 154
Shared nothing, 368
Shared-nothing architecture, 190
Short memory process, 193
Significance, 157
Significant event, 155, 538
Signposts, 156, 592
Single point of failure, 479
Single point of failure, 44

Defined, 291, 489
Single-valued time, 129
Singularity

Move as one, 206
Of region, 204

Situation awareness, 69, 304, 622
SLA, 614
Slave agent, 317
Slime mould, 206
Smart, 251

Agent, 300, 583
Cities, 471, 584
Meaning, 471
Sensor, 597
Space, 470, 471

Smith, Adam, 346, 351
Snapshot of state, 357
SOA, 340
Society, 48

Push and pull, 300
Software

As a service, 582
Bloat, 249, 582

686 INDEX

Container, 284
Deployment, 566
Free example, 538
Lambda, 582
Waste, 582

Software building
Pipeline, 295

Solid phase, 430
Solid state structure, 382
Sovereignty, 269
Space, 71, 88, 105, 166

Configuration, 15, 138
Empty, 173
Euclidean, 15, 132

Spacetime
Assumption of, 138
Degrees of freedom, 600
Relationship, 600
Role in Promise Theory, 138
Semantics, 600

Spacetime homogeneity
Assumption of, 130

Spam, 34
Sparse

Agent scaling, 242
Network, 243
Queue arrival, 163
Utilization, 239

Sparse activity level, 310
Specialization, 248
Speed

Of propagation, 282, 510
Speed of light, 72
Speed of response, 232, 302, 303
Speed up

Amdahl’s law, 456
Split brain, 220
Split brain problem, 306

Spokesperson, 397
SQL, 342
Stability, 75, 88, 148, 486, 606

Perturbations, 538
Process, 367
Push vs pull, 305

Stages, 89
Staging processes, 459, 551, 565
Standard

Calibrated, 79
State

And causality, 284, 352
Cloud computing, 352
Defined, 19
Ground, 173
Micro, 271, 284
Observed, 366
Of an agent, 366
Ordered, 408
Partial, 188
Propagation, 186
Scale dependence, 198
Scaling of, 188
Snapshot, 357
Total, 188

Statecraft, 25, 54
Stateful

Defined, 191
Stateful application, 352–354, 360
Stateless, 188, 355, 362

Popular ideas, 354
Scaling, 352

Stateless application, 352
Statistical

Inference, 631
Statistical averaging, 165
Statistics

And promises, 538

INDEX 687

Statute of limitations, 362
Steady course example, 559
Stem cells, 251
Stiffness

Defined, 546
Stigmergy, 514
STIGs, 191, 511
Storage, 76, 355, 633
Stories, 596
Story, 169

Generation, 604
Telling, 604

Strain
Defined, 548

Strategy
Mixed, 507

Stream
Confluence, 462

Strength
Defined, 546

Stress, 59, 266
Concentration, 549
Defined, 547
Test, 566

Strong coupling, 77, 150
Strongly stateless process, 196
Structure

Crystalline, 335
Structure function, 520
Subagent, 169, 336
Subjectivity, 43
Subordination, 54–56
Subroutine, 411
Subscribe, 29
Subspace, 166

Defined, 166
Subtime, 627
Sudo, 578

Superagent, 21, 174, 336
Adjacency, 375, 377
BGP, 156
Boundary, 338
Coupling, 377
Definition, 336
Radio example, 378
Rigid, 547

Superlinear scaling, 455
Supply chain, 47
Surface

Attack, 576
Defined, 171
Interaction, 576

Surface boundary, 170
Switch, 268
Switching, 373
Symbiosis, 54, 55, 221
Symmetry, 97, 269, 358, 368

Breaking, 406
Dorsal, 406
Functional, 406
Ventral, 406

Synchronicity, 227
Synchronization, 367
Synchronous, 93
Synchronous process, 358
Syslog, 596
System

As patchwork, 10
Atoms, 330
Ballistic, 442
Bulk properties, 19, 544
Centralized, 345
Closed, 10, 575
Cognitive, 583
Complex, 487
Complex Adaptive, 628

688 INDEX

Constant, 72
Continuous, 333, 442, 505, 540, 558,

573
Crash, 263
Defined, 7, 250
Described quantitatively, 17
Discrete, 334
Distributed, 15
Dynamics, 262, 270, 344, 493
Emergent promises, 11
Entity, 9
Event driven, 83, 142, 158, 198, 444,

596
Fidelity, 491
Function, 7
Human-computer, 343
Intent, 18
Isolation, 575
Linear, 357
Message driven, 83, 142, 158, 198,

444, 596
Monolithic, 141, 345, 442, 543
Narrative, 11
Observer, 18, 67, 68
Open, 10
Performance, 70
Perturbation, 104
Predictability, 21
Purpose, 18, 480
Rules based, 559
Semantics, 86, 105, 262, 270, 344,

493
Service oriented, 346
Trajectory, 20
User, 18

System time, 147
Systematic error, 482
Systemic fault, 484

Take for granted, 70
Take or leave, 70
Takeover, 55
Tampering, 86
Taxes, 476
Taxonomy, 438
TCP, 145, 325, 361, 569
Team

Collaboration, 206
Scaling, 206

Teams, 166, 284, 342
Teams vs individuals, 222
Tenancy, 315, 390

Path, 374
Scaling, 400

Tenant
Boundary, 418

Tenant segregation
Assumption, 415

Test
Dynamic, 566
Semantic, 566
Stress, 566

Testing, 565
Theorem

Absence of a promise is not promise
of absence, 572

Buckingham Pi, 333
Coarse grained time is slower, 207
Loss of distinguishability, 595
Mashed Potato, 594
Separation of causal influence, 149
Statelessness is scale dependent, 198

Tick, 80, 84
Tiers, 89
Time, 71, 88, 105

Actual, 147
After, 588

INDEX 689

As a flow, 138
Before, 588
During, 588
Entangled (co-time), 129
Equilibration, 234
Exterior, 82, 84, 126, 143, 225
Interior, 82, 84, 126, 201, 225, 231
Learning, 585
Non-single valued, 129
Observed, 147
Proper, 82, 588, 633
Publication, 147
Realtime, 461
Relaxation, 234
Sampling, 147
Single-valued, 230
System, 147
Ticks slower for superagents, 206
To Keep a Promise, 70
To keep promise, 70
To keep promises, 581

Time-series model, 141, 155
Timescales

Consistency, 214
Outcome and process, 271, 460, 498
Predictability, 148, 498
Risk, 543
Systems, 347

Timesharing, 266, 324
TLS, 55
TNI, 326
Tolerance

By averaging, 507
Defined, 505

Tolerant, 281, 308, 484, 505, 550
Of faults, 336
Semantics, 507

Top-down, 11, 432

Topology, 124
Of workflow, 457

Total graph, 169
Traceability, 157, 160
Traffic intensity, 310
Trains

Bulk transport, 329
Trajectory, 20

Defined, 20, 139
Exterior, 275
Process, 271, 274, 499
Scalar promise, 274

Transaction, 356
At scale T , 562
Composition, 563
Defined, 562
Locking, 560
Log, 213
Numbering, 361
Slow, 75

Transaction Control Protocol, 145
Transactions

Defined, 197
Transducer, 318, 551

Scale, 380, 381
Transduction layers, 551
Transistor, 341
Transitivity, 97
Transmuter, 293
Transparency, 475, 544

Defined, 171, 372
Transport, 336
Transport process, 14, 597
Tree structure, 443
TRIAD, 326
Trust, 11, 120, 268

And security, 481
Impartiality, 4

690 INDEX

Software design, 340
Trust architecture, 55
Trusted Third Party, 55, 56
Tunnelling, 325
Turing, Alan, 341
Turtle paradox, 79, 106
Twelve Factor App, 353, 359
Twelve-Factor App manifesto, 630
Type safety, 296

Uncertainty, 288, 483
Propagation, 280

Uncertainty theorem, 100
Undersampling, 153
Undo, 560, 564, 565, 567
Unikernel, 582
Unit test, 341, 575
Universal Scalability Law, 454
Universal scaling, 331
Universality, 49
Unnumbered interfaces, 156
Unprepared agent, 537
Unsupervised learning, 638
Upgrade, 559
Upgrade example, 559
Urinating in public, 186
User, 18
UTC time, 143, 154
Utilization, 447

Sparse network, 239

Vacuum pressure, 632
Valency, 288
Valet parking, 75
Value, 342

Human, 64
Variable

Defined, 365
Vector clock, 83, 142

Vector promise, 68
Vector space, 68
Velocity, 133
Ventral symmetry, 406
Version control, 564
Vertical scaling, 446

Defined, 447
Virtual interaction, 247
Virtualization

Circuits, 324
Efficiency, 582
Network, 405
Proximity, 474

VLAN, 324, 329
VLSI, 312, 632
Voluntary cooperation, 378
Von Neumann, John, 341
Voting, 26

Democracy, 39
VTEP, 326
Vulnerability, 499

Waiting
Process, 225

WAN, 322
Waste processing, 476
Wavelength, 72
Weak coupling, 77, 150
Weakly stateless process, 196
Web

Of trust, 55
Web of trust, 56
Western civilization, 471
Window

Maintenance, 563
Window process

Defined, 468
Windows

Of data, 466

INDEX 691

Wireless network, 16, 73
Wirth’s law, 332
Wolfram, Stephen, 351
Worker

Skilled, 579
Workflow, 292, 317, 441, 442, 549

Energy, 477
Scaling, 543
Topology, 457

Workflow pipeline
Defined, 318

Workload
Compression, 451
Scaling, 331

Workspaces, 470
Worlds

Private, 307

X.509, 55

YAML, 342

Z-series, 448
Zookeeper, 378, 563
Zoom in, 372

692 INDEX

ABOUT THE AUTHOR

Mark Burgess is a British theoretical physicist, turned computer scientist, living in Oslo,
Norway. After authoring and consulting for the IT industry and holding a number of
research and teaching positions, he was appointed full Professor in the field of Networks
and Systems at Oslo University College in 2005, which he held until resigning in 2011
to found the CFEngine company. He is the originator of the globally used CFEngine
software as well as founder of CFEngine AS, Inc, and the Research and Innovation
consulting company ChiTek-i AS, which focuses on educating and assisting companies
in the solution of challenging systemic problems. He is the author of many books and
scientific publications, and is a frequent speaker at international events.

Mark Burgess may be found at www.markburgess.org, and on Twitter under
the name @markburgess_osl.

693

