
A TREATISE ON SYSTEMS, VOLUME 1

Network and System Administration usually refers only to the traditional skills and recipes
for keeping computers and networks running properly. But, in truth, this view omits the
most important part of the system: humans. The skill needed to comprehend and tame
systems comprising both humans and machines is that of managing complexity. In this
book, first written in 2002 and updated now, Mark Burgess summarizes the scientific
foundations for modelling resources, efficiency, and security of human-machine systems.
The lessons learned from this volume led to the development of Promise Theory, covered
in volume 2, and represent a significant step forward in describing functional systems
with a multiscale approach that embodies both dynamics and semantics.

This book serves as guide to graduate students and researchers in the development of a
new science of systems, and further illustrates practical tools for engineers at the top of
their field. Although it tackles many complicated issues, the book takes the form of an
overview, in lecture form.

‘...a landmark book in the field of network and system administration. For the first time,
in one place, one can study the components of network and system administration as an
evolving and emerging discipline, rather than as a set of recipes, practices, or principles.’
– Alva Couch, Tufts University 2002, from the Foreword

‘Mark Burgess’ new book brings an analytical, scientific approach to bear on the general
subject of systems and network administration. This original perspective opens up a
wealth of ideas and possibilities which will be of interest to both the researcher and
advanced practitioner’
– Paul Anderson, Edinburgh University 2002

‘An unusual book ... in that it describes the theory which relates the components —
computers and networks to the users and administrators. It is the only book I know that
covers the ‘science’ underpinning systems administration.’
– Morris Sloman, Imperial College London, 2002

Also by the author:

PROMISE THEORY: PRINCIPLES AND APPLICATIONS

MONEY, OWNERSHIP, AND AGENCY—AS AN APPLICATION OF

PROMISE THEORY

Other reviews:

‘A landmark book in the development of our craft...’
–Adrian Cockcroft (about In Search of Certainty)

‘Proud to say that I am a card-carrying member of the [Mark Burgess] fan club. And I
think that it wouldn’t be too much of a stretch to say that he’s the closest thing to Richard
Feynman within our industry (and not just because of his IQ).’ –Cameron Haight (about
Smart Spacetime)

‘...our whole industry is transforming based on ideas [Mark Burgess]
pioneered’
–Michael Nygard (about Smart Spacetime)

‘The work done by [Mark] on complexity of systems is a cornerstone in design of large
scale distributed systems...’
–Jan Wiersma (about In Search of Certainty)

‘Some authors tread well worn paths in comfortable realms. Mark not only blazes new
trails, but does so in undiscovered countries.’
–Dan Klein (about Smart Spacetime)

A TREATISE ON SYSTEMS

ANALYTICAL DESCRIPTIONS OF
HUMAN-INFORMATION NETWORKS

VOLUME 1

MARK BURGESS

χtAxis press

An earlier edition of this material was published under the title Analytical
Network and System Administration: Managing Human-Computer Sys-
tems. This revised and corrected edition first published by χtAxis press
2017.

This edition published under the imprint χtAxis press, Oslo, Norway

Text and figures Copyright c©Mark Burgess 2002-2017.

Mark Burgess has asserted their right under the Copyright, Design and
Patents Act, 1988, UK, to be identified as the authors of this work.

All rights reserved. No part of this publication may be copied or re-
produced in any form, without prior permission from the author.

Cover design by Zhaoling Xu.

CONTENTS

1 Introduction 1
1.1 Systems and their management? . 1
1.2 What is a system? . 2
1.3 What is administration? . 2
1.4 Studying systems . 4
1.5 What’s in a theory? . 7
1.6 How to use the text . 12
1.7 Some notation used . 13

2 Science and its methods 14
2.1 The aim of science . 14
2.2 Causality, superposition and dependency 18
2.3 Controversies and philosophies of science 19
2.4 Technology . 23
2.5 Hypotheses . 23
2.6 The science of technology . 24
2.7 Evaluating a system - dependencies 25
2.8 Abuses of science . 26

3 Experiment and observation 27
3.1 Data plots and time series . 28
3.2 Constancy of environment during measurement 29
3.3 Experimental design . 31
3.4 Stochastic (random) variables . 32
3.5 Actual values or characteristic values 33
3.6 Observational errors . 33
3.7 The mean and standard deviation . 35
3.8 Probability distributions and measurement 36

i

3.8.1 Scatter and jitter . 39
3.8.2 The ‘normal’ distribution . 39
3.8.3 Standard error of the mean 40
3.8.4 Other distributions . 41

3.9 Uncertainty in general formulae . 43
3.10 Fourier analysis and periodic behaviour 44
3.11 Local averaging procedures . 45
3.12 Reminder . 48

4 Simple systems 49
4.1 The concept of a system . 49
4.2 Data-structures and processes . 50
4.3 Representation of variables . 52
4.4 The simplest dynamical systems . 54
4.5 More complex systems . 55
4.6 Freedoms and constraints . 56
4.7 Symmetries . 58
4.8 Algorithms, protocols and standard

‘methods’ . 59
4.9 Currencies and value systems . 60

4.9.1 Energy and power . 61
4.9.2 Money . 61
4.9.3 Social currency and the notion of responsibility 62

4.10 Open and closed systems: the environment 64
4.11 Reliable and unreliable systems . 67

5 Sets, states and logic 68
5.1 Sets . 68
5.2 A system as a set of sets . 70
5.3 Addresses, dependencies, and mappings 71
5.4 Chains and states . 72
5.5 Configurations and macrostates . 74
5.6 Continuum approximation . 75
5.7 Theory of computation and machine language 76

5.7.1 Automata or State Machines 77
5.7.2 Operators and operands . 80
5.7.3 Pattern matching and operational grammars 81
5.7.4 Pathway analysis and distributed algorithms 82

5.8 A policy defined state . 83

6 Diagrammatical representations 85
6.1 Diagrams as systems . 86
6.2 The concept of a graph . 87
6.3 Promise Theory . 89
6.4 Connectivity . 95
6.5 Centrality: maxima and minima in graphs 95
6.6 Ranking in directed graphs . 98
6.7 Applied diagrammatical methods . 102

7 System Variables 109
7.1 Information systems . 109
7.2 Addresses, labels, keys and other resource locators 110
7.3 Functional dependent relationships 112
7.4 Digital comparison . 114

8 Change in systems 117
8.1 Renditions of change . 117
8.2 Determinism and predictability . 119
8.3 Oscillations and fluctuations . 121
8.4 Rate of change . 123
8.5 Applications of the continuum approximation 125
8.6 Uncertainty in the Continuum Approximation 127
8.7 Causation in systems . 130

9 Information and influence 131
9.1 What is information? . 131
9.2 Transmission . 132
9.3 Information and control . 133
9.4 Classification and resolution . 133
9.5 Statistical uncertainty and entropy . 136
9.6 Properties of the entropy . 141
9.7 Uncertainty in communication . 141
9.8 A geometrical interpretation of information 146
9.9 Compressibility and size of information 150
9.10 Information and state . 152
9.11 Maximum entropy principle . 153
9.12 Fluctuation spectra . 157
9.13 Propagation of influence . 157

10 Stability 160
10.1 Basic notions . 160
10.2 Types of stability . 161
10.3 Constancy . 161
10.4 Convergence of behaviour . 162
10.5 Maxima and minima . 164
10.6 Regions of stability in a graph . 165
10.7 Graph stability under random node removal 167
10.8 Dynamical equilibria: compromise 169
10.9 Statistical stability . 169
10.10Scaling stability . 171
10.11Maximum entropy distributions . 176
10.12Eigenstates . 176
10.13Fixed points of maps . 179
10.14Metastable alternatives and adaptability 184
10.15Final remarks . 185

11 Resource networks 187
11.1 What is a system resource? . 187
11.2 Representation of resources . 188
11.3 Resource currency relationships . 189
11.4 Resource allocation, consumption and

conservation . 191
11.5 Where to attach resources? . 193
11.6 Access to resources . 194
11.7 Methods of resource allocation . 197

11.7.1 Logical regions of systems 197
11.7.2 Using centrality to identify resource bottlenecks 198

11.8 Directed resources: flow asymmetries 201

12 Task management and services 204
12.1 Task list scheduling . 204
12.2 Deterministic and non-deterministic

schedules . 205
12.3 Human-computer scheduling . 208
12.4 Service provision and policy . 209
12.5 Queue processing . 209
12.6 Models . 211
12.7 The prototype queue M/M/1 . 212

12.8 Queue relationships or basic “laws” 214

12.9 Expediting with multiple servers M/M/k 219

12.10Load balancing from queueing theory 222

12.11Maximum entropy input events in periodic systems 224

12.12Miscellaneous issues in scheduling 226

13 System architectures 228
13.1 Policy and promises of organization 228

13.2 Informative and procedural flows . 229

13.3 Structured systems and ad hoc systems 231

13.4 Dependence on external agents . 232

13.5 System design strategy . 234

13.6 Capabilities and limitations . 241

13.7 Event driven systems and functional systems 242

13.8 The organization of human resources 243

13.9 Principle of minimal strong dependency 244

13.10Decision making within a system . 245

13.10.1 Layered systems: Managers and workers 245

13.10.2 Efficiency . 246

13.11Prediction, verification and their limitations 247

13.12Graphical methods . 248

14 System normalization 250
14.1 Dependency and the scaling of agency 250

14.2 The database schema model . 252

14.3 Normalized forms . 254

14.4 Promise theory, semantic spacetime, and uniformity 259

15 System integrity 260
15.1 System convergence to a desired state 260

15.2 The Shannon error channel interpretation 262

15.3 Exterior influence and strategic instruction 264

15.4 Stochastic semi-groups and martingales 270

15.5 Characterizing probable or average error 271

15.6 Correcting errors of propagation . 273

15.7 Gaussian continuum approximation formula 275

16 Policy and maintenance 278
16.1 What is maintenance? . 278
16.2 Average changes in configuration . 279
16.3 The reason for random fluctuations 282
16.4 Huge fluctuations . 283
16.5 Equivalent configurations and policy 283
16.6 Identification of a policy with a state of promises kept 285
16.7 Convergent maintenance . 285
16.8 The maintenance theorem . 289
16.9 Theory of backup and error correction 290

17 Knowledge, learning and training 299
17.1 Information and knowledge . 300
17.2 Knowledge as classification . 301
17.3 Bayes theorem . 303
17.4 Belief versus truth . 305
17.5 Decisions based on expert knowledge 306
17.6 Knowledge out of date and the importance of forgetting 310
17.7 Convergence of the learning process 312
17.8 From pattern recognition to semantic reasoning 313

18 Policy transgressions and faults 314
18.1 Faults and failures . 314
18.2 Deterministic system approximation 317
18.3 Stochastic system models . 321
18.4 Approximate information flow reliability 326
18.5 Fault correction by monitoring and instruction 328
18.6 Policy maintenance architectures . 332
18.7 Critique of a current approximation 341
18.8 Diagnostic cause trees . 341
18.9 Probabilistic fault trees . 345

18.9.1 Faults . 345
18.9.2 Conditions and set logic . 347
18.9.3 Construction . 348

19 Decision and strategy 351
19.1 Rational actors . 351
19.2 Causal analysis . 352
19.3 Decision making . 353

19.4 Game theory . 354
19.5 The strategic form of a game . 358
19.6 The extensive form of a game . 360
19.7 Solving zero sum games . 362
19.8 Dominated strategies . 363
19.9 Nash equilibria . 363
19.10A security game . 368

19.10.1 Zero sum approximation . 369
19.10.2 Non-zero sum approximation 373

19.11The garbage collection game . 375
19.12A social engineering game . 382
19.13Human elements of policy decision 389
19.14Coda: extensive versus strategic

configuration management . 390
19.15Verdict on game theory . 392

20 Conclusions 394

A Some boolean formulae 399
A.1 Conditional probability . 400
A.2 Boolean algebra and logic . 400

B Statistical and scaling properties of time-series data 403
B.1 Local averaging procedure . 403
B.2 Scaling and self-similarity . 407
B.3 Scaling of continuous functions . 408

C Percolation conditions 410
C.1 Random graph condition . 410
C.2 Bi-partitie form . 414
C.3 Small graph corrections . 414

D Stable distributions 416

PREFACE TO SECOND EDITION

This Treatise on Systems is both a work for studying and for reference. It is composed of
two volumes: the first, a restoration of an earlier book written in 2002, and the second
a continuation consisting of new perspectives. My focus for almost 25 years has been
the question: how can we ask the right questions about systems, without having to learn
every lesson the hard way?

I wrote this first volume hurriedly in the university summer vacation of 2002, as a text
for a new course in analytical thinking, as part of an experimental Oslo University College
Master of Science programme in Network and System Administration. It bore the title
Analytical Network and System Administration: Managing Human-Computer Systems,
and was intended as a synthesis of all the methods one could use to analyze systems of
humans interacting with computers from a mathematical logical perspective, drawn from
any and every discipline. My aim was to present systems from the perspective of analysis
of resources, scaling, and maintenance, for a future of ‘pervasive computing’, in which
computers would be literally everywhere1. This was the time of the Xerox PARC vision,
which would later be rebranded as ‘The Internet of Things’. I was searching for ways to
describe pragmatic systems using mathematical methods, feeling a deep dissatisfaction
with the recipe approaches of OSI, ITIL, and the academic literature that made no attempt
to address any issues that they had not already experienced. Although great engineers can
come up with analytical approaches on their own, given plenty of time and experience, I
believed that good engineering should not be the preserve to brilliant individuals. With a
little training in how to think about problems, analysis is available to everyone.

Many of the methods I picked could be drawn from my own research into systems
and their scaling behaviours. In spite of a valiant and well-meaning effort, looking
back, some of the approaches (e.g. game theory) seem as naive and idealistic as the
corresponding ideas did in their native fields of economics and biology. I was clutching
at straws, asking what could be done to go beyond the ad hoc methods of the day?

1See the story of this in my book In Search of Certainty [Bur13a]

ix

Others have implicitly entered modern datacentre design (queueing theory) without any
help from me. Unfortunately, for many years datacentre engineering disappeared from
public view into the private sector: Amazon, Google, and later others sucked up talented
engineers and created a divide between those pushing the envelope, and those left behind.

So why revive this now? Isn’t it too late? I don’t think so. Today, we have
passed the age of the treatise, yet (call me old fashioned) I still believe in the virtue of
coherent thought, and most engineers have still not made the transition to treating system
engineering as a science. Recently, I was honoured to write the introduction to Google’s
Site Reliability Engineering handbook[BJPM16], which makes a perfect companion
volume to this theoretical compendium. Most engineers turn their noses up at theory, but
Google’s work show how that is mistaken. Most will read the non-technical account of
Site Reliability Engineering, in the modern way (as a branded concept), and find it better
than a book on theoretical thinking. But, I believe that serious individuals will still be
grateful for a cultural context for these ideas. If this treatise helps only one other person
than me, it will have been worth it. And the wonders of modern print on demand make
its availability viable.

The university degree, which motivated this older volume, was not to be a course in
computer science and distributed algorithms (which would not have been comprehensible
to students who applied for engineering, and would have given little insight into how
actual systems work in practice). Nor could I claim that anyone was actually using
the approaches in the world of industry (except, of course, myself out of sheer dogged
insistence that science is important). Ultimately, the attempt was ridiculed by the self-
appointed guardians of system administration, with the exception of a few maverick
enthusiasts2.

The single semester course, for me, was a great success. It accomplished what
I set out to do beyond my wildest expectations. Students, who professed to never
having learned or been interested in mathematics, became some of the highest achievers,
reaching more than an ability to solve equations by rote: they came to understand what
the equations meant, how they were approximations to reality, and what the possible
answers meant. Later, when I left the university, the course was dropped in favour of
some standard mathematical methods, without specific application to systems, and the
book became priced beyond the reach of sub-financiers by the publisher.

More interestingly, this was exactly the time when the industry was undergoing a
revolution thanks to the explosion of web services. In their secretive way, Amazon and
Google were building some of the largest systems on the planet. They were later followed
by Facebook and by others. Many of these companies used CFEngine and its principles

2This pattern seems to follow me constantly, but over time the works have been rediscovered and
appreciated at least in part.

of scaling to build their early datacentres. Typical computer systems grew from being
of the order of 100 computers to 10,000 and then 100,000, and beyond. As the years
went by, some of the engineers involved told me that they secretly admired the original
book, and the work it was based on. Having tried more traditional programming, many
recreated CFEngine-like technologies and architectures due to scaling issues. Moreover,
many authors began to write that the knowledge they applied to understand the system
was more like physics than computer science. This began with the server administrators,
database designers, then the network administrators. The acknowledgement of physics
as the science of scale was in line with my expectations. Most computer scientists
never confront the ideas of scale or dynamical stability, because they are focused on
microscopic mechanisms of intent and possibility. I later wrote a popular science account
of the work In Search of Certainty to try to reach a wider audience without use of
mathematics.

One outcome of this hurriedly prepared book was that it focused my attention on
a huge hole in available theory, concerning the role of policy and semantics: i.e. those
choices and decisions that are not based on quantitative methods, but which are simply
choices made because they are what people intend to do. In order to force quantitative
analysis, one generally sacrifices too much of the intended role of a system, while
conversely keeping too much attention on semantics (e.g. in programming specifications),
outcomes become difficult to assess using conventional analysis. Systems are designed
with a purpose in mind—and this cannot be meaningfully excluded to justify a definition
of ‘probability’ or ergodicity, etc. The methods of physics, which inspired me, have been
designed to wilfully dismiss such ‘subjective’ concerns. Following up on this point led
directly to the development of Promise Theory[BB14], which forms the content of the
second volume.

In this second edition (in addition to bringing the book back from the edge of price
reality to where readers can actually afford it), I have chosen not to alter the book
significantly. However, I have attempted to update it somewhat, peppering the text with
hints about where the theory led, as well as examples from the present, without trying
to alter its historical naivety, poised as it was on the brink of modern datacentre design.
Adding a second volume, after the development of Promise Theory felt like the best way
to separate background from application, as well as preserve the historical telling.

Some fifteen years later, we have learned much in practice, often in ways that could
have been shortened by a little theoretical know-how, while the ideas presented in this
first volume are still only just entering mainstream, second-hand through technologies of
those few individuals who applied them, with or without my help. I register a growing
interest in science amongst IT operations engineers, nonetheless, and a curious interest
in Promise Theory for its attempt to bridge what seem like disparate and contradictory

worlds of humanity and technology. There is no other analytical language to describe
the phenomena they confront in their daily lives. Most authors still rely on rhetoric and
explicit demonstration (one-off proofs of concept) to argue their cases. I am humbly
pleased that these early writings seem to have played some tiny role in bringing some
science to bear for a small minority of willing minds.

Today, the potential for theoretical modelling is even more exciting. Human-
computer systems have spread beyond the datacentre into our daily lives. The idea
of ‘semantic spacetime’[Bur14, Bur15, Bur16b] takes Promise Theory to new levels of
scale, to view deeply embedded functional systems at high density for the coming age
of pervasive embedded computing. Today, we also have actual data about scaling to
compare to theory, as well as the qualitative experiences described in Google’s own story
of system design[BJPM16], and these accounts vindicate the use of analysis quite well. I
hope the restoration of this introductory volume along with the second volume, which
looks forward, may inspire a few individuals to continue to delve more into analytical
methods, to better understand the human-information systems that we are creating move
the planet forward.

MB May 2017

FOREWORD TO FIRST EDITION

It is my great honor to introduce a landmark book in the field of network and system
administration. For the first time, in one place, one can study the components of network
and system administration as an evolving and emerging discipline and science, rather
than as a set of recipes, practices or principles. This book represents the step from
mastery of the practice and scientific understanding, a step very similar to that between
historical alchemy and chemistry.

As recently as ten years ago, many people considered network and system admin-
istra tion to comprise remembering and following complex recipes for building and
maintaining systems and networks. The complexity of many of these recipes-and the
difficulty of explaining them to nonpractitioners in simple and understandable tenns–
encouraged practitioners to treat system administration as an ‘art’ or guild craft into
which practitioners are initiated through apprenticeship.

Current master practitioners of network and system administration are perhaps best
compared with historical master alchemists at the dawn of chemistry as a science. In
contrast to the distorted popular image of alchemy as seeking riches through transmu-
tation of base metals, historical research portrays alchemists as master practitioners of
the subtle art of combining chemicals towards particular results or ends. Practitioners
of alchemy often possessed both precise technique and highly developed observational
skills. Likewise, current master practitioners of network and system administration
craft highly reliable networks from a mix of precise practice, observational skills and
the intuition that comes from careful observation of network behaviour over long time
periods. But both alchemists and master practitioners lack the common language that
makes it easy to exchange valuable information with others: the language of science.

Alas, the alchemy by which we have so far managed our networks is no longer
suffient. When networks were simple in structure, it was possible to maintain them
through the use of relatively straightforward recipes, procedures and practices. In the post-
Internet World, the administrator is now faced with managing and controlling networks
that can dynamically adapt to changing conditions and requirements quickly and, perhaps,

xiii

even hnpredictably. These adaptive networks can exhibit emergent properties that are
not Dredictable in advance. In concert with adapting networks to serve human needs,
future admininistrators must adapt themselves to the task of management by developing
an ongoing, perpetually evolving, and shared understanding.

In the past, it was reasonable to consider a computer network as a collection of
cooperating machines functioning in isolation. Adaptive networks cannot be analysed in
this fashion; their human components must also be considered. Modern networks are
not communities of machines. but rather communities of humans inextricably linked
by machines: what the author calls Cooperating ecologies of users and machines. The
behaviour of humans must be considered along with the behaviour of the network for
making conclusions about network performance and suitability.

These pressures force me to an inescapable conclusion. System administrators
cannot continue to be alchemist-practitioners. They must instead develop the language of
science and evolve from members of a profession to researchers within a shared scientific
discipline. This book shows the way.

Though we live thousands of miles apart, the author and I are kindred spirits—forged
by many of the same experiences, challenges and insights. In the late 19803 and early
19905, both of us were faculty, managing our own computer networks for teaching and
research. Neither of us had access to the contemporary guilds of system administration
(or each other), and had to learn how to administer networks the hard way-by reading the
documentation and creating our own recipes for success. Both of us realized (completely
independently) that there were simple concepts behind the recipes that, once discovered,
make the recipes easy to remember, reconstruct and understand. Concurrently and
independently, both of us set out to create software tools that would avoid repeated
manual configuration.

Although we were trained in radically differing academic traditions (the author from
physics and myself from mathematics and computer science), our administrative tools,
developed completely in isolation from one another, had very similar capabilities and
even accomplished tasks using the same methods. The most striking similarity was that
both tools were based upon the same principles. For the first time, it very much looked
like we had found an invariant principle in the art of system and network administration:
the principle of convergence. As people would say in the North Carolina backwoods near
where I grew up, if it aint broke, dont fix it.

The road from alchemy to discipline has many steps. In the authors previous book,
Principles of Network and System Administration, he takes the first step from practice
(what to do) to principles (why to do it). Recipes are not created equal; some are better
than others. Many times the difference between good and poor recipes can be expressed
in terms of easily understood principles. Good recipes can then be constructed top-down,

starting at the principles. Practitioners have approached the same problem bottom-
up, working to turn their tested and proven recipes into sets of best practices that are
guaranteed to work well for a particular site or application. Recently, many practitioners
have begun to outline the principles underlying their practices. There is remarkable
similarity between the results of these two seemingly opposing processes, and the authors
principles, and the practitioners best practices are now quickly meeting on a common
middle ground of principles.

In this book, for the first time, the author identifies principles of scientific practice
and observation that anyone can use to become proficient analysts of network and system
administration practices. This will not make one a better practitioner, but rather will
allow one to discuss and evaluate the practice with others in a clear and concise manner.
The reader will not find any recipes in this book. The reader will not find principles of
practice. Rather, the book explains the principles behind the science and chemistry of
cooking, so that one can efficiently derive ones own efficient and effective recipes for
future networks.

Proficient system administrators have always been capable of this kind of alchemy,
but have found it challenging to teach the skill to others. This book unlocks the full
power of the scientific method to allow sharing of analyses, so that future administrators
can look beyond recipe, to shared understanding and discipline. In this way, now-isolated
practitioners can form a shared scientific community and discipline whose knowledge is
greater than the sum of its parts.

Looking at the table of contents, one will be very surprised to note that the traditional
disciplines of computer science and computer engineering-long considered the insep-
arable partners of system administration-are not the basis of the new science. Rather,
experimental physics has proven to be the Rosetta Stone that unlocks the mysteries of
complex systems. To understand why, we must examine the fundamental differences
in economics between the disciplines of computer science and engineering and the
disciplines of network and system administration.

Traditional computer science and engineering (and, particularly, the sciences involved
in building the systems that system administrators manage) are based upon either an
operational or axiomatic semantic model of computing. Both models express what a
program does in an ideal computing environment. Software developers build complex
systems in layers, where each subsequent layer presumes the correct function of layers
upon which it is built. Program correctness at a given layer is a mathematical property
based upon axioms that describe the behaviour of underlying layers. Fully understanding
a very complex system requires understanding of each layer and its interdependencies
and assumptions in dealing with other layers.

System administrators have a differing view of the systems they manage compared

to that of the developers who designed the systems. It is not economically feasible to
teach the deep knowledge and mathematical understanding necessary to craft and debug
software and systems to large populations of human system administrators. System
administrators must instead base their actions upon a high-level set of initial experimental
hypotheses called the system documentation. The documentation consists of hypotheses
to be tested, not axioms to be trusted. As administrators learn how to manage a system,
they refine their understanding top-down, by direct observation and ongoing evaluation
of hypotheses.

Turning system and network administration into a discipline requires one to learn
some skills, previously considered far removed from the practice. Evaluating hypotheses
requires a rudimentary knowledge of statistics and the experimental method. These
hypotheses are built not upon operational or axiomatic semantic models of computing, but
upon specialized high-level mathematical models that describe behaviour of a complex
system. With this machinery in hand, several advanced methods of analysis-prevalent
in experimental physics and other scientific disciplines-are applied to the problem of
understanding management of complex systems.

Proficient system administrators are already skilled experimental scientists; they
just do not acknowledge this fact and cannot effectively communicate their findings to
others. .This book takes a major step towards understanding the profession of system
and net work administration as a science rather than as an art. While this step is difficult
to take, it is both rewarding and necessary for those pioneers who will manage the next
genera tion of networks and services. Please read on, and seek to understand the true
nature of networking-as a process that involves connecting humans, not just computers.

Alva Couch Tufts University, USA, 2003

PREFACE TO FIRST EDITION

This is a research document and a textbook for graduate students and researchers in
the field of networking and system administration. It offers a theoretical perspective on
human-computer systems and their administration. The book assumes a basic competence
in mathematical methods, common to undergraduates courses. Readers looking for a less
theoretical introduction to the subject may wish to consult [Bur00b].

I have striven to write a short book, treating topics briefly rather than succumbing to
the temptation to write an encyclopædia that few will read or be able to lift. I have not
attempted to survey the literature or provide any historical context to the development of
these ideas (see [ABC01]). I hope this makes the book accessible to the intelligent lay
reader who does not possess an extensive literacy in the field, and would be confused by
such distractions. The more advanced reader should find sufficient threads to follow to
add depth to the material. In my experience, too much attention to detail merely results in
forgetting why one is studying something at all. In this case, we are trying to formulate a
descriptive language for systems.

A theoretical synthesis of system administration plays two roles: it provides a
descriptive framework for systems that should be available to other areas of computer
science, and it proffers an analytical framework for dealing with the complexities of
interacting components. The field of system administraion meets an unusual challenge in
computer science: that of approximation. Modern computing systems are too complicated
to be understood in exact terms.

In the flagship theory of physics, quantum electrodynamics, one builds everything
out of two simple principles:

1. Different things can exist at different places and times.

2. For every effect, there must be a cause.

The beauty of this construction is its lack of assumptions and the richness of the results.
In this text, I have tried to synthesize something like this for human-computer systems.

xvii

In order to finish the book, and keep it short and readable I have had to compromise on
many things. I hope that the result nevertheless contributes in some way to a broader
scientific understanding of the field and will inspire students to further serious study of
this important subject.

Some of this work is based on research performed with my collaborators Geoff
Canright, Frode Sandnes and Trond Reitan. I have benefitted greatly from discussions
with them and others. I am especially grateful for the interest and support of other
researchers, most notably Alva Couch for understanding my own contributions when
no on else did. Finally I would like the thank several for reading draft versions of the
manuscript and commenting: Paul Anderson, Lars Kristiansen, Tore Jonassen, Anil
Somayaji, Jan Bergstra.

MB June 2002

CHAPTER 1

INTRODUCTION

Technology: the science of the mechanical and industrial arts.
[Gk. tekhne art and logos speech].

– Odhams dictionary of the English language

1.1 SYSTEMS AND THEIR MANAGEMENT?

The management of systems, called variously management theory or system adminis-
tration is about the design, running and maintenance of human-information systems.
Human-information systems are ‘communities’ of people and machines that collaborate
actively to execute a common task. Examples of human-information systems include
business enterprises, service institutions and any extensive machinery that is operated
by, or interacts with human beings. The human players in a human-information system
are often called the users and the machines are referred to as hosts, but this suggests an
asymmetry of roles which is not always the case.

System administration is primarily about the technological side of a system: the
architecture, construction and optimization of the collaborating parts, but it also occasion-
ally touches on softer factors such as user assistance (help desks), ethical considerations
in deploying a system, and the larger implications of its design for others who come
into contact with it. System administration deals first and foremost with the system as a
whole, treating the individual components as black boxes, to be opened only when it is
possible or practical to do so. It does not conventionally consider the design of user-tools
such as third-party computer programs, nor does it attempt to design enhancements to
the available software, though it does often discuss meta-tools and improvised software

1

2 CHAPTER 1. INTRODUCTION

systems which can be used to monitor, adjust or even govern the system. This omission
is mainly because user-software is acquired beyond the control of a system administrator;
it is written by third parties, and is not open to local modification. Thus users’ tools and
software are treated as ‘given quantities’ or ‘boundary conditions’.

For historical reasons, the study of system administration has fallen into two camps:
those who speak of network management and discuss its problems in terms of soft-
ware design for the management of black box devices by humans (e.g. using SNMP),
and those who speak of system administration and concern themselves with practical
strategies of machine and software configuration at all levels, including automation,
human-information issues and ethical considerations. These two viewpoints are com-
plementary, but too often ignore one another. This books considers human-information
systems in general, and refers to specific technologies only by example. It is therefore as
much about purely human administrative systems as it is about computers.

1.2 WHAT IS A SYSTEM?

A system is most often an organized effort to fulfil a goal, or at least carry out some
predictable behaviour. The concept is of the broadest possible generality. A system
could be a mechanical device, a computer, an office of workers, a network of humans
and machines, a series of forms and procedures (a bureaucracy) etc. Systems involve
themes, such as collaboration and communication between different actors, the use of
structure to represent information or to promote efficiency, and the laws of cause and
effect. Within any mechanism, specialization of the parts is required to build significant
innovation; it is only through strategy of divide and conquer that significant problems
can be solved. This implies that each division requires a special solution.

A computer system is usually understood to mean a system composed primarily of
computers, using computers or supporting computers. A human-information system
includes the role of humans, such as in a business enterprise where computers are widely
used. The principles and theories concerning systems come from a wide range of fields
of study. They are synthesized here in a form and language which is suitable for scholars
of science and engineering.

1.3 WHAT IS ADMINISTRATION?

The word administration is covers a variety of meanings in common parlance. The
American Administration is the government of the United States, i.e. a political leadership.
A university administration is a bureaucracy and economic resource department, which
works on behalf of a board of governors to implement university policy and to manage

1.3. WHAT IS ADMINISTRATION? 3

its resources. The administrative department of a company is generally the part which
handles economic procedures and payment transactions. In human-information system
administration the definition is broadened to include all of the organizational aspects
and also engineering issues, such as system fault diagnosis. In this regard, it is like
the medical profession, which combines checking, management and repair of bodily
functions. The main issues are:

• System design and rationalization

• Resource management

• Fault finding

In order to achieve these goals, it requires

• Procedure

• Team work

• Ethical practices

• Appreciation of security

Administration comprises two aspects: technical solutions and arbitrary policies. A
technical solution is required to achieve goals and sub-goals, so that a problem can be
broken down into manageable pieces. Policy is required to make the system, as far as
possible, predictable: it pre-decides the answers to questions on issues which cannot be
derived from within the system itself. Policy is therefore an arbitrary choice, perhaps
guided by a goal or principle.

The arbitrary aspect of policy cannot be disregarded from the administration of a
system, since it sets the boundary conditions under which the system will operate, and
supplies answers to questions which cannot be determined purely on the grounds of
efficiency. This is especially important where humans are involved: human welfare,
permissions, responsibilities and ethical issues are all parts of policy. Modelling these
intangible qualities, formally, presents some challenges and requires the creative use of
abstraction.

The administration of a system is an administration of temporal and resource devel-
opment. The administration of a network of localized systems (a so-called distributed
system) contains all of the above, and additionally the administration of the location of
and communication between the system’s parts. Administration is thus a flow of activity,
information about resources, policy making, record keeping, diagnosis, and repair.

4 CHAPTER 1. INTRODUCTION

1.4 STUDYING SYSTEMS

There are many issues to be studied in system administration. Some issues are of a
technical nature, while others are of a human nature. System administration confronts
the human-machine interaction as few other branches of computer science do. Here are
some examples:

• System design (e.g. how to get humans and machines to do a particular job as
efficiently as possible. What works? What does not work? How does one know?)

• Reliability studies (e.g. failure rate of hardware/software, evaluation of policies
and strategies)

• Determining and evaluating methods for ensuring system integrity (e.g. automa-
tion, cooperation between humans, formalization of policy, contingency planning
etc.)

• Observations which reveal aspects of system behaviour which are difficult to
predict (e.g. strange phenomena, periodic cycles).

• Issues of strategy and planning.

Usually system administrators do not decide the purpose of a system, they are regarded as
supporting personnel. As we shall see, this view is somewhat flawed from the viewpoint
of system design, however. It does not always make sense to separate the human and
computer components in a system; as we move farther into the information age, the fates
of both become more deeply intertwined.

To date, little theory has been applied to the problems of system administration. In a
subject which is complex, like system administration, it is easy to fall back on qualitative
claims—i.e. on promises. This could be considered dangerous, however, since one may
be easily fooled by qualitative descriptions. On the other hand, qualitative aspects of
systems play a key role in their functional behaviours—and so we return to integrate the
qualitative aspects in volume 2 of this treatise.

For a quantitative approach, analysis proceeds as a dialogue between theory and by
experiment. We need theory to interpret results of observations and we need observations
to back up theory. Any conclusions must be a consistent mixture of the two. At the
same time, one must not believe that it is sensible to demand hard-nosed Popper-like
falsification of claims in such a complex environment. Any numbers which we can
measure, and any models we can make must be considered valuable, provided they
actually have a sensible interpretation.

1.4. STUDYING SYSTEMS 5

HUMAN-COMPUTER INTERACTION

The established field of human-computer interaction (HCI) has grown up, in computer
science, around the need for reliable interfaces in critical software scenarios (see for
instance [She96, Zad73]). For example, in the military, real danger could come of an
ill-designed user interface on a nuclear submarine; or in a power plant, a poorly designed
system could set off an explosion or result in blackouts.

One can extend the notion of the human-computer interaction to think less as a
programmer and more as a physicist. The task of physics is to understand and describe
what happens when different parts of nature interact. The interaction between fickle
humans and rigid machinery leads to many unexpected phenomena, some of which might
be predicted by a more detailed functional understanding of this interaction. This does
not merely involve human attitudes and habits; it is a problem of systemic complexity
— something that physics has its own methods to describe. Many of the problems
surrounding computer security enter into the equation through the human-computer
interaction. Of all the parts of a system, humans bend most easily: they are often both
the weakest link and the most adaptable tools in a solution, but there is more to the
human-computer interaction than psychology and button pushing. The issue reaches out
to the very principles of science: what are relevant time scales for the interactions and
for the effects to manifest? What are the sources of predictability and unpredictability?
Where is the system immune to this interaction, and where is the interaction very strong?
These are not questions that a computer science analysis alone can answer; there are
physics questions behind these issues. Thus, in reading this book, you should not be
misled into thinking that physics is merely about electrons, heat and motion: it is broad
methodology for ‘understanding phenomena’, no matter where they occur, or how they
are described. What computer science lacks from its attachment to technology, it must
regain by appealing to the physics of systems.

POLICY

The idea policy plays a central role in the administration of systems, whether they are
dominated by human or technological concerns.

Definition 1 (Policy - heuristic). A policy is a description of what is intended and
desirable about a system. It includes a set of ad hoc choices, goals, compromises,
schedules, definitions and limitations about the system. Where humans are involved,
compromises often include psychological considerations, and welfare issues.

A policy provides a frame of reference in which a system is understood to operate. It
injects a relativistic aspect into the science of systems: we cannot expect to find absolute

6 CHAPTER 1. INTRODUCTION

answers, when different systems play by different rules and have different expectations.
A theory of systems must therefore take into account policy as a basic axiom. Much
effort is expended in the chapters that follow to find a tenable definition of policy.

STABILITY AND INSTABILITY

It is in the nature of almost all systems to change with time. The human and machine
parts of a system change, both in response to one another, and in response to a larger
environment. The system is usually a predictable, known quantity; the environment is,
by definition, an unknown quantity. Such changes tend to move the system in one or
two directions: either the system falls into disarray or it stagnates. The meaning of these
provocative terms is different for the human and the machine parts:

• Systems will fall into a stable repetition of behaviour (a limit cycle) or reach
some equilibrium at which point further change cannot occur without external
intervention.

• Systems will eventually invalidate their assumptions and fail to fulfil their purpose.

Ideally a machine will perform, repetitively, the same job over and over again, because
that is the function of mechanisms: stagnation is good for machines. For humans, on
the other hand, this is usually regarded as a bad thing, since humans are valued for their
creativity and adaptability. For a system mechanism to fall into disarray is a bad thing.

The relationship between a system and its environment is often crucial in determining
which of the above is the case. The inclusion of human behaviour in systems must be
modelled carefully, since humans are not deterministic in the same way that machines
(automata) can be. Humans must therefore be considered as being part system and part
environment. Finally, policy itself must be our guide as to what is desirable change.

SECURITY

Security is a property of systems, that has come to the forefront of our attention in recent
times. How shall we include it in a theory of system administration?

Definition 2 (Security). Security concerns the possible ways in which a system’s integrity
might be compromised, causing it to fail in its intended purpose. In other words, a breach
of security is a failure of a system to meet its specifications.

Security refers to ‘intended purpose’, so it is immediately clear that it relates directly
to policy and that it is a property of the entire system in general. Note also that, while
we associate security with ‘attacks’ or ‘criminal activity’, natural disasters or other
occurrences could be equally to blame for the external perturbations that break systems.

1.5. WHAT’S IN A THEORY? 7

A loss of integrity can come from a variety of sources, e.g. an internal fault, an
accident or an malicious attack on the system. Security is a property that requires the
analysis of assumptions that underpin the system, since it is these areas which one tends
to disregard and which can be exploited by attackers, or fail for diverse reasons. The
system depends on its components in order to function. Security is thus about an analysis
of dependencies. We can sum this up in a second definition:

Definition 3 (Secure system). A secure system is one in which every possible threat has
been analyzed and where all the risks have been assessed and accepted as a matter of
policy.

1.5 WHAT’S IN A THEORY?

When it was first published, I wrote that this book was not a finished theory, like the
theory of relativity, or the theory of genetic replication. It was not to be understood
the end of a story, but a beginning. In particular, system administration as applied to
computers, was at the start of its scientific journey, not at its end. In the intervening years,
there have been many changes in the information technology industry, and developments
like the explosion of social media and cloud computing, implicitly using the the ideas
presented in the book. In most cases, the technological accomplishments were built
without any credit due to the former edition. In other cases, companies like Facebook,
LinkedIn, as well as Wall Street used the ideas through the proxy of the CFEngine
software, which embodied the learning documented therein.

DRAMATIS PERSONAE

The players in systems and their administration are:

• Computers.

• Networks.

• System users or participants.

• Policy.

• Administrators.

The goal of this volume is to apply standard methods of rational scientific methodology
to the description of systems, and to provide an overview of those methods in a way that
cannot be found elsewhere. Thus, its aim is to form a bridge between mathematics and

8 CHAPTER 1. INTRODUCTION

system engineering. We seek a clear and flexible language (rooted in mathematics) in
which to write their script. It will deal with basic themes of:

• Time (when events occur or should occur).

• Location (where resources should be located).

• Value (how much the parts of a system contribute or are worth).

• Randomness and predictability (our ability to control or specify).

It must answer questions that are of interest to the management of systems. We can use
two strategies:

• Type I (pure science) models that describe the behaviour of a system without
attempting to interpret its value or usefulness. These are ‘vignettes’ that describe
what we can observe and explain it in impartial terms. They provide a basic
understanding of phenomena that leads to expertise about the system.

• Type II (applied science) models add interpretations of value and correctness
(policy) to the description. They help up to make decisions by impressing a
rational framework on the subjectivities of policy.

A SNAPSHOT OF REALITY

The system administrator rises and heads for the computer. Grabs coffee or cola and
proceeds to catch up on E-mail. There are questions, bug-reports, automatic replies from
scripted programs, spam and lengthy discussions from mailing lists.

The day proceeds to planning, fault finding, installing software, modifying system
parameters to implement (often ad hoc) policy that enables the system to solve a problem
for a user, or which makes the running smoother (more predictable) — see fig. 1.1. On
top of all of this, the administrator must be thinking about what users are doing. After
all, they are the ones who need the system and the ones who most often break it. How
does ‘the system’ cope with them and their activities as they feed off it and feed back
on it. They are, in every sense, a part of the system. How can their habits and skills be
changed to make it all work more smoothly? This will require an appreciation of the
social interactions of the system and how they, in turn, affect the structures of the logical
networks and demands placed on the machines.

There are decisions to be made, but many of them seem too uncertain to be able to
make a reliable judgement on the available evidence. Experimentation is required, and
searching for advice from others. Unfortunately, you never know how reliable others’
opinions and assertions will be. It would be cool if there were a method for turning the

1.5. WHAT’S IN A THEORY? 9

Learning

Policy

Policy

Statistics

Structure

Change

Extrema

Extrema
Probability

Sets

Sets

Change

Graphs
Extrema

Probability

Flow of data

Predictability

Integrity

Reliability

Stability

Fault finding

Decisions
Expertise

Experience

Security

Redundancy

Maintenance

Performance

Economics

Workflow

Verification

Architecture

Installation

Efficiency

Extrema

Probability

Statistics

Graphs

Noise

Figure 1.1: The floating islands of system administration move around on a daily basis and touch
each other in different ways. In what framework shall place these? How can we break them down
into simpler problems that can be ‘solved’? In courier font, we find some primitive concepts
that help to describe the broader ideas. These will be our starting points.

creative energy into the optimal answer. There is ample opportunity and a wealth of tools
to collect information, but how should that information be organized and interpreted?
What is lacking is not software, but theoretical tools.

What view or philosophy could unify the different facets of system administration:
design, economics, efficiency, verification, fault-finding, maintenance, security, and so
on? Each of these issues is based on something more primitive or fundamental. Our task
is therefore to use the power of abstraction to break down the familiar problems into
simpler units that we can master and then reassemble into an approximation of reality.
There is no unique point of view here (see next chapter).

Theory might lead to better tools but also to better procedures. If it is to be of any
use, it must have predictive power as well as descriptive power. We have to end up with
formulae and procedures that make criticism and re-evaluation easier and more effective.
We must be able to summarize simple ‘laws’ about system management (thumb-rules)
that are not based only on vague experience, but have a theoretical explanation based on
reasonable cause and effect.

10 CHAPTER 1. INTRODUCTION

How could such a thing be done? For instance: how might we measure how much
work will be involved in a task?

• We would have to distinguish between the work we actually do and how much
work is needed in principle (efficiency and optimization).

• We would look for a mathematical idea with the characreristics or properties of
work. We find that we can map work into the idea of ‘information’ content in
some cases (now we have something concrete to study).

• Information or work is a statistical concept: information that is transmitted often
can be compressed on average — if we do something often, efficiencies can be
improved through economies of scale.

By starting down the road of analysis, we gain many small insights that can be assembled
into a deeper understanding. That is what this book attempts to do.

The system administrator wonders if he or she will ever become redundant, but there
is no sign of that happening. The external conditions and requirements of users are
changing too quickly for a system to adapt automatically, and policy has to be adjusted to
new goals and crises. Humans are the only technology on the planet that can address that
problem for the foreseeable future. Besides, the pursuit of pleasure is a human condition,
and part of the enjoyment of the job is that creative and analytical pursuit.

The purpose of this book is to offer a framework in which to analyze and understand
the phenomena of human-computer management. It is only with the help of theoretical
models that we truly can obtain a deeper understanding of system behaviour.

STUDIES

The coming chapters describe a variety of languages for discussing systems, and present
some methods and issues that are the basis of the author’s own work. Analysis is the
scientific method in action, so this book is about analysis. It has many themes:

1. Observe — we must establish a factual basis for discussing systems.

2. Deduce cause — we establish probable causes of observed phenomena.

3. Establish goals — what do we want from this information?

4. Diagnose ‘faults’ — what is a fault? It implies a value judgement, based on policy.

5. Correct faults — devise and apply strategies.

1.5. WHAT’S IN A THEORY? 11

Again, these concepts are intimately connected with ‘policy’, i.e. a specification of right
and wrong. In some sense, we need to know the ‘distance’ between what we would like
to see and what we actually see.

This is all very abstract. In the day to day running of systems, few administrators
think in such generalized, abstract terms — yet this is what this book asks you to do.

Example 1 (A backup method). A basic duty of system administrators is to perform a
backup of data and procedures: to ensure the integrity of the system under natural or
unnatural threats. How shall we abstract this and turn it into a scientific enquiry?

We might begin by examining how data can be copied from one place to another.
This adds a chain of questions: i) how can the copying be made efficient? ii) what does
efficient mean? iii) how often do the data change, and in what way? What is the best
strategy for making a copy: immediately after every change, once per day, once per
hour? We can introduce a model for the change, e.g. a mass of data that is more or less
constant, with small random fluctuating changes to some files, driven by random user
activity. This gives us something to test against reality. Now we need to know how users
behave, and what they are likely to do. We then ask: what do these fluctuations look like
over time? Can they be characterized, so that we can tune a copying algorithm to fit
them? What is the best strategy for copying the files?

The chain of questions never stops: analysis is a process, not an answer.

Example 2 (Resource management). Planning a system’s resources, and deploying them
so that the system functions optimally is another task for a system administrator. How
can we measure, or even discuss the operation of a system to see how it is operating? Can
important (centrally important) places be identified in the system, where extra resources
are needed, or the system might be vulnerable to failure? How shall we model demand
and load? Is the arrival of load (traffic) predictable or stochastic? How does this affect
our ability to handle it? If one part of the system depends on another, what does this
mean for the efficiency or reliability? How do we even start asking these questions
analytically?

Example 3 (Pattern detection). Patterns of activity manifest themselves over time in sys-
tems. How do we measure the change, and what is the uncertainty in our measurement?
What are their causes? How can they be described and modelled? If a system changes
its pattern of behaviour, what does this mean? Is it a fault or a feature?

In computer security, intrusion detection systems often make use of this kind of idea,
but how can the idea be described, quantified and generalized, hence evaluated?

12 CHAPTER 1. INTRODUCTION

Example 4 (Configuration management). The initial construction and implementation
of a system, in terms of its basic building blocks is referred to as its configuration. It
is a measure of the system’s state or condition. How should we measure this state? Is
it a fixed pattern, or a statistical phenomenon? How quickly should it change? What
might cause it to change unexpectedly? How big a change can occur before the system is
damaged? Is it possible to guarantee that every configuration will be stable, perform its
intended function, and be implementable according to the constraints of a policy?

In each of the examples above, an apparently straightforward issue generates a
stream of questions that we would like to answer. Asking these questions is what science
is about: answering them involves the language of mathematics and logic in concert
with a scientific inquiry: science is about extracting the essential features from complex
observable phenomena and modelling them in order to make predictions. It is based on
observation and approximate verification. There is no “exact science” as we sometimes
hear about in connection with physics or chemistry; it is always about suitably idealized
approximations to the truth, or “uncertainty management”. Mathematics, on the other
hand, is not to be confused with science — it is about rewriting assumptions in different
ways: i.e. if one begins with a statement that is assumed true (an axiom) and manipulates
it according to the rules of mathematics, the resulting statement is also true by the same
axioms. It contains no more information than the assumptions on which it rests. Clearly
mathematics is an important language for expressing science.

1.6 HOW TO USE THE TEXT

Readers should not expect to understand or appreciate everything in this book in the
short term. Many subtle and deep lying connections are sewn in these pages that will
take even the most experienced reader some time to unravel. It is my hope that there
are issues sketched out here that will provide fodder for research for at least a decade,
probably several. Many ideas about the administration of systems are general and have
been discussed many times in different contexts, but not in the manner or context of
system administration.

The text can be read in several ways. To gain a software-engineering perspective, one
can replace “the system” with “the software”. To gain a business management perspective,
replace “the system” with “the business”, or “the organization”. For human-computer
administration, read “the system” as “the network of computers and its users”.

The first part of the book is about observing and recording observations about
systems, since we aim to take a scientific approach to systems. Part 2 concerns abstracting
and naming the concepts of a system’s operation and administration in order to place
them into a formal framework. In the final part of the book, we discuss the physics of

1.7. SOME NOTATION USED 13

information systems, i.e. the problem of how to model the time-development of all the
resources in order to determine the effect of policy. This reflects the cycle of development
of a system:

• Observation.

• Design (change).

• Analysis.

1.7 SOME NOTATION USED

A few generic symbols and notations are used frequently in this book and might be
unfamiliar.

The function q(t) is always used to represent a ‘signal’ or quality that is varying in
the system, i.e. a scalar function describing any value that changes in time. I have found
it more useful to call all such quantities by the same symbol, since they all have the same
status.

q(x, t) is a function of time and a label x that normally represents a spatial po-
sition, such as a memory location. In structured memory, composed of multiple ob-
jects with finite size the addresses are multi-dimensional and we write q(~x, t), where
~x = (x1, . . . , x`) is an `-dimensional vector that specifies location within a structured
system, e.g. (6,3,8) meaning perhaps bit 6 of component 3 in object 8.

In describing averages, the notation 〈...〉 is used for mean and expectation values,
e.g. 〈X〉 would mean an average over values of X . In statistics literature, this is often
written E(X).

In a local averaging procedure, reduces a large set X to a smaller set x of com-
pounded objects, thus is does not result in a scalar value but a smaller set whose elements
are identified by a new label. E.g. suppose we start with a set of 10 values X . We could
find the mean of all values 〈X〉10 giving a single value. now group them into 5 groups of
2. Now we average each pair and end up with 5 averaged values: 〈X(x)〉2. This still has
a label x since it is a set of values, where x = 1 . . . 5.

Applications and Further Study 1.

• Use these broad topics as a set of themes for categorizing the detailed treatments
in forthcoming chapters.

CHAPTER 2

SCIENCE AND ITS METHODS

Science is culture,
Technology is art.

– Author’s slogan.

A central theme of this book is the application of scientific methodologies to the de-
sign, understanding and maintenance of human-computer systems—and more generally
to human-machine systems. Ironically ‘Computer Science’ has often lacked classical
scientific thinking in favour of reasoned assertion (with a focus on logic), since it has
primarily been an agent for technology and mathematics. The art of observation has
concerned mainly those who work with performance analysis.

While mathematics is often about reasoning (it seeks to determine logical relation-
ships between assumed truths), the main purpose of science is to interpret the world as
we see it, by looking for suitably idealized descriptions of observed phenomena and
quantifying their uncertainty. Science is best expressed with mathematics, but the two
are independent. There are many philosophies about the meaning of science, but in this
book we shall be pragmatical rather than encyclopædic in discussing these.

2.1 THE AIM OF SCIENCE

Let us define science in a form that motivates its discussion in relation to human-computer
systems.

Principle 1 (Aim of science). The principal aim of science is to uncover the most likely
explanation for observable phenomena.

14

2.1. THE AIM OF SCIENCE 15

Science is a procedure for making sure that we know what we are talking about, when
discussing phenomena that occur around us. It is about managing our uncertainty. Science
does not necessarily tell us what the correct explanation for a phenomenon is, but it
provides us with tools for evaluating the likelihood that a given explanation is true, given
certain experimental conditions. Thus, central to science is the act of observation.

Observation is useless without interpretation, so experiments need theories and mod-
els to support them. Moreover, there are many strategies for understanding observable
phenomena: it is not necessary to have seen a phenomenon to be able to explain it, since
we can often predict phenomena just by guesswork, or imagination1. The supposed
explanation can then be applied and tested once the phenomenon has actually been
observed.

The day-to-day routine of science involves the following themes, in approximately
this order:

OBSERVATION OF PHENOMENA

Normally we want to learn something about a system, e.g. find a pattern of behaviour so
that we might predict how it will behave in the future, or evaluate a property so that we
can make a choice or value judgement about it. This might be as simple as measuring a
value, or it might involve plotting a set of values in a graph against a parameter such as
time or memory.

Example 5 (Performance analysis). Performance analysts measure the rate at which a
system can perform its task. They do this with the larger aim of making things faster
or more efficient. Computer anomaly detectors, on the other hand, look for familiar
patterns of behaviour so that unusual occurrences can be identified and examined more
closely for their significance.

ESTIMATION OF EXPERIMENTAL ERROR

In observing the world, we must be cautious about the possibility of error in procedure
and interpretation: if we intend to base decisions of observations, we need to know
how certain we are of our basis. Poor data can mislead (garbage in; garbage out). Any
method of observation admits the possibility of error in relation to one’s assumptions
and methods.

• We make a mistake in measurement (either at random or repeatedly).

• The measuring apparatus might be unreliable.
1This is how black holes were ‘discovered’ in astrophysics. It is now believed that there is unambiguous

evidence for black holes.

16 CHAPTER 2. SCIENCE AND ITS METHODS

0 24 48 72 96 120
0

8

16

24

32

Figure 2.1: A pattern of process behaviour. The solid curve is the measured expectation value of
the behaviour for that time of week. Notice the use of error bars on these measurements—almost
unheard of in Computer Science. The error bars indicate the standard deviation, which also has a
periodic variation that follows the same pattern as the expectation value; i.e. both moments of the
probability distribution of fluctuations has a daily and weekly period.

2.1. THE AIM OF SCIENCE 17

• The assumptions of the experiment are violated (e.g. inconstant environmental
conditions)

Although it is normal to refer to this as ‘experimental error’, a better phrase is experi-
mental uncertainty. We must quantify the uncertainty in the experimental process itself,
because this contributes an estimation of how correct our speculations about the results
are. Uncertainties are usually plotted as ‘error bars’ (see fig 2.1).

IDENTIFICATION OF RELATIONSHIPS

Once we know the main patterns of behaviour, we try to quantify them by writing down
mathematical relationships. This leads to empirical relationships between variables, i.e.
it tells us how many of the variables we are able to identify are independent, and how
many are determined.

Example 6 (Relationship). It is known that the number of processes running on a college
web server is approximately a periodic function (see fig. 2.1). Using these observations,
we could try to write down a mathematical relationship to describe this. e.g.

f(t) = A+Be−γ(t−t0) sin(ωt), (2.1)

where t is time along the horizontal axis, and f(t) is the value on the vertical axis, for
constants A,B, ω, γ, t0.

In the example above, there are far too many parameters to make a meaningful fit. It
is always possible to fit a curve to data with enough parameters (‘enough parameters to
fit an elephant’ is a common phrase used to ridicule students); the question is how many
are justified before an alternative explanation is warranted?

SPECULATION ABOUT MECHANISMS

Expressing observations in algebraic form gives us a clue about how many parameters
are likely to lie behind the explanation of a phenomenon. Next we speculate about the
plausible explanations that lead to the phenomena, and formulate a theory to explain the
relationships. If our theory can predict the relationships and data we have provided, it is
reasonable to call the speculation a theory.

CONFIRMATION OF SPECULATIONS

One must test a theory as fully as possible by comparing it to existing observations, and
by pushing both theory and observation to try to predict something that we do not already
know.

18 CHAPTER 2. SCIENCE AND ITS METHODS

QUANTIFICATION OF UNCERTAINTY

In comparing theory and observation, there is much uncertainty. There is a basic uncer-
tainty in the data we have collected, then there is a question of how accurately we expect
a theory to reproduce those data.

Example 7 (Quantification). Suppose the formula above for fig. 2.1, in eqn. (2.1) can be
made to reproduce the data to within twenty percent of the value on either side, i.e. the
approximate form of the curve is right, but not perfect. Is this an acceptable description
of the data? How close do we have to be to say that we are close enough? This ‘distance
from truth’ is our uncertainty.

In a clear sense, science is about uncertainty management. Nearly all systems of
interest (and every system involving humans) are very complex and it is impossible to
describe them fully. Science’s principle strategy is therefore to simplify things to the
point where it is possible to make some concrete characterizations about observations.
We can only do this with a certain measure of uncertainty. To do the best job possible,
we need to control those uncertainties. This is the subject of the next chapter.

2.2 CAUSALITY, SUPERPOSITION AND DEPENDENCY

In any dynamical system where several processes can coexist, there are two possible
extremes:

• Every process is independent of every other. System resources change additively
(linearly) in response to new processes.

• The addition of each new process affects the behaviour of the others in a non
additive (non-linear) fashion.

The first case is called superposition, i.e. that two processes can coexist without in-
terfering. This is not true or possible in general, but it can be a useful viewpoint for
approximating some system regimes. The latter case is more general and often occurs
when a system reaches some limitation, or constraint on its behaviour, such as when
there is contention over which process has the use of critical resources.

The principle of causality governs all systems at a fundamental level. It is simply
stated:

Principle 2 (Causality). Every change or effect happens in response to a cause, which
precedes it.

2.3. CONTROVERSIES AND PHILOSOPHIES OF SCIENCE 19

This principle sounds intuitive and even manifestly obvious, but the way in which
cause and effect are related in a dynamical system is not always as clear as one might
imagine. We would often like to be able to establish a causal connection between a change
of a specific parameter and the resulting change in the system. This is a central skill in
fault finding, for instance; however, such causal links are very difficult to determine in
complex systems. This is one of the reasons why the administration of systems is hard.

2.3 CONTROVERSIES AND PHILOSOPHIES OF SCIENCE

Science and philosophy have long been related. Indeed, what we now call science was
once ‘natural philosophy’, or pondering about the natural world. Those who practice
science today tend to think little about its larger meaning, or even its methodology. Sci-
ence has become an ‘industry’ — the high ideals that were afforded it in the seventeenth
century have since been submerged in the practicalities of applying it to real problems.

Here are some assertions that have been made of science by philosophers ([Hor96]):

• “Science cannot determine the truth of an explanation, only its likelihood”.

• “Science can only determine the falsity of a theory, not whether it is true”.

• “We must distinguish between truth, which is objective and absolute, and certainty
which is subjective”.

To the casual technologist, such assertions are likely to draw only scepticism as to
the value of philosophy. However, those willing to reflect more deeply on the whole
investigative enterprise will find many ideas in the philosophy of science that are both
interesting and of practical importance. The difficulty in presenting the labours of
careful thought in such a brief and summarial form is that it is easy to misrepresent the
philosophers’ detailed arguments2. No doubt they would be horrified by this summary if
they were alive to read it.

One of the first modern philosophers of science was Sir Francis Bacon, of the
sixteenth century. Bacon (who died of pneumonia after stuffing a chicken with ice to see
if it would preserve its flesh — thus anticipating the deep-freeze) maintained that the
task of science is to uncover a thing’s character, by noting the presence or absence of
tell-tale qualities. Thus, to understand heat, for instance, we must examine a list of hot
and cold things and discern what features are relevant and irrelevant to the production
of heat; e.g. exposure to sunlight is relevant, but the width of an object is not. Next we
would examine instances in which a phenomenon is present in varying degrees, noting

2At this point it would be natural to give a reference to a book in which a nice summary was presented.
Alas, I have yet to find a clear exposition of the philosophy of science printed in English.

20 CHAPTER 2. SCIENCE AND ITS METHODS

what circumstances also vary. For example, to understand heat we must observe things
at different temperatures and note what circumstances are present in varying degrees.
Bacon recognized that we cannot examine an endless number of instances: at some point
we must stop and survey the instances so far.

Especially in the seventeenth century, philosophy became intertwined with mathemat-
ics, or analytical thinking. The philosopher Descartes used geometry for his inspiration as
to how best to conduct an impartial inquiry. John Locke, an understudy of Isaac Newton,
hoped to draw inspiration from the phenomenal success of Newton’s laws of motion
and the calculus, and derive an analytical way of addressing a ‘method of inquiry’ —
what, today, we would call a ‘scientific method’. His philosophy, now called empiricism,
implies a reliance on experience as the source of ideas and knowledge.

Newton was a significant source of inspiration to philosophers because, for the first
time, his work had made it possible to calculate the outcome of a hypothetical situation
that no one had ever observed before, i.e. predict the future for idealized physical systems.
During the Enlightenment, philosophers even came to believe that scientific inquiry could
yield truths about human nature and thus that ethical principles might be best derived
from such truths; this would therefore be a basis for a new order of society.

In the eighteenth century, others began to realize that this vision was flawed. David
Hume discovered an important twist, namely that predictions about events that are not
observed cannot be proven to be true or false, nor even to be probable, since observation
alone cannot see into the future, and not not attempt to asses the cause of a phenomenon.
He asserted that there are two sources of knowledge: analytical knowledge that is certain
(provable assertions) but which cannot directly represent reality, and empirical knowledge
or observations that are uncertain but which apply to the real world.

The empirical observation that releasing a stone causes it to fall to the ground is
insufficient to prove, beyond doubt, that every stone will always fall to the ground in
the future. This is a good example of how our limited experience shapes our view of
the world. Before humans went into space, the assertion was always true; however,
away from gravity, in the weightlessness of space, the observation becomes meaningless.
Hume’s point is that we do not know what we don’t know, so we should not make
unwarranted assumptions.

Although Hume’s ideas had an impact on philosophy, they were not generally
accepted in science. Immanuel Kant and John Stuart Mill made attempts to solve some
of Hume’s problems. Kant claimed to solve some of them by assuming that certain facts
were to be regarded as axioms, i.e. articles of faith that were beyond doubt; i.e. that one
should always set the stage by stating the conditions under which conclusions should be
deemed “true”.

Kant supposed, moreover, that our perception of the world is important to how

2.3. CONTROVERSIES AND PHILOSOPHIES OF SCIENCE 21

we understand it. In what sense are things real? How do we know that we are not
imagining everything? Thus, how do we know that there are not many equally good
explanations for everything we see? His central thesis was that the possibility of human
knowledge presupposes the participation of the human mind. Instead of trying, by reason
or experience, to make our concepts match the nature of objects, Kant held, we must
allow the structure of our concepts shape our experience of objects.

Mill took a more pragmatic line of inquiry and argued that the truth of science is not
absolute, but that its goals were noble; i.e. science is a self-correcting enterprise that does
not need axiomatic foundations per se. If experience reveals a flaw in its generalities,
that can be accommodated by a critical revision of theory. It would eventually deal with
its own faults by a process of refinement.

Epistemology is a branch of philosophy that investigates the origins and nature, and
the extent of human knowledge. Although the effort to develop an adequate theory of
knowledge is at least as old as Plato, epistemology has dominated Western philosophy
only since the era of Descartes and Locke, largely as an extended dispute between ratio-
nalism and empiricism. Rationalism believes that some ideas or concepts are independent
of experience and that some truth is known by reason alone (e.g. parallel lines never
meet). Empiricism believes truth must be established by reference to experience alone.

Logical positivism is a twentieth-century philosophical movement that used a strict
principle of verifiability to reject non-empirical statements of metaphysics, theology, and
ethics. Under the influence of Hume and others, the logical positivists believed that the
only meaningful statements were those reporting empirical observations, The tautologies
of logic and mathematics could not add to these, but merely re-express them. It was thus
a mixture of rationalism and empiricism.

The verifiability principle is the claim that the meaning of a proposition is no
more than the set of observations that would determine its truth, i.e. that an empirical
proposition is meaningful only if it either actually has been verified or could at least in
principle be verified. Analytic statements (including mathematics) are non-empirical;
their truth or falsity requires no verification. Verificationism was an important element in
the philosophical program of logical positivism.

One of the most influential philosophers of science is Karl Popper. He is sometimes
referred to as the most important philosopher of science since Francis Bacon. Karl
Popper’s ideas have proven to be widely influential for their pragmatism and their belief
in the rational. Popper rejected that knowledge is a social phenomenon — it is absolute.
He supposed that we cannot be certain of what we see, but if we are sufficiently critical
we can determine whether or not we are wrong, by deductive falsification, or a process
of conjecture and refutation.

Popper believed that theories direct our observations. They are part of our innate

22 CHAPTER 2. SCIENCE AND ITS METHODS

Figure 2.2: A pastiche of Rene Magritte’s famous painting ‘Ceci n’est pas une pipe’. The artist’s
original paintings and drawings are pictures of a pipe, on which is written the sentence “this is
not a pipe”. The image flirts with paradox and illustrates how uncritical we humans are in our
interpretation of things. Clearly the picture is not a pipe — it is a picture that represents a pipe.
However, this kind of pedantic distinction is often important when engaging in investigative or
analytical thought.

desire to impose order and organization on the world, i.e. to systematize the phenomena
we see, but we are easily fooled and therefore we need to constantly criticize and retest
every assumption to see if we can falsify them. Hume said we can never prove them right,
but Popper says that we can at least try to see if they are wrong.

Paul Feyerabend later argued that there is no such thing as an objective scientific
method. He argued that what makes a theory true or false is entirely a property of the
world-view of which that assertion is a part. This is relativism, i.e. objectivity is a myth.
We are intrinsically locked into our own world view, perceiving everything through a
particular filter, like a pair of sunglasses that only lets us see particular things.

We need only one flaw in an explanation to discount it; but we might need to confirm
hundreds of facts and details to be sure about its validity i.e. “truth”. In the context of
this book, science itself is a system that we shall use to examine others. We summarize
with a pragmatic view of science:

2.4. TECHNOLOGY 23

Principle 3 (Controlled environment). Science provides an impartial method for inves-
tigating and describing phenomena within an idealized environment, under controlled
conditions.

2.4 TECHNOLOGY

Science, we claim, is an investigative enterprise, whose aim is to characterize what
is already there. Technology, on the other hand is a creative enterprise: it is about
tool-building.

The relationship between science and technology is often presented as being prob-
lematical by technologists, but it is actually quite clear. If we do not truly understand
how things work and behave, we cannot use those things to design tools and methods. In
technology we immediately hit upon an important application of science, namely its role
in making value judgements. A value judgement is a subjective judgement, e.g. one tool
can be better than another, one system or method can be better than another — but how
are such judgements made? Science cannot answer these questions, but it can assist in
evaluating them, if the subjectivity can be defined clearly.

The situation is somewhat analogous to that faced by the seventeenth century philoso-
phers who believed that ethics could be derived from scientific principles. Science cannot
tell us whether a tool or a system is “good” or “bad”, because “good” and “bad” have no
objective definitions. Science craves a discipline in making assertions about technology,
and perhaps even guides us in making improvements in the tools we make, by helping us
to clarify our own thoughts by quantification of technologies.

2.5 HYPOTHESES

Although science sometimes springs from serendipitous discovery, its systematic content
comes from testing existing ideas or theories and assertions. Scientific knowledge
advances by undertaking a series of studies, in order to either verify or falsify a hypothesis.
Sometimes these studies are theoretical, sometimes they are empirical and frequently
they are a mixture of the two. Statistical reproducibility is an important criterion for any
result, otherwise it is worthless, because it is uncertain. We might be able to get the same
answer twice by accident, but only repeated verification can be trusted.

In system administration, software tools and human methods form the technologies
that are used. Progress in understanding is made, with the assistance of the tools only if
investigation leads to a greater predictive power or a more efficient solution to a problem.

• Scientific progress is the gradual refinement of the conceptual model that describes
the phenomenon we are studying. In some cases, we are interested in modelling

24 CHAPTER 2. SCIENCE AND ITS METHODS

tools. Thus technology is closely related to science.

• Technological progress is the gradual creative refinement of the tools and methods
referred to by the technology. In some cases, the goal is the technology itself, in
other situations the technology is only an implement for assisting the investigation.

All problems are pieces of a larger puzzle. A complete scientific study begins with a
motivation, followed by an appraisal of the problems, the construction of a theoretical
model for understanding or solving the problems, and finally an evaluation or verification
of the approach used and the results obtained. Recently much discussion has been
directed towards finding suitable methods for evaluating technological innovations in
computer science as well as to encouraging researchers to use them. Nowadays many
computing systems are of comparable complexity to phenomena found in the natural
world and our understanding of them is not always complete, in spite of the fact that
they were designed to fulfil a specific task. In short technology might not be completely
predictable, hence there is a need for experimental verification.

2.6 THE SCIENCE OF TECHNOLOGY

In technology the act of observation has two goals: i) to gather information about a
problem in order to motivate the design and construction of a technology which solves it,
and ii) to determine whether or not the resulting technology fulfils its design goals. If the
latter is not fulfilled in a technological context, the system may be described as faulty,
whereas in natural science there is no right or wrong. In between these two empirical
book-marks lies a theoretical model which hopefully connects the two.

System administration is a mixture of science, technology and sociology. The users
of computer systems are constantly changing the conditions for observations. If the
conditions under which observations are made are not constant, then the data lose their
meaning: the message we are trying to extract from the data is supplemented by several
other messages which are difficult to separate from one another. Let us call the message
we are trying to extract signal and the other messages which we are not interested in
noise. Complex systems are often characterized by very noisy environments.

In most disciplines one would attempt to reduce or eliminate the noise in order to
isolate the signal. However, in system administration, it would be no good to eliminate
the users from an experiment, since it is they who cause most of the problems which one
is trying to solve. In principle this kind of noise in data could be eliminated by statistical
sampling over very long periods of time, but in the case of real computer systems this
might not be possible since seasonal variations in patterns of use often lead to several
qualitatively different types of behaviour which should not be mixed. The collection of

2.7. EVALUATING A SYSTEM - DEPENDENCIES 25

reliable data might therefore take many years, even if one can agree on what constitutes a
reasonable experiment. This is often impractical, given the pace of technological change
in the field.

2.7 EVALUATING A SYSTEM - DEPENDENCIES

Evaluating a model of system administration is a little bit like evaluating the concept of a
bridge. Clearly a bridge is a structure with many components each of which contributes to
the whole. The bridge either fulfils its purpose in carrying traffic past obstacles or it does
not. In evaluating the bridge, should one then consider the performance of each brick and
wire individually? Should one consider the aesthetic qualities of the bridge? There might
be many different designs each with slightly different goals. Can one bridge be deemed
better than another on the basis of objective measurement? Perhaps only the bridge’s
maintainer is in a position to gain a feeling for which bridge is the most successful, but the
success criterion might be rather vague: a collection of small differences which make the
perceptible performance of the bridge optimal, but with no measurably significant data
to support the conclusion. These are the dilemmas of evaluating a complex technology.

The options we have for performing experimental studies are,

• Measurements.

• Simulations.

• User surveys.

with all of the incumbent difficulties which these entail.

SIMPLICITY

Conceptual and practical simplicity are often deemed to be positive attributes of sys-
tems and procedures. This is because simple systems are easy to understand and their
behaviours are easy to predict. We prefer that systems that perform a function do so
predictably.

EVALUATION OF INDIVIDUAL MECHANISMS

For individual pieces of a system, it is sometimes possible to evaluate the efficiency
and correctness of the components. Efficiency is a relative concept and, if used, it must
be placed in a context. For example, efficiency of low level algorithms is conceptually
irrelevant to the higher levels of a program, but it might be practically relevant. i.e.
one must say what is meant by efficiency before quoting results. The correctness of

26 CHAPTER 2. SCIENCE AND ITS METHODS

the results yielded by a mechanism/algorithm can be measured in relation to its design
specifications. Without a clear mapping of input/output the correctness of any result
produced by a mechanism is a heuristic quality. Heuristics can only be evaluated by
experienced users expressing their informed opinions.

2.8 ABUSES OF SCIENCE

Science is about constantly asking questions and verifying hypotheses to see if one’s
world view holds up to scrutiny. However, the authority that science has won is not
always been wielded in a benign way. History is replete with illegitimate ideas that have
tried to hide behind the reputation of science, by embracing its terminology without
embracing its forms.

Marketeers are constantly playing this game with us, inventing scientific sounding
names for bells and whistles on their products, or claiming that they are ‘scientifically
proven’ (an oxymoron). By quoting numbers, or talking about ‘ologies’ there are many
uncritical forces in the world who manipulate our beliefs, assuming that most individuals
will not be able to verify them or discount them3. In teaching a scientific method, we
must be constantly aware of abuses of science.

Applications and Further Study 2. The observation and analysis of systems involves
these themes:

• Variables or measurables.

• Determinism or causality.

• Indeterministic, random or stochastic influences.

• Systems and their environments.

• Accounting and conservation.

3Eugenics is one classic example where the words and concepts discovered by science were usurped for
illegitimate means to claim that certain individuals were genetically superior to others. This was a classic
misunderstanding of a scientific concept that was embraced without proper testing or understanding.

CHAPTER 3

EXPERIMENT AND OBSERVATION

Trust, but verify!

–Russian Proverb

Collecting data to support an idea or hypothesis is central to the scientific method.
We insist on the existence of evidence that can be examined and related analytically (by
mathematics or other reasoning) to the phenomenon under consideration, because our
trust in random observation or hearsay is only limited. The paraphrased proverb, “Trust
but verify” is often cited in connection with system security, but it is equally pertinent
here. In a sense, the scientific method is the security or quality assurance system for
‘truth’.

To study human-computer systems, we draw on analytical methods from the diverse
branches of science, but our conclusions must be based on observed fact. Reliable
observational evidence is most easily obtained where one can perform experiments to
gather numerical data, then derive relationships and conclusions. Descriptive sciences do
not always have this luxury and are forced to use a form of data collection that involves
visual observation, classification or even by interview. This is less focused and therefore
harder to use to support specific conclusions.

Example 8 (Qualitative and quantitative 1). A zoologist might find no problem in mea-
suring the weight of animals, but might find it difficult to classify the colours of animals
in order to relate this to their behaviour. When is red really brown? Fuzzy classifiers
from day-to-day experience lead to difficulties for science — qualitative descriptions are
prone to subjective interpretation.

Example 9 (Qualitative and quantitative 2). In human-computer systems, it is easy to

27

28 CHAPTER 3. EXPERIMENT AND OBSERVATION

measure numerical quantities such as rate of change of data, but qualitative features
such as ‘lawfulness’ of users seem too vague to quantify.

Difficulties with qualitative characterizations can sometimes be eliminated by going
to a lower level, or to a smaller scale of the system: e.g. the classification of animals
might be done more precisely by looking at their DNA, and the lawfulness of a user
might be measured by examining the policy conformance of each file and change made
by the user.

3.1 DATA PLOTS AND TIME SERIES

In the observation of real systems, measurements are made and data are collected. If
the data are collected at regular intervals, they are usually represented either as time-
series, i.e. plots of a measured values versus the time at which the measurements were
made, or as histograms that count the numbers of measurements that fall into certain
domains (called classes) in the data values. Both types of diagram play important roles in
understanding systems. In addition, various kinds of graphical representations are used
to elucidate relationships between variables, such as plots of one variable against another,
or log-log plots of the same variables that indicate power-law relationships.

Fig. 3.1 shows a typical series of measurements made from a computer system over
the course of several weeks. By plotting all of the data on a against a timescale of a week,
one sees a clear pattern in the data, but also a scatter in the values measured at each time.
Error bars are drawn at each point where there are repeated measurement. These show
the width of the standard deviation ±σ centred about the mean value. It is important
to plot the scatter in data as a visual guide to the uncertainty in the claimed result (see
section 3.4).

Since, at each each time, in fig. 3.1 there is a distribution of values, we can plot
that distribution on a frequency plot like that in fig. 3.2. This is a kind of histogram
in which the columns have been joined into an approximate curve. If the area under a
frequency plot like this is normalized to unity, it represents a probability distribution
for the measured values P (q). The probability distribution for the measured values is
important in gauging the stability of a system as well as in characterizing its fluctuation
spectrum, as we shall see in chapter 8.

3.2. CONSTANCY OF ENVIRONMENT DURING MEASUREMENT 29

0 50 100 150 200

time (hours)

30

40

50

60

70

80
P

ro
c
e

s
s
e

s
 a

c
ti
v
e

Figure 3.1: A time-series of measurements taken over repeated weeks. Notice that repeated
measurements at the same time of week are averaged over and ‘error bars’ are used to represent
the width of the scatter. The result is a plot of the mean value 〈q〉 ± σ.

3.2 CONSTANCY OF ENVIRONMENT DURING MEASURE-
MENT

In science, our aim is to take small steps, by stripping away everything down to single
cause-effect relationships, and then gradually putting things back together. Einstein is
famous for having said that everything in should be made as simple as possible, but no
simpler. By this, he meant that we should neither over-complicate nor over-simplify an
explanation.

Most phenomena are governed by a number of parameters; e.g. suppose the rate of a
computer is affected by three parameters:

R = R(c,m, s) (3.1)

30 CHAPTER 3. EXPERIMENT AND OBSERVATION

0 20 40 60 80

Measured Value

0

50

100

150

200

F
re

q
u

e
n

c
y
 c

o
u

n
t

Figure 3.2: A frequency plot of the numbers of measurements of a given value.

where c is the CPU rate, m is the amount of memory and s is the speed of memory. If
we want to discover just how R depends on each of these, we must test each parameter
individually, holding the others constant, else we might mix up the dependence on each
parameter. Science ends up with neat formulae relating measurables, only because this
isolation is possible. Such formulae describe the real world, but they do not really
describe the ‘real environment’ because the environment is messy. Science therefore
strives to ensure idealized environmental conditions for investigating phenomena, in
order to take one thing at a time.

In the real world of human-computer systems, there are many variables and influences
that affect a system, so we must strive to maintain constant conditions in all variables
but the one we would like to test. This is rarely possible, and thus there is an inevitable
uncertainty or experimental error in any experiment. An important task of science is to
quantify this uncertainty.

3.3. EXPERIMENTAL DESIGN 31

Principle 4 (Causality identification). Scientific observation strives to isolate single
cause-effect relationships, by striving to keep environmental conditions constant during
measurement. The impossibility of completely constant external conditions makes it
necessary to quantify the uncertainty in each measurement.

Note that by isolating ‘single’ cause-effect relationships, we do not mean to imply that
there is always a single variable that controls a process, only that each independent
change can be identified with an independent parameter.

The way we do this for simple measurable values is relatively easy and is described
in this chapter. However, not all situations are so easily quantifiable. Qualitative experi-
ments, such as those of biology (e.g. classifying types of behaviour) also occur in the
study of human-computer systems. If we do not actually begin with hard numbers, the
estimate of uncertainty has to be made by finding a numerical scale, typically through a
creative use of classification statistics; e.g. how many animals have exhibited behaviour
A and how many behaviour B? Or how far is behaviour A from behaviour B on some
arbitrary scale, used only for comparison.

All scales are arbitrary in science (that is why we have many different units for weight,
height, frequency etc), what is important is how we relate these scales to observables.

3.3 EXPERIMENTAL DESIGN

The cleverness of an experiment’s design can be crucial to its success in providing the
right information. Our aim is to isolate a single channel of cause-effect at a time. We
must ensure that the experimental observation does not interfere with the system we are
measuring. Often an experiment yields unexpected obstacles which must be overcome.
There can be a lot of work to answer even a simple question. (For examples from
computer performance analysis, see [Jai91].)

Example 10 (File copy experiment). Suppose we wish to compare the behaviour of two
programs for mirroring (copying) files, for backup. We notice that one program seems to
complete its task very quickly, presenting a high load to the the source and destination
machines. The other takes much longer but presents almost no load. How shall we
determine the reason?

We might begin by finding some data to copy. Data are composed of files of different
sizes. Size might be important, so we shall be interested in how size affects the rate of
copying, if at all. The first time we copy the files, every file must be transferred in full.
On subsequent updates, only changes need to be copied. One program claims to copy
only those bytes that are different; the other has to copy a whole file, even if only one
byte has changed, so file size again becomes important.

32 CHAPTER 3. EXPERIMENT AND OBSERVATION

We could investigate how the total time for copying is related to the total amount
of data i) of all files, ii) of files that are copied. We might also be interested in what
dependencies the programs have: do they use the Internet Protocol with TCP or UDP,
IPv4 or IPv6? Does the computer kernel or operating system affect the performance of
the two programs?

The stream of questions never ceases; we must decide when to stop. Which questions
are we interested in, and when have they been sufficiently answered? This is a value
judgement that requires experience and inquisitiveness from the investigator.

3.4 STOCHASTIC (RANDOM) VARIABLES

Our inability to control, or even follow every variable in a system’s environment means
that some of the changes appearing in the system seem random, or inexplicable.

Definition 4 (Random process). A random process is one in which there are too many
unknowns to be able to trace the channels of cause and effect.

A stochastic or random variable is a variable whose value depends on the outcome
of some underlying random process. The range of values of the variable is not at issue,
but which particular value the variable has at a given moment is random. We say that a
stochastic variable X will have a certain value x with a probability P (x).

Usually, in an experiment a variable can be said to have a certain random component
(sometimes called its ‘error’ from the historical prejudice that science is deterministic
and the only source of randomness is the errors incurred by the experimental procedure)
and an average stable value. We write this

x = 〈x〉+ ∆x, (3.2)

where x is the actual value measured, 〈x〉 is the mean or expectation value of all
measurements (often written E(x) in statistical literature), and ∆x is the deviation from
the mean. The mean value changes much more slowly than ∆x. For example:

• Choices made by large numbers of users are not predictable, except on average.

• Measurements collected over long periods of time are subject to a variety of
fluctuating conditions.

Measurements can often appear to give random results, because we do not know all of
the underlying mechanisms in a system. We say that such systems are non-deterministic
or that there are hidden variables that prevent us from knowing all the details. If a

3.5. ACTUAL VALUES OR CHARACTERISTIC VALUES 33

variable has a fixed value, and we measure it often enough and for long enough, the
random components will often fall into a stable distribution, by virtue of the central limit
theorem (see for instance ref. [GS01]). The best known example of a stable distribution
is the Gaussian type of distribution.

3.5 ACTUAL VALUES OR CHARACTERISTIC VALUES

There is a subtle distinction in measurement between a observable that has an actual
‘true’ value and one that can only be characterized by a typical value.

For example, it is generally assumed that the rest mass of the electron has a ‘true’
value that never changes. Yet when we measure it, we get many different answers.
The conclusion must be that the different values result from errors in the measurement
procedure. In a different example, we can measure the size of a whale and we get many
different answers. Here there is not ‘true’ or ‘standard’ whale and the best we can do is
to measure a typical or expected value of the size.

In human-computer systems, there are few if any measurements of the first type,
because almost all values are affected by some kind of variation. For example, room
temperature can alter the maximum transmission rate of a cable. We must therefore be
careful about what we claim to be constant, and what is the reason for the experimental
variation in the results. Part of the art in science is in the interpretation of results, within
the constraints of cause and effect.

3.6 OBSERVATIONAL ERRORS

All measurements involve certain errors. One might be tempted to believe that, where
computers are involved, there would be no error in collecting data, but this is false. Errors
are not only a human failing, they occur because of unpredictability in the measurement
process, and we have already established throughout this book that computers systems
can be unpredictable. We are thus forced to make estimates of the extent to which
our measurements can be in error. This is a difficult matter, but approximate statistical
methods are well known in the natural sciences, methods which become increasingly
accurate with the amount of data in an experimental sample.

The ability to estimate and treat errors should not be viewed as an excuse for
constructing a poor experiment. Errors can only be minimized by design. There are
several distinct types of error in the process of observation.

The simplest type of error is called random error. Random errors are usually small
deviations from the ‘true value’ of a measurement which occur by accident, by unforeseen
jitter in the system, or some other influence. By their nature, we are usually ignorant

34 CHAPTER 3. EXPERIMENT AND OBSERVATION

of the cause of random errors, otherwise it might be possible to eliminate them. The
important point about random errors is that they are distributed evenly about the mean
value of the observation. Indeed, it is usually assumed that they are distributed with an
approximately normal or Gaussian profile about the mean. This means that there are
as many positive as negative deviations and thus random errors can be averaged out by
taking the mean of the observations.

It is tempting to believe that computers would not be susceptible to random errors.
After all, computers do not make mistakes. However this is an erroneous belief. The
measurer is not the only source of random errors. A better way of expressing this is to
say that random errors are a measure of the unpredictability of the measuring process.
Computer systems are also unpredictable, since they are constantly influences by outside
agents such as users and network requests.

The second type of error is a personal error. This is an error which a particular
experimenter adds to the data unwittingly. There are many instances of this kind of error
in the history of science. In a computer controlled measurement process, this corresponds
to any particular bias introduced through the use of specific software, or through the
interpretation of the measurements.

The final and most insidious type of error is the systematic error. This is an error
which runs throughout all of the data. It is a systematic shift in the true value of the data,
in one direction, and thus it cannot be eliminated by averaging. A systematic error leads
also to an error in the mean value of the measurement. The sources of systematic error
are often difficult to find, since they are often a result of misunderstandings, or of the
specific behaviour of the measuring apparatus.

In order to measure the CPU usage of a computer system, for instance, we have to
start a new program which collects that information, but that program inevitably uses the
CPU also and therefore changes the conditions of the measurement. These issues are
well known in the physical sciences and are captured in principles such as Heisenberg’s
Uncertainty Principle, Schrödinger’s cat and the use of infinite idealized heat baths in
thermodynamics. We can formulate our own verbal expression of this for computer
systems:

Principle 5 (Uncertainty). The act of measuring a given quantity in a system with finite
resources, always changes the conditions under which the measurement is made, i.e. the
act of measurement changes the system.

Measurement is an interaction with the system, and changes it inevitabily. The question
is whether the change is negligible or significant.

Example 11 (Measuring changes the system). In order to measure the pressure of a
bicycle-tyre, we have to release some of the pressure. If we continue to measure the

3.7. THE MEAN AND STANDARD DEVIATION 35

pressure, the tyre will eventually be flat.

Example 12 (Measuring computer load). In measuring the load on a computer system,
most monitoring systems start a process which consumes a measurably significant amount
of memory, and which forces the system to process kernel requests that steal resources
from the existing system. If the goal is observational consistency, for diagnostic clarity,
monitoring should be present in a predictable and non-intrusive way from at all times
evenly, not spawned upon request, even if the latter might minimize load.

The larger the available resources of the system, compared to the resources required
to make the measurement, the smaller the effect on the measurement will be.

3.7 THE MEAN AND STANDARD DEVIATION

In the theory of errors, we use the ideas above to define two quantities for a set of data:
the mean and the standard deviation. Contrary to what one sometimes reads, these
quantities are not necessarily tied to the normal distribution: they are just expressions of
scale that can be used to characterize data sets. They are also called the first and second
moments of the data.

The situation is now as follows: we have made a number N of observations of
values v1, v2, v3..., vN , which have a certain randomness and we are trying to find out a
characteristic value v for the measurement. Assuming that there are no systematic errors,
i.e. assuming that all of the deviations have independent random causes, we define the
value 〈v〉 to be the arithmetic mean of the data:

〈v〉 =
v1 + v2...vN

N
=

1

N

N∑
i=1

vi. (3.3)

Next we treat the deviations of the actual measurements as our guesses for the error in
the measurements:

∆g1 = 〈v〉 − v1

∆g2 = 〈v〉 − v2

...

∆gN = 〈v〉 − vN

and define the standard deviation of the data by

σ =

√√√√ 1

N

N∑
i=0

∆g2
i . (3.4)

36 CHAPTER 3. EXPERIMENT AND OBSERVATION

This is clearly a measure of the scatter in the data due to random influences. σ is the root
mean square (RMS) of the assumed errors. These definitions are a way of interpreting
measurements, from the assumption that one really is measuring the true value, affected
by random interference.

Definition 5 (Gaussian signal power). A random signal that is distributed according to
a Gaussian distribution has a characteristic amplitude σ, and thus a squared amplitude
of σ2. Since the squared amplitude of a signal is associated with the power (in Watts) of
a physical signal, the variance is often assumed to measure power.

An example of the use of standard deviation can be seen in the error bars of the
figures in this chapter. Whenever one quotes an average value, the number of data and
the standard deviation should also be quoted in order to give meaning to the value. In
system administration, one is interested in the average values of any system metric which
fluctuates with time.

3.8 PROBABILITY DISTRIBUTIONS AND MEASUREMENT

When ever we repeat a measurement and obtain different results, a distribution of different
answers is formed. The spread of results needs to be interpreted. There are two possible
explanations for a range of values:

• The quantity being measured does not have a fixed value.

• The measurement procedure is imperfect and a incurs a range of values due to
error or uncertainty.

Often both of these are the case. In order to give any meaning to a measurement, we have
to repeat the measurement a number of times and show that we obtain approximately the
same answer each time. In any complex system, in which there are many things going
on which are beyond our control (read: just about anywhere in the real world), we will
never obtain exactly the same answer twice. Instead we will get a variety of different
answers which we can plot as a graph: on the x-axis, we plot the actual measured
value and on the y-axis we plot the number of times we obtained that measurement
divided by a normalizing factor, such as the total number of measurements. by drawing a
curve through the points, we obtain an idealized picture which shows the probability of
measuring the different values.

Over time measurements often develop stable average behaviour, so that a time-series
x = {x1, x2, x3, . . .} has an average that tends towards a stable value. This is written in

3.8. PROBABILITY DISTRIBUTIONS AND MEASUREMENT 37

P(x)

x

Figure 3.3: The scatter is an estimate of the width of the populated regions of the probability
distribution.

a variety of notations in the literature:

x = E(x) = 〈x〉 ≡ 1

N

N∑
i=1

xi → µ, (3.5)

where N is the number of data. Few if any of the actual measurements will actually be
equal to µ; rather they are scattered around the average value in some pattern, called their
distribution P (x). The normalization factor is usually chosen so that the area under the
curve is unity, giving a probabilistic interpretation.

Definition 6 (Probability (frequency)). The probability P (x) of measuring a value x in
original data set is defined to be the fraction of values that fell into the range x±∆x/2,
for some class width ∆x.

P (x) =
N(x−∆x/2, x+ ∆x/2)

Ntotal
. (3.6)

Here N(x, y) is the number of observations between x and y.

This probability distribution is the histogram shown in fig. 3.3.
There are two extremes of distribution: complete certainty (figure 3.4) and complete

uncertainty (figure 3.5). If a measurement always gives precisely the same answer, then
we say that there is no error. This is never the case is real measurements. Then the curve
is just a sharp spike at the particular measured value. If we obtain a different answer
each time we measure a quantity, then there is a spread of results. Normally that spread
of results will be concentrated around some more or less stable value (figure 3.6). This
indicates that the probability of measuring that value is biased, or tends to lead to a
particular range of values. The smaller the range of values, the closer we approach figure
3.4. But the converse might also happen: in a completely random system, there might
be no fixed value of the quantity we are measuring. In that case, the measured value is

38 CHAPTER 3. EXPERIMENT AND OBSERVATION

0

1

P
ro

b
a
b
ili

ty
 o

f
m

e
a
s
u
re

m
e
n
t

Measured value

Figure 3.4: The delta distribution represents complete certainty. The distribution has a value of 1
at the measured value.

0

1

P
ro

b
a
b
ili

ty
 o

f
m

e
a
s
u
re

m
e
n
t

Measured value

Figure 3.5: The flat distribution is a horizontal line indicating that all measured values, within
the shown interval, occur with equal probability.

completely uncertain, as in figure 3.5. To summarize, a flat distribution is unbiased, or
completely random. A non flat distribution is biased, or has an expectation value, or
probable outcome. In the limit of complete certainty, the distribution becomes a spike,
called the delta distribution.

We are interested in determining the shape of the distribution of values on repeated
measurement for the following reason. If the variation of the values is symmetrical about
some preferred value, i.e. if the distribution peaks close to its mean value, then we can
likely infer that the value of the peak or of the mean is the true value of the measurement
and that the variation we measured was due to random external influences. If, on the
other hand, we find that the distribution is very asymmetrical, some other explanation
is required and we are most likely observing some actual physical phenomenon which
requires explanation.

3.8. PROBABILITY DISTRIBUTIONS AND MEASUREMENT 39

0

1

P
ro

b
a
b
ili

ty
 o

f
m

e
a
s
u
re

m
e
n
t

Measured value

Figure 3.6: Most distributions peak at some value, indicating that there is an expected value
(expectation value) which is more probable than all the others.

3.8.1 SCATTER AND JITTER

The term scatter is often used to express the amount of variation in the measurements
about the mean. It is estimated as the ‘width’ of the histogram P (x). The term jitter is
often used when the describing the scatter of arrival times between measurements in the
time series. Decades of artificial courses on statistics have convinced many scientists that
the distribution of points about the mean must follow a Gaussian ‘normal’ distribution in
the limit of large numbers of measurements. This is not true however: there are ample
cases where the scatter is asymmetric or less uniform than the ‘normal distribution’.

3.8.2 THE ‘NORMAL’ DISTRIBUTION

It has been stated that ‘Everyone believes in the exponential law of errors; the experi-
menters because they think it can be proved by mathematics; and the mathematicians
because they believe it has been established by observation’ ([WR29]). Some observa-
tional data in science satisfy closely the normal law of error, but this is by no means
universally true. The main purpose of the normal error law is to provide an adequate
idealization of error treatment that applies to measurements with a ‘true value’ (see
section 3.5). which is simple to deal with, and which becomes increasingly accurate with
the size of the data sample.

The normal distribution was first derived by DeMoivre in 1733, while dealing with
problems involving the tossing of coins; the law of errors was deduced theoretically in
1783 by Laplace. He started with the assumption that the total error in an observation
was the sum of a large number of independent deviations, which could be either positive
or negative with equal probability, and could therefore be added according to the rule

40 CHAPTER 3. EXPERIMENT AND OBSERVATION

−2 −1 0 1 2
0

0.2

0.4

0.6

0.8

1

Figure 3.7: The Gaussian normal distribution, or bell curve, peaks at the arithmetic mean. Its
width characterizes the standard deviation. It is therefore the generic model for all measurement
distributions.

explained in the previous sections. Subsequently Gauss gave a proof of the error law
based on the postulate that the most probable value of any number of equally good
observations is their arithmetic mean. The distribution is thus sometimes called the
Gaussian distribution, or the bell curve.

The Gaussian normal distribution is a smooth curve which is used to model the
distribution of discrete points distributed around a mean. The probability density function
P (x) tells us with what probability we would expect measurements to be distributed
about the mean value x(see figure 3.7).

P (xi) =
1

(2πσ2)1/2
exp

(
− (xi − x)2

2σ2

)
.

It is based on the idealized limit of an infinite number of points.

3.8.3 STANDARD ERROR OF THE MEAN

No experiments have an infinite number of points, so we need to fit a finite number of
points to a normal distribution as well as we can. It can be shown that the most probable
choice is to take the mean of the finite set to be our estimate of mean of the ideal set. Of
course, if we select at random a sample of N values from the idealized infinite set, it is
not clear that they will have the same mean as the full set of data. If the number in the
sample N is large, the two will not differ by much, but if N is small, they might. In fact,

3.8. PROBABILITY DISTRIBUTIONS AND MEASUREMENT 41

it can be shown that if we take many random samples of the ideal set, each of size N that
they will have mean values which are themselves normally distributed, with a standard
deviation equal to σ/

√
N . The quantity

α =
σ√
N
,

where σ is the standard deviation, is therefore called the standard error of the mean. This
is clearly a measure of the accuracy with which we can claim that our finite sample mean
agrees with the actual mean. In quoting a measured value which we believe has a unique
or correct value (e.g. the height of the Eiffel Tower), it is therefore normal to write the
mean value, plus or minus the standard error of the mean:

Result = x± σ/
√
N (for N observations), (3.7)

where N is the number of measurements. Otherwise, if we believe that the measured
value should have a distribution of values (e.g. the height of a river on the first of
January of each year), one uses the standard deviation as a measure of the error. Many
transactional operations in a computer system do not have a fixed value (see next section).

The law of errors is not universally applicable, without some modification, but it is
still almost universally applied, for it serves as a convenient fiction which is mathemati-
cally simple1.

3.8.4 OTHER DISTRIBUTIONS

Another distribution which appears in the periodic rhythms of system behaviour is the
exponential form. There are many exponential distributions, and they are commonly
described in text books. Exponential distributions are used to model component failures
in systems over time i.e. most components fail quickly or live for a long time.

The Planck distribution is one example that can be derived theoretically as the most
likely distribution to arise from an assembly of fluctuations in equilibrium with a large
source (see [BHRS01]). The precise reason for its appearance in computer systems is
subtle, but has to do with the periodicity imposed by users’ behaviours, as well as the
interpretation of transactions as fluctuations. The distribution has the form

D(λ) =
λ−m

e1/λT − 1
,

where T is a scale, and m is usually an integer greater than 2. When m = 3, a single
degree of freedom is represented. The shape of the graph is shown in figure 3.8.

1The applicability of the normal distribution can, in principle, be tested with a χ2 test, but this is
seldom used in physical sciences, since the number of observations is usually so small as to make it
meaningless.

42 CHAPTER 3. EXPERIMENT AND OBSERVATION

0 20 40 60 80 100
0

1000

2000

3000

Figure 3.8: The Planck distribution for several temperatures. This distribution is the shape
generated by random fluctuations from a source which is unchanged by the fluctuations. Here, a
fluctuation is a computing transaction, a service request or new process.

Internet network traffic analysis studies (see [PF95, WPT96]) show that the arrival
times of data packets within a stream has a long tailed distribution, often modelled as a
Pareto distribution (a power law) in the asymptotic limit, for constants α and β:

f(ω) = β aβ ω−β−1. (3.8)

This can be contrasted with the Poissonian arrival times of telephonic data traffic. It is an
important consideration to designers of routers and switching hardware. It implies that a
fundamental change in the nature of network traffic has taken place. A partial explanation
for this behaviour is that packet arrival times consist not only of Poisson random processes
for session arrivals, but also of internal correlations within a session. Thus it is important
to distinguish between measurements of packet traffic and measurements of numbers of
sockets (or TCP sessions). The power law behaviour exhibited by Pareto tails is often
indicative of clustered behaviour. If one event arrives, several tend to arrive in a cluster
or burst.

3.9. UNCERTAINTY IN GENERAL FORMULAE 43

3.9 UNCERTAINTY IN GENERAL FORMULAE

Suppose we measure the values of N variables that feed into a mathematical expression
for something:

S = S(x, y, z, . . .) (3.9)

Assuming that errors are small, we can estimate the effect of an error in one of the
parameters on the calculated expression by calculating the gradient (rate of change) of
the function at the approximate value of the parameter and by multiplying this by our
estimate of the error in the parameter. This tells us the expected error in S, given an
estimate of the error in x. We use the first order Taylor expansion for each variable and
then treat each contribution as an orthogonal perturbation and use Pythagoras formula to
express the combined error. Knowing the errors ∆x, ∆y, ∆z, etc, we may evaluate the
error in S:

∆S ≡

√(
∂S

∂x

)2

∆x2 +

(
∂S

∂y

)2

∆y2 + . . . (3.10)

Example 13 (Uncertainty in rates). The average rate of user transactions per second in
a database is given by

S ≡ R = N/T, (3.11)

where N is the total number of transactions recorded, and T is the interval of time over
which the measurement was made. We assume that the uncertainty in N is ∆N (caused
by the fact that we cannot exactly separate every user transaction from administrative
transactions), and that the uncertainty in T is ∆T , (caused by not being able to tell the
exact moment when the measurements started and stopped, due to context switching).
Using the formula above we find that

∂S

∂N
=

1

T
∂S

∂T
= − N

T 2
, (3.12)

so that

∆S =

√(
1

T

)2

∆N2 +

(
− N
T 2

)2

∆T 2. (3.13)

Thus, if the total number of transactions was 1046, with approximately 20 percent
(0.2× 1046 ∼ 200) being administrative transactions, and the time for measurement

44 CHAPTER 3. EXPERIMENT AND OBSERVATION

was 200 seconds, give or take take a few milliseconds, then:

∆S =
√

(1/200)2 × 2002 + (1046/4000)2 × 0.0012,

' 200

200
,

' 1. (3.14)

Thus, we quote the value for S to be

S = 1046/200± 1 = 523± 1. (3.15)

Note that this is an estimate based on a continuum approximation, since N and T are
both discrete, non-differentiable quantities. As we are only estimating, this is acceptable.

3.10 FOURIER ANALYSIS AND PERIODIC BEHAVIOUR

Many aspects of computer system behaviour have a strong periodic quality, driven by the
human perturbations introduced by users’ daily rhythms. Other natural periods follow
from the largest influences on the system from outside. For instance hourly updates,
or automated backups. The source might not even be known: for instance, a potential
network intruder attempting a stealthy port scan might have programmed a script to
test the ports periodically, over a length of time. Analysis of system behaviour can
sometimes benefit from knowing these periods. e.g. If one is trying to determine a causal
relationship between one part of a system and another, it is sometimes possible to observe
the signature of a process which is periodic and thus obtain direct evidence for its effect
on another part of the system.

Periods in data are the realm of Fourier analysis. What a Fourier analysis does is to
assume that a data set is built up from the superposition of many periodic processes. Any
curve can be represented as a sum of sinusoidal-waves with different frequencies and
amplitudes. This is the complex Fourier theorem:

f(t) =

∫
dω f(ω)e−iωt,

where f(ω) is a series of coefficients. For strictly periodic functions, we can represent
this as an infinite sum:

f(t) =

∞∑
n=0

cne
−2πi nt/T ,

where T is some time scale over which the function f(t) is measured. What we are
interested in determining is the function f(ω), or equivalently the set of coefficients cn
which represent the function. These tell us how much of which frequencies are present

3.11. LOCAL AVERAGING PROCEDURES 45

f(t) − signal Fourier transform

frequencytime

Figure 3.9: Fourier analysis is like a prism, showing us the separate frequencies of which
is signal is composed. The sharp peaks in this figure illustrate how we can identify periodic
behaviour which might otherwise be difficult to identify. The two peaks show that the input
source conceals two periodic signals. Such signals might not be obvious, but after analysis we
can look for them and their cause.

in the signal f(t), or its spectrum. It is a kind of data prism, or spectral analyzer, like
the graphical displays one finds on some music players. In other words, if we feed
in a measured sequence of data and Fourier analyze it, the spectral function show the
frequency content of the data which we have measured.

The whys and wherefores of Fourier analysis are beyond the scope of this book; there
are standard programs and techniques for determining the series of coefficients. What
is more important is to appreciate its utility. If we are looking for periodic behaviour
in system characteristics, we can use Fourier analysis to find it. If we analyze a signal
and find a spectrum such as the one in figure 3.9, then the peaks in the spectrum show
the strong periodic content of the signal. To discover these smaller signals, it will be
necessary to remove the louder ones (it is difficult to hear a pin drop when a bomb
explodes nearby).

3.11 LOCAL AVERAGING PROCEDURES

One of the most important techniques for analyzing data in time series is that of coarse
graining, or local averaging. This is a smoothing procedure in which we collect together
a sequence of measurements from a short interval of time ∆t and replace them by a
single average value for that interval. It is a way of smoothing out random fluctuations
in data and extracting the trends. It also used as a way of characterizing the pattern of
change in a time series.

46 CHAPTER 3. EXPERIMENT AND OBSERVATION

Computer systems and human systems have often quite different patterns of be-
haviour. When they are combined, the result is often complex and hence local averaging
is a straightforward approach to extracting or suppressing detail about the signal.

Let us define a local averaging procedure using fig 3.10. See also appendix B for
more details.

∆ t

∆ t ∆ t2 ∆ t3 ∆ t4 ∆ t5 ∆ t60

q(t)

Figure 3.10: A coarse-graining, or local averaging procedure involves averaging over intervals
larger than the basic resolution of the data. The flat horizontal lines represent the coarse-grained
histogrammatic representation of the function. The scaling hypothesis say that if one ‘zooms out’
far enough, and views the fundamental and coarse-grained representations from a sufficiently
high level (δt� ∆t), then they are indistinguishable for all calculational purposes.

The local averaging procedure re-averages data, moving from a detailed view to a
less detailed view, by grouping neighbouring data together. In practice one always deals
with data which are sampled at discrete time intervals, but the continuous time case is
also important for studying the continuum approximation to systems.

DISCRETE TIME DATA

Consider the function q(t) shown in fig. 3.10. Let the small ticks on the horizontal
axis represent the true sampling of the data, and label these by i = 0, 1, 2, 3, . . . , I .
These have unit spacing. Now let the large ticks, which are more coarsely spread out, be
labelled by k = 1, 2, 3, . . . ,K. These have spacing ∆t = m, where m is some fixed
number of the smaller ticks. The relationship between the small and the larger ticks is
thus:

i = (k − 1)∆t = (k − 1)m. (3.16)

In other words, there are ∆t = m small ticks for each large one. To perform a coarse-
graining, we replace the function q(t) over the whole kth cell with an average value, for

3.11. LOCAL AVERAGING PROCEDURES 47

1/ω

∆ t

∆ t ∆ t2 ∆ t3 ∆ t4 ∆ t5 ∆ t60

q(t)

Figure 3.11: A jagged signal can be separated into local fluctuations plus a slowly varying local
average, only if the variance is always finite.

each non-overlapping interval ∆t. We define this average by

〈q(k)〉m ≡
1

∆t

k∆t∑
i=(k−1)∆t+1

q(i). (3.17)

We have started with an abstract function q(t), sampled it at discrete intervals, giving
q(i), and then coarse-grained the data into larger contiguous samples 〈q(k)〉m:

q(t)→ q(i)→ 〈q(k)〉m. (3.18)

CONTINUOUS TIME DATA

We can now perform the same procedure using continuous time. This idealization will
allow us to make models using continuous functions and functional methods, such as
functional integrals. Referring once again to the figure, we define a local averaging
procedure by

〈q(t)〉∆t =
1

∆t

∫ t+∆t/2

t−∆t/2

q(t̃′) dt̃′. (3.19)

The coarse-grained variable t is now the more slowly varying one. It is convenient to
define the parameterization

t̃ = (t− t′) (3.20)

t =
1

2
(t+ t′), (3.21)

on any interval between points t and t′. The latter is the mid-point of such a cell, and the
former is the offset from that origin.

48 CHAPTER 3. EXPERIMENT AND OBSERVATION

3.12 REMINDER

Although much of the remainder of the book explores mathematical ways of describing
and understanding information from human-computer systems, assuming that obser-
vations have been made, one should not lose sight of the importance of measurement.
Science demands measurement. Mathematics alone only re-describes what we feed into
it. Thus, at every stage of investigation into human-computer systems, one should ask:
how can I secure an empirical basis for these assertions?

Applications and Further Study 3.

• Developing critical and analytical thinking.

• Formulating and planning experiments to gather evidence about systems.

• Estimating the uncertainties inherent in obervational knowledge.

• Diagnostic investigations into anomalous occurrences.

CHAPTER 4

SIMPLE SYSTEMS

This chapter relates an approach to describing systems and their behviour in terms of
their components, using the ideas of predictability and utility.

4.1 THE CONCEPT OF A SYSTEM

The concept of a system is intuitively familiar to us. In our daily lives, we are surrounded
by so many systems that we scarcely notice them or think about them, until they go
wrong. From the simplest wristwatch whose mechanical parts cooperate to provide a
time service, to public transport systems, to the Byzantine convolutions of our taxation
systems which serve to distribute resources throughout a larger social collective, systems
pervade society at every level.

A modern computer system is a collection of hardware and software components
that cooperate to achieve a goal for users. When users employ computers to carry out a
task, the users themselves become a part of the system, both working on behalf of the
machine when it prompts them, and instructing the machine on the direction it should
take next. If users have access to several computers, which cooperate, then the system is
said to be distributed in location. A single computer program can itself be regarded as a
system; computer programs often consist of multiple functions and procedures which
work together in order to evaluate some larger algorithm. Computer systems can be
described using various kinds of diagrams and languages that show where information
flows from component to component, and how it changes; a whole field of study has built
up around this, and we shall draw upon that field here, since it is a formal framework,
which admits analysis.

Any ordinary workplace has the elements of a system also. The concept of a system

49

50 CHAPTER 4. SIMPLE SYSTEMS

applies whole organizations, or indeed any subset of an organization that can function
independently. This might be a company, a branch office, a computer, a network of
computers or even single celled organism on the keyboard of a computer.

The principles of system design and improvement are quite general, and need not
be tied to any one of these examples, but it is useful to adopt the language of computer
systems (information systems) in what follows (see fig 4.1). This is both our primary
area of interest and a more rigorous language than the corresponding terms of the social
sciences, and it ties the discussion immediately to one of its most important applications.

(time)

(space)

system

Physics

Constraints

Object

Freedoms

Activity

Names

Locations

ABSTRACTION

Representations

Figure 4.1: An informal diagram of associations within a system, which shows the main aspects
for consideration.

4.2 DATA-STRUCTURES AND PROCESSES

There are many ways to classify systems. At the most basic level one may speak of two
kinds of system: those which are dynamic and those which are static.

A static system system is often referred to as a data-structure, rather than a system,
i.e. it is a systematic organization of its parts or resources (a form of data), which does
not change. An archive is an example of this, as is a building, as is the book that you are
reading.

Definition 7 (Data structure). A data structure is an ordered (systematic) collection of
resources or records that are interrelated.

The data form a collection of key-value pairs that also form a ‘graph’ (see chapter 6).
The semantics of the data in a functional system are usually implied by the structure.

4.2. DATA-STRUCTURES AND PROCESSES 51

Example 14 (Static data structure). A building is a static data structure: it is a regular
arrangement of parts which contribute towards a function. A library, or archive, is
another example, in which individual records are organized in an orderly pattern, with a
scheme for relocating the information. The book you are reading is a third example. The
functional components in these examples are somewhat diverse in their variety, but the
all examples share a common feature: they are organized patterns designed to serve a
purpose.

Example 15 (Fixed data formats). Many software systems are passed data in a fixed
format like JSON or YAML to represent key-value pairs. Databases contain ordered
structures, with a fixed structure, to make the retrieval location easy to compute.

For a system to exceed the archival character of a museum, there has to be some
activity. A dynamical system is a system which evolves in time with a rate of change;
it usually produces something and experiences a number of different operational states,
such as running, stopped, broken, waiting, etc. Dynamical systems are a more interesting
class of systems, because they open up literally a whole new dimension (time) for
organization. Human-computer communities belong to this group.

In order to describe the activity within a system, it is useful to define the notion of a
process. A system may comprise several independent processes.

Definition 8 (Process). A process is a unit of activity within a system. In order for
something to happen, there needs to be something with a freedom to change. A process
therefore comprises a set of resources, together with an algorithm (a sequence of opera-
tions) for manipulating them. A process is unleashed by the freedoms of the system and
restricted by its constraints.

A process can operate on a data structure and alter it. The sum of a process and a
data structure is thus a dynamical system.

Definition 9 (Dynamical system). A dynamical system is a set of processes which act on
a data structure.

A computer program is a process in which an algorithm changes the data in the
computer. A maintenance procedure, such as cleaning a building, is a process which
changes the state of organization of the building’s resources.

Example 16 (Active processes). Active processes: a process is a combination of re-
sources associated with a executed task. It includes a code text, which contains in-
structions and algorithms for data-manipulation, and it comprises data and resources

52 CHAPTER 4. SIMPLE SYSTEMS

associated with the task. In a multiprocess environment, each process is an independent
object, with its own progress documentation (stack and index markers in computers),
so that, if the process should be interrupted, its current state can be saved and later
resumed, without loss of integrity.

Example 17 (Passive data). Passive data: the purpose of a process is to manipulate
some data. Such data are often arranged in some non-trivial structure, which makes
them easily accessible to the algorithms of the process. A filesystem is an example of
passive data, as is a database.

4.3 REPRESENTATION OF VARIABLES

To describe a system in definite terms, one needs to identify properties of its resources that
can change or vary. Without any such variation, a system would be truly uninteresting.
There are two kinds of information in a system:

Definition 10 (Resource information). The information that is used and produced by
the system as part of its functioning. This is the fuel and produce of the system. This
information might be sent back and forth between different functional elements in the
system, between clients and external service providers, or even between the system and
its storage. Resouce information may be both dynamical (quantitative) and semantic
(qualitative) in nature.

Example 18 (Configuration files). Configuration files, which parameterize the way
software behaves is part of the static resource information of control in machinery.
Runtime data are the dynamical resources that guide the operation of the system. This
includes input and output between human, machine and software.

Example 19 (Organization records). Organizational records, customer and sales records,
internal communications, personnel movements, etc, all contribute to resource informa-
tion in the human aspects of a system.

Definition 11 (Algorithmic information). The information on how to achieve the task,
or generate the produce of the system is contained in a detailed programme of steps and
procedures. This includes control information on which way to branch as as a result of a
question, and information about the initial state of the system. Algorithmic information
is semantic information.

4.3. REPRESENTATION OF VARIABLES 53

Example 20 (Source code). The source code of computer programs represents the
documentation of algorithmic information for computing machines.

Example 21 (Recipe book). Recipe books and procedural handbooks represent the
documentation of algorithims for the human actors in information systems.

Describing the actual characters of a system’s resources requires abstraction. One
must use functions which vary with the basic parameters of the system (e.g. time)
to represent those properties. The basic properties of a dynamical system are usually
labelled qi, for i = 1, 2, 3, A function is a mapping from the parameter space into a
range of values. The range is the set of possible values that the variable can change into.

What might q(t) represent?

1. A number of objects

2. The value of an object

3. An average value

4. The size of an object

5. The shape of an object?

There are no rules about what can and cannot be represented by a variable. The chal-
lenge is only to find a sensible and sufficient representation of a phenomenon, to some
appropriate level of approximation.

Example 22 (Variables for student populations). In a University or College, students
and lecturers follow a system in which they are allocated rooms to be in, at different
times. We could choose to analyze the behaviour of this system in a number of ways. One
could, for instance, measure the number of students in each lecture room, as a function
of time. One could measure the average number of students to get an idea of attendance.
One can characterize the rate of work, or how fast the contents of the blackboard change.
One could attempt to measure the rate of learning (how would we measure this?). One
could measure room temperature, or air-quality and relate it to student attentiveness,
and rate of learning. In each case, one must decide what it is one is interested in finding
out, and characterize that mathematically in terms of measurable quantities.

The lesson one learn from natural sciences is that models of systems are suitably
idealized representations, not exact and unique facsimiles of reality.

54 CHAPTER 4. SIMPLE SYSTEMS

4.4 THE SIMPLEST DYNAMICAL SYSTEMS

Complex systems can often be built up by combining simpler ones. An understanding
of the behaviour of simple systems is therefore a reasonable place to begin, in order
to fathom the greater complexities of more realistic systems. There is something to be
learned from even the simplest mechanical device.

The property which characterizes dynamical systems is that their resources change
in time; but how? What kind of change can be expected? The theory of change is the
study of differential and difference equations. These predict three basic kinds of change:

• Monotonic change (growth, decay)

• An oscillatory change

• Chaotic change

These behaviours can be found in well known places.

Example 23 (Pendulum system). A simple pendulum is a system which provides a time
service. It can go wrong if one of its components fails. The pendulum is a collaboration
between a force, a pivot a string and a mass. A pendulum has an oscillatory motion
which gradually dies away. It is a combination of oscillation and decay.

It is important to capture the essence of systems in a way that is conducive to
analysis. For that reason, we begin with the simplest of mathematical considerations. A
mathematical definition of a system is the following:

• A set of variables {qi(t)}, where i = 0, 1, 2, . . . (information describing re-
sources) whose values can change in time.

• A set of rules {χi} which describes how the variables change with time.

• A definition of the rates {Dqi
Dt
} at which the difference variables change in time,

for deterministic systems, or a probable rate with which transitions occur non-
deterministically.

These three things are the basic requirements which are necessary and sufficient to
comprise any system that changes in time. This extends from simplest of mechanical
devices to the most complex chaotic combinations of elements. To make predictions
about a system, one also needs to know what state it was in at some known or initial time.
Such information is known as a boundary condition.

4.5. MORE COMPLEX SYSTEMS 55

Example 24 (Computer variables). In a computer system one has variables that charac-
terize state; e.g. the amount of data on a disk, the rate of processing, the number of users,
etc. A set of physical rules governs the hardware at the level of electronics, software
provides a set of rules for program execution, and policy provides an even higher-level
set of rules about how the hardware and software should be used. The system is not
static, so we find a rate of change of data on a disk, a rate of change of number of users,
and even a rate of change of ‘rate of processing’, as jobs are turned on and off.

Any larger definition of a system which we concoct must contain the basic definition
above. In system administration, we are concerned with far more complex systems
than can be described with the aid of a few simple variables. One is forced to deal
with approximation, as one does in the natural sciences. This is an unusual remedy for
computer science, which is more at home with logical propositions and exact theorems.
Nonetheless, the lesson of the natural sciences is that complexity abhors precision, and
forces one to embrace approximation as a tool for making headway.

4.5 MORE COMPLEX SYSTEMS

In general we need to describe a complete organization, with interconnecting data
structures, and inter-communicating sub-processes. Note that the word organization is
ambiguous in this context, in that it describes both an attribute of a system (how well it is
organized) and a name for a system (a company or other institution). We shall henceforth
limit the word organization to the first of these meanings, and refer to the second by the
term enterprise. Adding these notions, we have:

Definition 12 (System). A system is a set of resources (variables and processes) and
consumers, together with descriptions of how those resources are organized and how they
develop in time. This total description defines the arena in which the system develops. It
prescribes the possible freedoms one has for change, the constraints imposed externally
and internally, for activity within the system.

At a superficial level, we can identify the key elements in common systems. Notice
that the a system has a ‘purpose’ or an ‘intent’, and that its description combines both
semantics (qualitative) and dynamics (quantitative ideas).

Example 25 (Transport resources). A public transport system has a set of resources
(busses and trains) q(t) which are constrained to move on roads or rails, and which run
on expended fuel. The details of change in the system are partly determined by policy
(the schedule), partly by environmental considerations and critically on the natural laws

56 CHAPTER 4. SIMPLE SYSTEMS

which govern the physical processes driving the system (all these are in χ). The rate of
flow of transport Dq

Dt
is related to the overall change in the system.

Example 26 (Web server). A web server is like a query handling system or help desk.
These are all systems in which the number of incoming, unanswered requests q(t) is
changing with time. A protocol for handling the requests constrains their expedition by
various algorithms that manipulate resources. The rate at which the system expedites
requests is Dq

Dt
.

4.6 FREEDOMS AND CONSTRAINTS

Any system which has some kind of predictable or regular behaviour is a balance
between the freedom to develop and change and a number of constraints which limit the
possibilities for change to predictable avenues.

Definition 13 (Degree of freedom I). A degree of freedom is a potential for change
within a system. Freedom to change is usually represented by a parameter which can be
varied over a range of values.

For example, in a service based system, the freedom to accept new clients permits the
system to expand.

Example 27 (Computer degrees of freedom). In a computer system, the freedoms
include: memory space, processing time, physical location (server host for job placement),
scheduling time, etc. Jobs also have a freedom to be expressed in any number of
languages.

Example 28 (Number of servers). A program might run equally well on an array of one
or twenty computers. The number of computers is thus a freedom. Similarly, a system
might have the freedom to increase its use of memory; that is then a freedom of that
system.

Example 29 (Computer constraints). In a computer system, the constraints include the
fact that memory is finite, and jobs have a limited quota, CPU processing is finite and
has a maximum rate. Jobs have to be compiled into the machine language of the physical
processor.

At the machine level, one has the freedom to choose the software and hardware
platform which is used to carry out a job.

4.6. FREEDOMS AND CONSTRAINTS 57

Freedoms Constraints
Expansion Available budget
Time Deadline, or limited duration
Space Specific location, limited space
Rate of service Throughput of bottleneck

Table 4.1: Freedoms and constraints in organizations.

Definition 14 (Constraint). A limitation on the possible changes which can occur on
variables or parameters in a system. This often takes the form of a rule, or parameter
inequality.

Example 30 (Client-Server description). In the client-service system above, a constraint
could take the form of limited resources for handling client queries (a maximum number
that can be expedited per unit time); similarly, it could represent a policy constraint that
denies the service to certain clients, or limits their availability to the service. Another
constraint is a productivity goal.

At the machine level, it might be that a program only runs equally well on computers
with a particular operating system; in that case the choice of operating system becomes a
constraint. Similarly, the amount of memory available to a program is normally limited
by the total amount on that computer; the amount of memory is thus a constraint on
program execution.

Note, the words freedom and constraint are used in a strict sense. Their usage
do not imply what advantages or disadvantages they confer on a system. Do not be
tempted to bestow these terms with social connotations; e.g., a smart human might
creatively use a constraint to his or her advantage, but that is not the same as it being a
freedom. For example, a geographical constraint in which an organization is limited to
one building might be turned into a positive attribute by arguing that this lends cohesion
to the organization. This does not mean that the constraint is really a freedom. The
advantage here is only made possible by virtue of another freedom, namely the freedom
to be creative in that context.

As well as objects which are manipulated and changed, most systems have input and
output channels, where information is exchanged with external actors — the “environ-
ment”.

58 CHAPTER 4. SIMPLE SYSTEMS

4.7 SYMMETRIES

Symmetries are descriptions of what can be changed in a system without affecting the
system’s function. Determining what is not important to the functioning of a system is a
way of identifying degrees of freedom that could be manipulated for strategic advantage.
Knowing about these freedoms might be an advantage to someone managing the system.
A change which does not affect a sub-system might nevertheless result in an advantage
elsewhere.

Definition 15 (Symmetry or invariant). When a change of any variable quantity, whether
dynamical or semantic, within a system leaves the outcome of the system invariant, we
say that the system and the variable possesses a symmetry or invariant property.

If, for instance, we come up with a system model in which results depend on a specific
choice, where in fact that choice does not matter, then we know that model must be
wrong.

Example 31 (Usage symmetries). If one moves every user of a desktop work station
to a different workstation, the organization will still function in exactly the same way,
if the workstations are all alike. This freedom to reseat people might allow groups of
workers to sit in close proximity, for verbal communication, or it might allow workers to
be spread out to balance the load

Example 32 (Worker symmetries). In a factory or office, workers who are trained to
carry out the same jobs can rotate their positions and tasks in shifts, and repostings to
other factories or offices. The symmetry between workers means that the outcome will be
invariant.

Example 33 (Cloud computing symmetries). In so-called cloud computing, or com-
moditized Infrastructure as a Service (IaaS), software may be moved from host to host
by the use of virtual machines, and software process containers. This is called process
or machine virtualization. The freedom to move a job from location to location is a
symmetry. Not all jobs may have this property, because they are pinned to a location by
the need for particular hardware or software dependencies. Dependencies are thus the
enemy of symmetry.

Example 34 (Bus routes). If one swaps all of the busses on route 20 with those on route
37, the service will not be affected, provided the busses are comparable. So buses can be
rotated and checked for maintenance in parallel to those in service.

4.8. ALGORITHMS, PROTOCOLS AND STANDARD ‘METHODS’ 59

Example 35 (Relabelling). If one relabels every file on the system, in all references, it
will continue to work as before. Indeed, a file is an invariant abstraction for a changing
collection of allocated storage blocks filled with changing data.

4.8 ALGORITHMS, PROTOCOLS AND STANDARD

‘METHODS’

Systems embody a cooperation of parts and are often surrounded by an environment
of unpredictable occurrences. To address the cooperation between parts of a system
needs to be formalized by defining the mechanisms that contribute to it; to cope with
unpredictable, external events, mechanisms and procedures need to be introduced that
offer predictability. These requirements are covered by the concepts of algorithm and
protocol.

Definition 16 (Algorithm). An algorithm is a recipe, or sequence of steps and decisions
that solve a particular problem within a system. Algorithms are sometimes referred to
as methods in the parlance of programming. A formal definition of an algorithm can be
provided in terms of Turing machines (see [LP97]).

An algorithm is a reasoned flow of logic, designed to efficiently perform an operation or
sequence of operations. An algorithm is what one finds if one opens up the black-box of
an operator and peers at its inner workings. Algorithms are not arbitrary, though there
might be several algorithms which solve the same problem. In that situation, a policy
decision is required to determine which algorithm is to be used.

Definition 17 (Protocol). A protocol is a standard of behaviour, or a strict rule of conduct
which ensures that one part of a system behaves in a predictable and comprehensible way.
Protocols ensure that one part of a system is able to cooperate with another, and that the
integrity of the process is maintained, i.e. information is not lost or misunderstood. A
protocol is formally a constraint on a process.

Protocols are used to ensure consistency and to avoid error when executing a process.
Typical examples of protocols are used when two communicating parties must understand
one another.

Example 36 (Network protocol). When a computer sends data over a network, it does so
by coding the data into a stream of bit pulses. The machine receiving the message would
have no idea how to decode the message unless a pre-agreed standard of behaviour were
established in advance: e.g. the first 8 bits are a number, the next 24 bits are three 8-bit

60 CHAPTER 4. SIMPLE SYSTEMS

characters, and so on. Without such a protocol for interpreting the stream of bits, the
meaning of each bit would be lost.

Another example of a protocol is a response plan in case of emergency, e.g. fire,
security breach, war etc. The purpose of a strict code of behaviour here is to minimize
the damage caused by the event, as well as to mobilize counter-measures. This ensures
that all parts of the system are activated and informed in the right order, thus avoiding
confusion and conflict.

Protocols are a part of system policy. They are arbitrary, even though some properties
of protocols can be analyzed for efficiency and efficacy. They are strategic choices.

Example 37 (Security intrusion lockdown). Computer security intrusion: i) freeze the
state of the system, ii) gather standardized information and evidence (Copy the current
memory to a file), iii) Pull the plug to avoid setting off any logic traps, iv) Report the
intrusion to law enforcement. v) Reboot system with a CD-ROM or trusted read-only
medium, to avoid logic traps set by an attacker.

The goals of this protocol are: protect the system, secure evidence, repair the problem,
and obey the law in that order. If a different set of priorities were in force, the protocol
might be changed. It is designed by a person with experience of intrusion, to take into
account all of the interests above. An inexperienced person might not understand the
protocol, but by following it, the goals of the system will be upheld. The technology of
computer security is to a large extent a litany of protocols, designed to avoid unwanted
behaviour.

The difference between an algorithm and a protocol is subtle. An algorithm is a
sequence of instructions or steps; a protocol is only a specification of what kind of steps
is allowed. One is a process specification, the other is a constraint on a specification.
Protocols do not make decisions, they are pre-agreed standards.

4.9 CURRENCIES AND VALUE SYSTEMS

While autonomous, mechanical and electronic systems can be described purely by simple
physical principles, once humans are involved in a system, human values necessarily
become part of the equation. This complicates a system, and many engineers find this
interaction disturbing because society has an ingrained culture of treating human values
as fundamentally different to physical measurements.

Some might even say that the idea of modelling human values, in the same way
that one models physical processes, would be disrespectful. As we shall see, however,
there is no basic impediment to writing formal rules for human values and concerns;
these merely extend the complexity of systems by introducing additional constraints and

4.9. CURRENCIES AND VALUE SYSTEMS 61

boundary conditions. Indeed, to represent financial and economic aspects of a system,
one already does precisely this.

Human emotion allows us to attach importance, and hence value, to almost anything.
Not all values can necessarily be traded, as money or goods can. Happiness, for example,
cannot normally be traded, say, for food, but it might be reasonable to say that happiness
of a workforce could be traded for efficiency, in a system with a Draconian work ethic.
The key to analysing the interactions between human values and physical resources is to
assign to them arbitrary scales which can then be calibrated so that rules can be written
down.

4.9.1 ENERGY AND POWER

Nature’s fundamental system book-keeping currency is called energy in the physical
sciences. Energy is simply an abstract representation of the level of activity in different
parts of a system. It has an arbitrary value, which is calibrated against the real world
by convention, i.e. by using some system of units for measurements, and by adjusting
certain constants in physical laws to ‘make it right’.

When parts of a system interact, they are said to exchange energy. Each new
interaction has its own equation, and requires a ‘coupling constant’ which calibrates the
effect of the arbitrarily dimensioned energy transfer from one part, to the measured effect
in the other part. Whatever new age writers might believe, there is really only one kind of
energy, just as there is really only one kind of money. People have different conventions
for referring to energy or money in different places, but the idea is the same.

Just as saved money can be traded for services, stored (potential) energy can be
traded for activity. Physicists have long been dealing with this simple book-keeping
concept without questioning its validity, so it should not be a surprise that the same idea
can be applied to any form of currency.

Example 38 (Energy requirements). Basic energy requirements are at the heart of all
systems, grounded in the physical world. Machines require power and humans require
nutrition. A failure to provide these, leads to a failure in the system.

4.9.2 MONEY

In days of old, one used silver, gold and other riches to trade for goods. Sufficient gold
is still kept in reserves around the world to be able to trade paper currency for its value
in gold if the bearer demands it. Today, however, we use money to represent only the
promise of something real. Our abstraction of wealth has reached such extremes that we
buy and sell shares in the estimated value that a company might have, if its assets were

62 CHAPTER 4. SIMPLE SYSTEMS

sold. The value of something, in our modern world, is clearly not an intrinsic physical
property, like its electric charge, or its mass. It is a fictitious quantity based as much on
trends and feelings as it is on physical resources.

In short, money is worth what everyone believes it is worth; no more and no less. It
is a sobering thought therefore that our contemporary society and all of its systems run
on money. Money is used to measure the cost of building a system, the cost of running it,
and the value of what it produces. We speaks of assets or resources to mean the things of
value which are recognized by a potential buyer.

How should money be represented in formal (mathematical) models of systems?
How does it relate to other measurable resources, like time, space, equipment and so
on? Clearly, ‘time is money’ because humans will not work for nothing: we require
the promise of reward (money). Space and commodities ‘are money’ because we value
anything which is not in infinite supply. But, if the value of these things depends on the
fickle moods of the human actors in the system, how can it be used to represent these
other things?

To say that a relationship exists between time t and money m, for instance, is to say
that

t = f(m), (4.1)

for some function f . In the simplest case, this would be a simple linear relationship:

t = km+ c, (4.2)

where k and c are arbitrary constants, which can be fixed by calibration. They represent
what it costs to buy someone’s time.

The value of objects is arbitrary (a matter of policy), so any relationship could change
from system to system, or from time to time within a system. It is not always necessary
to think in terms of money. If the issue is that of a cost to the system, then money takes
the form of a constraint or limitation.

4.9.3 SOCIAL CURRENCY AND THE NOTION OF RESPONSIBILITY

Money is not the only form of abstract currency. Humans value other things too: peer
status, privilege and responsibility are all used as measures of social value, every bit as
real as money.

The meaning of responsibility is taken for granted, in common speech, but it has
several different meanings in the running of systems. If we are to analyse the concept
formally, it is necessary to relate responsibility to more tangible concepts.

4.9. CURRENCIES AND VALUE SYSTEMS 63

• Cause and effect: For a machine, one says that a component is responsible for an
action if the action depends on it somehow. Responsibility is thus associated with
an implied trust or dependency. It is simply the law of cause and effect, which
is central to the analyses in this text. e.g. the printer is responsible for writing
information to paper; electricity is responsible for making a lamp work.

For humans, responsibility has two meanings, and these are somewhat subtle:

• Responsibility for completing a task (policy): This refers to the assignment of
a task to some agent within the system (a person or a department, for instance). It
is often laced with connotations of a penalty for failure, or a reward for success.
e.g. “you are responsible for getting this job done before March!” This is a
combination of an arbitrary policy decision and a constraint. The correct way to
model this is thus as an externally controlled condition, together with the relevant
constraint on the system resources (in this case: time). Rewards and penalties can
be modelled by introducing a fictitious currency (see below).

• Responsibility for actions (blame): As in the case above, this is used to imply
the direction of a reward or a punishment associated with the completion, or
failure of something in the system. However, this kind of responsibility can be
assumed, or transferred from one object to another. A manager or commanding
officer will often be made (or held) responsible for a whole department or unit,
for instance. This transfer of responsibility is not necessarily related to cause and
effect, since the manager’s actions do not necessarily have any direct influence on
what transpires. It covers the situation where a leader trusts in the outcome of a
hidden process. e.g. an accountant trusts computer software to calculate a correct
answer, and holds the software producer responsible for the result, but his boss
holds him responsible. This can be modelled as a combination of policy with a
fictitious currency scheme.

In modelling human values, one deals with issues such as status, prestige and other
emotional considerations. These are social currencies, analogous to material wealth,
or resource riches. Social status amongst humans can affect the details of how policy
applies to them, and can act as an incentive or a deterrent to certain kinds of behaviour.

Example 39 (Privilege). A person with sufficient privilege might be given access to
parts of the system which are unavailable to others. Emotional reward can be a sufficient
motivation to complete a task, or conversely emotional pressure can be a hindrance or
even a factor motivating sabotage. Disgruntled employees have been responsible for the
theft of millions of dollars through their abuse of human-computer systems, particularly
in the financial sector.

64 CHAPTER 4. SIMPLE SYSTEMS

One begins to appreciate the complexity of human-computer communities when one
attempts to represent the exchanges that take place on the human side of systems. For
computer administrators, this type of modelling is normally only done in connection
with the security of the system, i.e. in threat analysis. Software engineers who design
software for critical systems need to think about such issues that might lead to human
error. Businesses and people-run enterprises such as universities and the military depend
critically on the actions of humans; thus social currency tends to dominate these systems.

4.10 OPEN AND CLOSED SYSTEMS: THE ENVIRONMENT

If we wish to describe the behaviour of a system from an analytical viewpoint, we need
to be able to write down a number of variables which capture its behaviour. Ideally, this
characterization would be numerical since quantitative descriptions are more reliable
than qualitative ones, though this might not always be feasible. In order to properly
characterize a system, we need a theoretical understanding of the system or sub-system
which we intend to describe. This is a few important points to be clear about.

Dynamical systems fall into two categories, depending on how one is able to analyze
them. These are called open systems (partial systems) and closed systems (complete,
independent systems).

• Open system: This is a sub-system of some greater whole. An open system can
be thought of as a black box which takes in input and generates output, i.e. it
communicates with its environment. The names source and sink are traditionally
used for the input and output routes. What happens in the black box depends on
the state of the environment around it. The system is open because input changes
the state of the system’s internal variables and output changes the state of the
environment. Every piece of computer software is an open system. Even an
isolated total computer system is an open system as long as any user is using it. If
we wish to describe what happens inside the black box, then the source and the
sink must be modelled by two variables which represent the essential behaviour
of the environment. Since one cannot normally predict the exact behaviour of
what goes on outside of a black box (it might itself depend on many complicated
variables), any study of an open system tends to be incomplete. The source and
sink are essentially unknown quantities. Normally one would choose to analyze
such a system by choosing some special input and consider a number of special
cases. An open system is internally deterministic, meaning that it follows strict
rules and algorithms, but its behaviour is not necessarily determined, since the
environment is an unknown.

4.10. OPEN AND CLOSED SYSTEMS: THE ENVIRONMENT 65

• Closed system: This is a system which is complete, in the sense of being isolated
from its environment. A closed system receives no input and normally produces
no output. Computer systems can only be approximately closed for short periods
of time. The essential point is that a closed system is neither affected by, nor
affects its environment. In thermodynamics, a closed system always tends to a
steady state. Over short periods, under controlled conditions, this might be a
useful concept in analyzing computer sub-systems, but only as an idealization.
In order to speak of a closed system, we have to know the behaviour of all the
variables which characterize the system. A closed system is said to be completely
determined1.

Suppose we want to consider the behaviour of a small sub-system within the entirety
of a much larger system (e.g. a computer on the Internet, or an animal in a complex
ecology); first, we have to define what we mean by the sub-system we are studying. This
might be a straightforward conceptual partitioning of the total system, but conceptual
decompositions do not necessarily preserve causal relationships (see fig 4.2).

In fact we might have to make special allowances for the fact that the sub-system
might not be completely described by a closed set of variables. By treating a sub-system
as though it were operating in isolation, we might be ignoring important links in the
causal web. If we ignore some of the causal influences to the sub-system, its behaviour
will seem confusing and unpredictable.

The principle of causality tells us that unpredictable behaviour means that we have
an incomplete description of the sub-system. An important difference between an open
system and a closed system is that an open system is not always in a steady state. New
input changes the system. The internal variables in the the open system are altered by
external perturbations from the source, and the sum state of all the internal variables
(which can be called the system’s macrostate) reflect the history of changes which have
occurred from outside. For example, suppose we are analyzing a word processor. This is
clearly an open system: it receives input and its output is simply a window on its data to
the user. The buffer containing the text, reflects the history of all that was inputted by
the user and the output causes the user to think and change the input again. If we were
to characterize the behaviour of a word processor, we would describe it by its internal
variables: the text buffer, any special control modes or switches etc.

1This does not mean that it is exactly calculable. Non-linear, chaotic systems are deterministic but
inevitably inexact over any length of time.

66 CHAPTER 4. SIMPLE SYSTEMS

sys 1

sys 2

sys 3

sys 4

sys 5

sys 6

sys 7

sys 8

HOST 2

HOST 3

HOST 1

Figure 4.2: A complex system is a causal web or network of intercommunicating parts. It is
only possible to truly isolate a subsystem if we can remove a piece of the network from the rest
without cutting a connection. If we think of the total system as S(x1 . . . xn), and the individual
subsystems as s1(x1 . . . xp), s2(xp . . . xn) etc, then one can analyze a subsystem as an open
system if the subsystems share any variables, or as a closed system if there are no shared variables.

4.11. RELIABLE AND UNRELIABLE SYSTEMS 67

4.11 RELIABLE AND UNRELIABLE SYSTEMS

Definition 18 (Unreliable system). An unreliable system is one which attempts to carry
out its function without verification or guarantee of success.

Un reliable systems are used either where a trust is placed on the mechanisms of the
system to perform their duty, or where a failure is unimportant. For instance, if an
unreliable system repeats its actions fairly often, a failure might be corrected at a later
time with a high probability. In some cases, it does not matter whether a process fails; we
might use an unreliable system to approximately probe or test a random variable, without
too much ado.

Definition 19 (Reliable system). A reliable system is one which tries, verifies and repeats
its actions until the result succeeds.

Reliable systems can prove to be expensive, since resources have to be applied to monitor
and correct any errors or failures that occur.

Example 40 (Internet Protocol). The Internet Protocol (IP) has two control layers: the
User Datagram Protocol (UDP) and the Transmission Control Protocol (TCP) that are
unreliable and reliable respectively. UDP is used for ‘one shot’ requests, such as name
service look ups and route tracing probes, where a reply is not necessarily expected. TCP
is used for more formal behaviour of network communication protocols where certainty
is demanded.

Applications and Further Study 4.

• Understanding fundamental issues in system analysis.

• Examining and classifying systems using the concepts described here.

• Isolating the basic behavioural traits of a system.

• Identifying the freedoms and constraints to better understand how a system might
be modified or improved.

CHAPTER 5

SETS, STATES AND LOGIC

The concept of a state or condition of a system will be central to several discussions.
In order to discuss states, we need to have variable quantities that can take on a set of
values. The state of any object is its value at a given place and time. Usually variables
cannot take on just any value: they take values from a specified set of values.

We need a language that is general enough to be applied to a wide range of situations,
but which is specific enough to make clear and verifiable statements about systems. The
language of sets and mathematics allows us to state things precisely, and will be of great
utility in describing Networks and System Administration.

5.1 SETS

A set is the mathematical notion of a collection of related things. The idea is general and
is not limited simply to numbers. Sets describe all manner of useful collections. We must
take care not to confuse the term ‘group’ with ‘set’, as these words both have special
meanings in mathematics. Sets are denoted by lists enclosed by curly braces S = {. . .}.

Example 41 (Sets and days of the week). Example sets include: days of the week:

D = {Sunday,Monday,Tuesday,Wednesday,Thursday,Friday, Saturday}
(5.1)

Types of operating system:

O = {Windows, Solaris,GNU/Linux,MacOS} (5.2)

Files owned by user mark:

F = {INBOX, file.txt,...} (5.3)

68

5.1. SETS 69

Directories owned by mark:

D′ = {Mail, Documents,...} (5.4)

System load average values measured in an experiment:

L = {0.34, 0.42, 0.45, ...} (5.5)

Example 42 (Policy rules). A set of rules is often called a policy.

The union of two sets is the combination of all elements from both sets, e.g. the
catalogue set is the union of directories D′ and files F :

C = F ∪D′. (5.6)

The union does not contain more than one copy of an element, so {A,B} ∪ {A} =

{A,B}. Similarly, files F are a subset of the catalogue C:

F ⊂ C. (5.7)

If we let S be the set of all secure policies, and P be the set of policies in use by an
organization, then

PS = S ∩ P (5.8)

is the intersection or overlap between these sets (see fig 5.1) and represents the sets that
are both secure and in use. If S is a subset of a set X , then the rest of X that is not in S
is called the complement and is written X − S or simply −S (also written ¬S).

Example 43 (Common sets). Some common sets include.

• ∅ is the empty set, containing no elements.

• R1 The set of real numbers (often written simply R or with a calligraphic R).

• Z the set of integers.

• Rn = R1×R1 . . . R1 is the n-dimensional Cartesian space of real numbers, e.g.
R3 in three dimensional Euclidean space.

Note that the notation ¬ is used interchangably with NOT and the complement
operator “−” for sets.

70 CHAPTER 5. SETS, STATES AND LOGIC

S P A B

A B

(a)

(c)

(b)

Figure 5.1: Operations on sets: (a) the intersection of sets A ∩ B also written A AND B;
(b) the union of sets A ∪ B also written A OR B; and (c) the difference A − B also written
AAND NOTB.

5.2 A SYSTEM AS A SET OF SETS

To describe a system, we must have a number of objects that can be related to one another
and change in some way. Sets enter this picture in two ways:

• There is a set of objects that comprises the components of the system.

• Each component object can change its value or properties, by taking a new value
in the set of values that it can possibly take.

Thus, our abstract picture of a system is a set of variable objects, each on which can take
on a value from another set of values. These objects are can be related to one another,
and the values they take can change according to rules that are determined by the system.
The objects are typically areas of memory in a computer system, specific people in a
team, or even sets of users who work together. In chapter 6, we shall see that this picture
also describes a graph.

Example 44 (Symbols, states, and operations). Strings of symbols or operations (or
symbols that represent operations) can be used to formulate some systems. If one can
express a system in these terms, the development of the system becomes akin to to problem

5.3. ADDRESSES, DEPENDENCIES, AND MAPPINGS 71

of transmitting information over a communications channel. This is one of the themes of
this book.

Sets of sets the the main way we can talk about scaling of discrete systems.

Example 45 (Software sets). A computer system may be composed of sets of software,
running on sets of computers, housed in sets of racks, housed in sets of locations, across
sets of countries, etc. Sets of users use sets of computers that may no be co-located but
distributed for complicated reasons.

Sets allow us to describe things in a bounded way, without necessarily being localized
in a single region. Sets are the most basic and powerful description we have, on which
everything else can be based.

5.3 ADDRESSES, DEPENDENCIES, AND MAPPINGS

Since we need to refer to the elements in a set, we give each element in a system a name
or address, i.e. a label that uniquely identifies it. There is thus a mapping from names
and addresses to objects (see figs. 5.3 and 5.4). This mapping may form a hierarchy of
components connected together as dependencies.

Example 46 (Dependency). In technology, systems are often componentized or modular
in construction. That means we can separate parts from one another and understand them
partially in isolation. Dependencies are components that are used by larger components.
A television and a computer depend on transistors, resistors, capacitors, etc. Software
is often packaged as components too, and these packages usually depend on other
packages. Certain components are so basic to the operation of software that nearly all
other software depends on them. The operating system falls into this category.

Example 47 (Functional mappings and dependencies). In fig. 5.2, we see a mapping
from a set of five elements to another set of three elements. In this case, the mapping
does not exist for all elements. A similar illustration could be used to create a mapping
from the set of computer architectures to the set of operating systems that can run on
them: e.g.

O = {Windows, Solaris,GNU/Linux,MacOS}

A = {Sparc, Intel,ARM} (5.9)

So that, if we create a mapping function f , one may write:

o = f(a) (5.10)

where o ∈ O and a ∈ A, e.g. Windows = f(Intel).

72 CHAPTER 5. SETS, STATES AND LOGIC

The advantage of writing the function is that it can be written for any variable that
takes values in the respective sets. This allows us to solve equations for valid mappings,
e.g. what are the solutions of

Windows = f(x)? (5.11)

Depending on whether the map is single-valued or multi-valued, there might be zero, one
or more solutions.

Domain Range

M

Figure 5.2: A function M is a mapping from one set, called its domain, to another set called its
range. The domain and range of the function do not have to be sets of the same size.

t R
1

Figure 5.3: A function of time, q(t), is a mapping from an arbitrary set of times into the set of
real numbers R1.

If we have a continuous set of values, i.e. a set that takes on a different value for any
real number parameter, the function can be described in terms of known differentiable
functions. See the example in fig. 5.3.

5.4 CHAINS AND STATES

Using the idea of sets, we can define states to be the current values of the objects in the
system:

5.4. CHAINS AND STATES 73

0

1

Figure 5.4: The memory of a computer is a mapping from bit-addresses to the binary values
{0, 1}.

Definition 20 (State). A state of the system (also called a microstate) is a value q ∈ Q
associated with a single addressable entity or location within the system.

A chain is a sequence of events Xn (n = 0, 1, . . . , N), where each event Xn takes
a value qi (i = 1, . . . I) called a state at address n, belonging to a set of values Q.
The integers n normally label the development of the process in discrete steps, and are
interpreted as time intervals, but they could also be spatial locations, e.g. a sequence of
values on a hard disk.

The transition matrix Tij , is written in a variety of notations in the literature, includ-
ing the following:

Tji = pji = |〈qj |qi〉|2

= P (Xn+1 = qj |Xn = qi). (5.12)

It represents the probability that the next event Xn+1 will be in a state qj , given that it is
currently in the state qi. By discussing the probability for transitions, we leave open the
issue of whether such transitions are deterministic or stochastic. There is a number of
possibilities. If Tij = 1 at Xn, for some i, j, the process is deterministic and one may
write the development of the chain as a rule

Xn+1 = Ut(Xn, . . . , X0), (5.13)

in the general case. If Tij < 1 at Xn, for all i, j, n, the process is stochastic. If T
depends only on the current state of the system,

P (Xn+1 = qi|X0, X1, . . . , Xn) = P (Xn+1 = qi|Xn), ∀ n ≥ 1, (5.14)

74 CHAPTER 5. SETS, STATES AND LOGIC

then the chain is said to be a Markov chain, or memoryless. Markov processes are also
called steady state, or equilibrium processes. A system that behaves like a Markov chain
has maximum uncertainty, and satisfies the second law of thermodynamics, meaning
that ‘entropy’ increases. If T depends on the whole history of {X}, then it is called a
non-equilibrium, non-Markov process. A state is called persistent if

P (Xn+m = qi|Xm = qi) = 1, for some n ≥ 1 (5.15)

and transient if

P (Xn+m = qi|Xm = qi) < 1. (5.16)

The terms periodic, aperiodic and ergodic also describe chains in which the processes
return to the same state. Readers are referred to [GS01] for more about this.

Example 48 (Determinism). Computer science, economics, and many other disciplines
build on models that are deterministic by default. We often assume that machines and
even human systems have simple causal behaviours, but in fact there is a lot of uncertainty
or randomness at work. In non-deterministic systems, we can only speak of probabilities
of outcomes. In Promise Theory (see volume 2), we start from the assumption that
promises may not always be kept, no matter how hard we try, or how well a system has
been designed. Quantifying this uncertainty is a job for rational methods. Probabilistic
formulations are thus very important.

5.5 CONFIGURATIONS AND MACROSTATES

If we want to collectively talk about the state of all of the objects or locations in a
system, at a given time, we use the term configuration. In large systems, a precise system
configuration consists of too many independent values to describe in detail and we move
to a statistical, averaged description.

Example 49 (Configuration state). One of the central issues in system administration is
the management of device and software configurations.

Definition 21 (Configuration). A configuration of the system is the vector of values
(microstates) of all its resource variables qi(t, x, . . .), at a given time t, for all positions
x and other parameters so on.

5.6. CONTINUUM APPROXIMATION 75

Definition 22 (Macrostate). A macrostate is an averaged, collective description of a
configuration that captures its statistical behaviour in a simplified, high level description.
Any function of all the microstates that leads to a summarized value can be called
the macrostate of the system. It can therefore be represented as a set of probability
distributions for the probabilities that the ith resource variable is in a state si: Pi(x =

si).

The concepts of microstates and macrostates are not necessarily unique; they depend on
a particular viewpoint of a system, and thus they can be defined, in each case, to discuss
a particular issue in a particular way. The main advantage of a description in terms of
states is the clarity and definiteness that such a description brings to a discussion.

Example 50 (Security configuration). To discuss the security configuration of a computer,
it is not necessary to go to the level of bits. We may take the microstates of the system as be-
ing the different permission combinations for the users, e.g. q1 = (read, write; mark),
q2 = (read; sally),. . . . A macrostate of the system is one possibility for the collective
permissions of all files and objects of the system, e.g. (file1, q1), (file2, q2),. . . .

Example 51 (Signal as set of states). A signal sent from a computer to another, as a
binary stream, is represented as a function q(t). The values that q(t) can take, at any
time, lie in the set Q = {0, 1}, which is the state space for the data-stream.

Example 52 (Alphabet examples). A user types at a computer terminal, onto a QW-
ERTY keyboard. The data stream can be represented as a function q(t), that maps a
moment in time to a key typed by the user. The state space of the stream is the set
Q = {q, w, e, r, t, . . .}.

Example 53 (Storage representation). Data stored on a computer disk are recorded
as binary patterns on a series of concentric rings. Each bit is located physically at a
location parameterzed by its distance r, from the centre, and and angle θ from some
reference line on the disk. The changing binary pattern of data on the disk is thus a
function q(r, θ, t) of position and time. At its lowest level of representation, the state
space of the data is the binary set Q = {0, 1}.

5.6 CONTINUUM APPROXIMATION

It is often helpful and even important to be able to describe systems in terms of smoothly
varying variables. Just as one would not imagine describing the flow of water in terms

76 CHAPTER 5. SETS, STATES AND LOGIC

of individual discrete atoms, one does not attempt to describe collective behaviour of
many discrete sources in terms of discrete digital changes. The transition to continuous
processes is straightforward. A discrete chain

X0 = qi, X1 = qj , . . . Xn = qk, (5.17)

is replaced by a function q of a continuous parameter t, so that a time interval from an
initial time ti to a final time tf maps into the state space Q:

q(t) : [ti, tf]→ Q. (5.18)

The discrete event notation Xn is now redundant and we can now speak of the value of
the state at time t as X(t). X is the symbol used in most mathematical literature, but we
prefer the symbol q(t) here. A set of parallel chains, labelled by a parameter x, and time
parameter t is thus written q(x, t). The transition matrix is now a function of two times:

T (t, t′) = |〈q(t′)|q(t)〉|2 = T (t̃, t) (5.19)

where

t̃ = t− t′

t =
1

2
(t+ t′). (5.20)

If there is no dependence on the absolute time t, the process is said to be homogeneous
or translationally invariant in time, otherwise it is inhomogeneous. A process is said to
be memoryless if it does not depend on t, since then it is in a steady state with nothing
to characterize how it got there. Invariance under translations of location and time are
important in science, because they imply that all states are treated equally, and that
this leads to conserved quantities, like the well known accounting parameters energy,
transactions, and money.

5.7 THEORY OF COMPUTATION AND MACHINE LANGUAGE

In what we might call Traditional Computer Science, computer systems are described
in terms of logical propositions — as automata, working on a usually deterministic set
of rules. This area of computer science includes algorithmic complexity theory and
automated theorem proving, amongst other things (see for instance [LP97]). Recently
the attempt to formalize simple processes has been applied to software engineering, with
language-like constructions such as the Unified Modelling Language (UML) (see for
instance [Som00]) that apply the forms of rigour to processes that include unpredictability.
Although such theories rule a domain of computer science that deals with determinism,

5.7. THEORY OF COMPUTATION AND MACHINE LANGUAGE 77

this book begins, in a sense, by questioning their broad validity as an approach to human-
computer management. Rather than applying a machine model to human-computer
interaction, the claim here is that one should apply the scientific, behaviourist approach
which has been developed to deal with real world complexity and uncertainty in a
systematic way.

Logic is a description of very elementary processes — too elementary to capture
the essence of the interaction between networks of humans and computers in actual
use; nonetheless, one cannot describe the world without understanding it ‘atoms’. We
need logic and reasoning to describe the elementary building blocks before adding the
complicating interactions, such as patterns and algorithms. We also need descriptive
theories of unpredictable behaviour (computer input is always unpredictable) and of
multiple levels of complexity. But as layer upon layer of complexity are compounded,
we also need broader scientific ideas that retain determinism in the form of causation,
but which abandon the idea of having a complete and exact description about systems.

5.7.1 AUTOMATA OR STATE MACHINES

A finite automaton, or finite state machine, is a theoretical system which responds to
changes transmitted to it by a data stream, by signalling state. Many mechanisms work
in this way. Automata can be represented or realized in different ways (e.g. cellular
automata, push-down automata). The important feature of automata is that they remember
state information, i.e. they have a memory of what has happened to them in the recent
past. The amount of memory determines the type of automaton.

A finite automaton receives a string of input and makes changes in its internal states
(i.e. its memory) depending on the values which it reads at its input. There are physical
systems which behave in this way: for instance, multi-state atoms, atoms moving around
on metal surfaces etc. If the input is a finite set of photons with frequencies matching
different transitions, then that is a simple finite state machine. Some input strings result
in final states which are defined to be ‘acceptable’ and all others are unacceptable. Thus a
finite state machine can accept or reject strings of digital information. A finite automaton
is described by the following components:

1. Q - a complete but finite set of internal states (i.e. memory/registers).

2. Σ - a finite alphabet of symbols or digits to be read (e.g. 0, 1 ; A,B,C, . . .).

3. T = Q×Σ - a transition function (T12 = 〈q1|q2〉) of deterministic state mappings,
or of transition probabilities.

4. A start state (boundary condition) |qs〉

78 CHAPTER 5. SETS, STATES AND LOGIC

5. A constraint on the allowed transitions.

Automata can do only one type of job: they can distinguish between legal and illegal
input. If the system reads in a string, and ends up in an acceptable final state, then the
string is said to be legal. If the accepted final state is not amongst the set of legal states,
then the input is classified as illegal.

If an input string (a chain) satisfies well-defined rules of construction, it is said to
satisfy a grammar. Not all grammars can be parsed by just any automaton. For instance,
a simple finite state machine, cannot parse any language that admits an arbitrary level
of recursion. The classic example is to think of how you could arrange the states and
transitions to parse text containing parentheses.

Example 54 (Contextual Grammar). A finite state machine can parse a parenthesis
embedded string, with maximum nesting level n if it has sufficient internal states. How
many states does it need?

(.. (.. (..) ... (..)))

To tackle arbitrary recursion one needs a stack that can remember symbols. The automa-
ton can place a value onto the stack, and retrieve values from it. The stack structure is
used in every modern computer because it mimics recursion precisely. If we take the
parenthesis example: for every left bracket we add a number to the stack, then for every
right bracket we remove one from the stack. The level of the stack is an indicator of
which nesting level we are at. At the end of a valid string, the stack should be empty, else
the brackets are not balanced. Automata with stacks are called push-down automata.

Example 55 (HTTP states). The World Wide Web’s Hypertext transfer protocol, HTTP,
is a stateless protocol in the sense that when you visit a web page, it does not remember
that you have been there before. However, extensions to the basic protocol using cookies
and server-side sessions allow the server to remember the state of transactions that have
transpired in the past, e.g. if you have typed in a a password, the state changes from “not
authenticated” to “authenticated”.

The generalization of the finite state machine (FSM) is the Turing machine and is
the model for all modern digital computers. We shall not discuss Turing machines in this
book.

State machines are a common and useful way of describing certain kinds of systems
in both a qualitative or quantitative manner. A state machine that is well known to
computer science students is the transition diagram of an operating system process
dispatcher (fig. 5.5). This describes transitions between certain states of the system for a
given process. These states are not the most microscopic level of describing the system:

5.7. THEORY OF COMPUTATION AND MACHINE LANGUAGE 79

New

Running

On CPU

Waiting

Done

Figure 5.5: A finite state machine representation of a computer process scheduling history.

we do not know the internal code instructions that take place in the operating system
of the computer, but these states are characteristic of a ‘black box’ description of the
process. The diagram encapsulates rules that the system uses to alter its behaviour.

A similar state machine is found in a rather different system: a service help desk,
run by humans (fig. 5.6). The task being performed by these two systems is qualitatively
similar to the dispatcher, so the similarity of states should not be a surprise. Of course,

Analysis

Done

Action

New query

Reply

Figure 5.6: A finite state machine representation for a system administrative help desk.

humans are not deterministic machines, so they cannot be modelled by exact rules, but the
essence of their behaviour can be modelled statistically in any manner that is convenient
to the design of a human-computer system (see fig. 5.7). The procedural aspect of the
human system can be represented as an automaton, since it is predetermined and has a
simple logical structure. Drawing the transition diagram for a finite state machine can be
a very useful way of debugging problems in a system.

• Are there states that can never be reached?

• Is it possible for a finite state machine to get into a state from which it cannot
emerge?

It might be necessary to change the rules of the system to disallow certain transitions,
add more or even add extra states to distinguish between situations that a system cannot
cope with. For systems that are probabilistic in nature, so-called hidden Markov models

80 CHAPTER 5. SETS, STATES AND LOGIC

Working

Talking

Idle

Thinking

Sleeping

Distracted

Figure 5.7: A finite state machine representation for a human being. This is clearly contrived,
but this might be a way of modelling the main kinds of activity that humans undergo. A model
of transitions between these states is unlikely to be describable by any realistic algorithm, but
one could measure the time spent in each state and the likelihood of transitions from one state to
another in order to improve the efficiency of the individual’s work pattern.

can be used. In a hidden Markov model, there are hidden variables that control how the
transitions occur. The transition rules become themselves state dependent.

5.7.2 OPERATORS AND OPERANDS

In order to discuss the active changes made within systems, using a formal framework, we
introduce the notions of operators and operands. These terms are encountered routinely
in mathematics and in computer science, and have a familiar and well defined meaning.

Definition 23 (Operator). An operator is a process which changes the value of a resource
variables within the system, by performing an operation on it. It invokes a unit of change
∆q.

Definition 24 (Operand). An operand is a resource q, within the system, which is
operated on by an operator.

A computer program is an operator which acts on the data within a computer. Human
beings are operators when we perform operations. If we want to describe them formally,
we need only find a suitable representation for an operator, acting on some operand that
mimics the behaviour we need to model.

5.7. THEORY OF COMPUTATION AND MACHINE LANGUAGE 81

5.7.3 PATTERN MATCHING AND OPERATIONAL GRAMMARS

Input to a system is, by definition, unpredictable. If it were not, it could be eliminated
and the system could be replaced by a closed automaton. Systems interpret input, usually
in the form of symbols, though ‘analogue’ systems often measure continuous input from
sensors. To determine the meaning of the data at the input of a system, one must therefore
interpret the stream of data and determine its intended meaning. This is a problem that
is still a matter of considerable research. There are two main approaches, that are often
complementary: grammatical and statistical recognition methods.

If the behaviour of a system is deterministic, it can be described in terms of operations
that are executed in some well-defined sequence. A description of this ‘language’ of
operation can rightfully be called a machine language. The set of all legal sentences in
this language is called the syntax of the language. It does not matter whether humans
ever see this language of operation; it exists and is well-defined without ever having to
be written down.

The syntax of any language can be modelled by a general theory of its structure,
called a grammar. Grammatical methods assume that arriving data form a sequence of
digital symbols (called an alphabet) and have a structure that describes an essentially
hierarchical coding stream. The meaning of the data is understood by parsing this
structure to determine what information is being conveyed. The leads us to the well-
known Chomsky hierarchy of transformational grammars (see, for instance, [LP97]).

Using statistical methods of recognition, patterns are digitized and learned, regardless
of whether they began in digital form or not. One then gathers statistical evidence about
the meaning of previously seen patterns of symbols and tries to use it to guess the meaning
of new patterns. This method has been interestingly employed in bio-informatics in
recent times ([DEKM98]) to interpret gene sequences. Even in this case, the idea of
grammar is useful for classifying the patterns. A classification of a pattern is a way of
assigning one-to-one meaning to it.

The complexity of patterns is related to the level of sophistication required to decipher
their structures. Linguist Noam Chomsky defined a four-level hierarchy of languages
called the Chomsky hierarchy of transformational grammars that corresponds precisely to
four classes of automata capable of parsing them. Each level in the hierarchy incorporates
the lower levels: that is, anything that can be computed by a machine at the lowest level
can also be computed by a machine at the next highest level.

82 CHAPTER 5. SETS, STATES AND LOGIC

State machine Language class
Finite Automata Regular Languages
Push-down Automata Context-free Languages
Non-deterministic Linear Bounded Automata Context-sensitive Languages
Turing Machines Recursively Enumerable Languages

State machines are therefore important ways of recognizing input, and thus play an
essential part in human-computer systems.

Example 56 (Regular expressions). Regular expressions are simple regular languages
with their own grammar that are used for matching simple lexical patterns. They are
widely used for searching computer systems with ‘wildcards’ for particular filename
patterns. Regular expressions are also used for finding patterns of input in Network
Intrusion Detection Systems.

Because of their regularity and conduciveness to formalization, computer science has
seized upon the idea of grammars and automata to describe processes (see section 13.11).
We shall make some use of these idea, especially in chapter 15, but will not attempt to
cover this huge subject in depth here. Symbolic logics are used to describe everything
from computer programs and language ([Log]) to biological mechanisms that describe
processes like the vertebrate immune response ([Jer64]). Readers are referred to texts
like [LP97, Wat91] for authoritative discussions. For a cultural discussion of some depth
see [Hof81].

5.7.4 PATHWAY ANALYSIS AND DISTRIBUTED ALGORITHMS

In networks or graphs deterministic methods for locating features of the network are
often algorithmically complex and many belong to the class NP of algorithms for which
there is no known solution that will execute in polynomial time. Fault isolation is one
such problem, as is finding the shortest path through a network. Approximations are
often used to find a reasonable solutions to these problems.

Distributed algorithms are often discussed in connection with management of net-
works (see for instance [SS02]). There is a powerful prejudice towards the use of
deterministic algorithms, and in defaulting to heuristics when these fail to yield desired
progress. Computer science has its roots more in logic than in statistical methods, though
some of the latter enter in the field of artificial intelligence (see, for instance, [Pea00]
and [Pea88]). However, increasingly there is a realization that an algorithmic approach
is too elementary for describing systems at a higher level, and thus we spend little time
on discussing such algorithms in this book. A nice overview of the traditional system

5.8. A POLICY DEFINED STATE 83

management viewpoint is given in [Her94], for instance. Other authors describe algo-
rithmic tricks for elementary management processes, some of which will make a brief
appearance later in the book (see [Bur04, CS03, CHIK03]).

Example 57 (Paxos, Raft, etc). Paxos[Lam01] and Raft[OO14] are examples of al-
gorithms that combine states across a number of distributed locations, in order to
equilibrate sets of states to bring abouta consensus of identical copies of information.

5.8 A POLICY DEFINED STATE

A theme which recurs in system administration is that of configuration management,
i.e. ensuring that devices, computers and organizations are primed with the correct state
configurations in order so as to behave as we would like. We refer to a description of
what we would like a system to do as a policy, and can imagine that there is an ideal
configuration that represents this policy’s wishes1. Can we make a system tend towards
this state by itself?

In [Bur98b], this idea is called a computer immune system, and the desired state is
thought of as being the ‘healthy configuration’ of the system. If a system will automati-
cally tend to fall into its own desired configuration, this would require little maintenance
(see fig. 5.8). The system would be self-healing. The task is therefore to design a
system with a transition matrix that tends to lead it towards a fixed, singular configura-
tion, indicated at the centre of the figure. We refer to such a transition matrix as being
convergent2.

Applications and Further Study 5.

• Describing systems in terms of objects and their classifications.

• Classification of devices and configuration parameters.

• Classification of roles and cliques of components in a system.

• Descriptions of operations and instructions.

• Verification of designs and procedures.

1Later we shall advocate more strongly the idea that an ideal state can be associated with policy. For
now we can say that we choose a particular desired state as a matter of policy.

2This is sometimes expressed by saying that, in a convergent policy, a repair never makes the system
worse.

84 CHAPTER 5. SETS, STATES AND LOGIC

CORRECT

Figure 5.8: If a system has an ‘ideal’ configuration, we would like this state to be a basin of
attraction for the transitions. The state transitions should therefore converge towards a fixed point
that we consider to be ‘correct’ according to policy.

CHAPTER 6

DIAGRAMMATICAL

REPRESENTATIONS

Diagrams are useful in planning, designing and understanding systems, because they
either conceal details which are not relevant at the architectural level, or amplify details
that one normally suppresses.

Diagrams have been used to design and understand systems for thousands of years,
in engineering and in medicine, for instance. Complex component diagrams have been
in use ever since the first electronic circuits were built. Many themes in electronics
have direct analogues in human-computer systems: e.g. flow, amplification, diode (one
way flow), resistance, storage, input and output. From the experience of electronic
engineering, we know that even fairly simple diagrams can be difficult to understand;
huge diagrams are impossible for humans to digest.

Diagrams are helpful as maps, as a blueprint for construction, and even for diagnos-
tics, but they become quickly unwieldy unless they are broken down into manageable
pieces. One thus uses a strategy of divide and conquer, or modularity to make systems
comprehensible. This results naturally in a hierarchical sub-structure to any large system,
in which high levels assume and depend on the correct functioning of lower levels.

It is not easy to formalize diagrams. A diagram is itself a data structure, in which
the only resources one has are spatial extent, shapes and colours. Since the space on a
page is limited, one usually runs into space limitations long before a formal scheme for
organizing that space succeeds in showing anything like a realistic example, i.e. before
becoming unwieldy and impossible to grasp. Moreover, there is a limit to the number of
ways of making distinctions in an intuitive fashion. For this reason, diagrams are mainly
used a visual aids for more formal descriptions using algebra or some kind of functional

85

86 CHAPTER 6. DIAGRAMMATICAL REPRESENTATIONS

Freedom Constraint

Position Page size
Object size Proximity
Shape Difficulty of recognition
Colour Colour perception
Direction Only 2 dimensions

Table 6.1: Freedoms and constraints for printed diagrams

pseudo-code.

There are top-down and bottom-up approaches to diagrams.

6.1 DIAGRAMS AS SYSTEMS

Diagrams are systems in which one uses space as a resource to represent information
about something else. An effective diagram, therefore requires a proper allocation of
the resource of space to the problem of representing information. The freedoms and
constraints one has in a diagram are shown in table 6.1.

Given that a diagram is dependent on these factors, the task is one of how to allocate
the space and shapes creatively in order to achieve the goal of the diagram. How is space
used? Ideally, every diagram would indicate what its premises are. Some diagrams use
space to indicate time, some use space to indicate extent. Some use distance to indicate
some measurable property of the system.

Visual representations are, of course, not the only way of representing information.
Underwater animals, such as dolphins, communicate mainly by sound, blind people
mainly by touch, and so on. In ref. [GC00] the authors employed a ‘sound diagram’ to the
problem of representing a computer network. An audio representation presents different
limitations, such as ease of distraction from the environment. Electronic diagrams, on
computers, can combine sight and sound and other senses into a single representation,
but this goes beyond the limitations of a diagram on a printed page.

Example 58 (Circuit diagrams). Electrical circuit diagrams: the flow of activity is
carried by electricity, but the function of the circuit might be something as abstract as
playing music (a radio). The actual function is rather hard to see from the internal
algorithms, and yet those details are required at the level of flow. The mechanics of
individual electrons is not required, because one trusts that the components behave in a
predictable fashion.

6.2. THE CONCEPT OF A GRAPH 87

6.2 THE CONCEPT OF A GRAPH

There are many situations where we draw dots that are joined together by lines, perhaps
with arrows on them, to denote some kind of information. The links between nodes often
represent qualities such as

• A dominates B (directed).

• A depends on B (directed).

• A is associated with B (undirected).

and so on. Note that some of these relationships are one-way (directed) and others are
multi-way (undirected).

D. König suggested the name graph for all such diagrams, and pioneered the study
of their properties. Elementary graph theory is a very useful framework for discussing
human-computer systems, because it considers systems with discrete states (the nodes or
dots in the graph) that are joined together only if certain criteria are met (i.e. if there is
an arc joining the points, perhaps with an arrow going in the right direction).

A

B

C

D

E

Figure 6.1: A graph is a general assembly of nodes connected by arcs. It is used to describe
many situations in science and mathematics.

A graph with arrows on it is called a directed graph and a graph without loops
is called acyclic; thus a tree structure (so common in computer science) is an acyclic
directed graph.

Definition 25 (Graph). A graph is a pair (X,Γ) that consists of a set of nodes X and a
mapping Γ : X → X , formed by the arcs or lines between the points x ∈ X .

88 CHAPTER 6. DIAGRAMMATICAL REPRESENTATIONS

The degree of any node in a graph is the number of nearest neighbours it has, i.e. the
number of nodes that can be reached by travelling along those links that are connected to
the node.

Definition 26 (Degree of a node). In a non-directed graph, the number of links connect-
ing node i to all other nodes is called the degree ki of the node. In a directed graph, we
distinguish incoming and outgoing degrees.

Figure 6.2: A graph mapping points within a disk onto other points within the disk.

Do not be tempted to think of a graph as being necessarily composed of only a sparse
set of points with occasional links between them. Even a dense set of points, infinitely
close together, such as all the points in a circle form a set and can be mapped onto each
other, even if the arcs seem to overlap the points (see fig. 6.2).

1

2

4

3

Figure 6.3: A simple network, represented as an undirected graph.

6.3. PROMISE THEORY 89

A graph may be represented or defined by its adjacency matrix1. By convention, the
adjacency matrix of a network or graph is a symmetric matrix with zero leading diagonal,
(see, for example, the graph in fig. 6.3)

A =

0 1 1 1

1 0 0 1

1 0 0 1

1 1 1 0

 (6.1)

Definition 27 (Adjacency matrix). A square matrix Aij whose rows and columns label
the nodes of a graph. If a path exists from node i to node j then Aij = 1. If the graph is
undirected it must have a symmetric adjacency matrix.

If we regard the nodes in a graph as possible states in a system, then the adjacency
matrix is also a transition matrix between states, where a 1 indicates the possibility of
a transition. For non-deterministic or stochastic systems, one could replace “1” by the
probability of a transition taking place.

Graphs or networks come in a variety of forms. Figure 6.4 shows the progression
from a highly ordered, centralized structure to a de-centralized form, to a generalized
mesh. This classification was originally discussed by Paul Baran of RAND corporation,
in 1964 as part of a project to develop a communications system that would be robust to
failure, in the case of a nuclear attack (see [Buc02, Bar02] for a review).

6.3 PROMISE THEORY

An extension of the graph theory known as Promise Theory2 [Bur05, BB14] makes use
of networks of interactions between nodes that model ‘agents’ and the promises they
make some each other. This subject will be dealt with more fully in volume 2, since this
theoretical approach has many important qualities, such as the ability to unify intentional
aspects of systems with quantitative analysis.

The ‘Promise Theory’, was introduced in 2005 as a way to model distributed systems
with complete decentralization[Bur05]. Coupled with abstraction, it offers a looking glass
onto the design and management of networks. If we define what a user or application
needs from the network we can begin to get away from imperatively controlling the ‘how’

1Working with graphs in adjacency matrix form becomes decreasingly realistic as the size of the graphs
grows beyond thousands of nodes, however this form is very illuminating and is particularly suited to
smaller graphs such as those that arise in system administration.

2This topic has been added in the second edition.

90 CHAPTER 6. DIAGRAMMATICAL REPRESENTATIONS

Figure 6.4: Network topologies: (a) centralized, (b) de-centralized or hierarchical, and (c)
distributed mesh.

the network functions and instead focus on declaratively describing ”what” is required
from it. In Promise Theory, network elements act as autonomous agents and collaborate
to find the best way to deliver the required function.

Promise Theory has become an invaluable measuring stick for describing systems,
with semantics and dynamics (intent and outcome) side by side. Promise theory is about
what can happen in a collection of components that work together[Bur05, MK05]. It is
not a network protocol, but a descriptive algebra. One begins with the idea of completely
autonomous agents that interact through the promises they make to one another. It is
well-suited to modeling networks [BC04]. Although we cannot force autonomous agents
to work together, we can observe when there are sufficient promises made to conclude
that they are indeed cooperating voluntarily. Our challenge in this paper, is to translate
this bottom-up view into top-down, human managed requirements.

Definition 28 (Agent). The term used for the fundamental entities in Promise Theory.
Agents may be any active entities in a system. Agents are the seat of intentions, whether
directly or by proxy. They are autonomous (independent) in the sense that they may
not make promises on behalf of anything except their own behaviour, nor can they be
influenced by outside agents without explicitly promised consent.

The promise formalism has a number of features, described in[BB14]. We refer
readers to this reference for details. More details will be given in volume 2.

6.3. PROMISE THEORY 91

Definition 29 (Promise). A promise is an intention that has been ‘voluntarily’ adopted
by an agent (usually channeling a human owner, or perhaps an agreed standardization).

An agent, which only promises to do as it’s told, is dependent or voluntarily subordinated.
It has some of the characteristics of a service: an agent makes its intended behavior
known to other agents (e.g. I will serve files on demand, or forward packets when I
receive them). An imposition is an attempt to induce the cooperation of another agent by
imposing upon it (e.g. give me the file, take this packet).

We write a promise from Promiser to Promisee, with body b as follows:

Promiser
b−→ Promisee. (6.2)

and we denote an imposition by

Imposer
b

Imposee. (6.3)

Promises and impositions fall into two polarities, denoted by ±. A promise to give or
provide a behavior b is denoted by a body +b; a promise to accept something is denoted
−b (or sometimes U(b), meaning use-b). Similarly, an imposition on an agent to give
something would have body +b, while an imposition to accept something has a body −b.

Although promises are not a network protocol, agents can exchange data. To com-
plete any kind of exchange, we need a match an imposition (+) with a promise to use (-).
To form a binding (as part of a contract), we need to match a promise to give (+) with a
promise to use (-). This rule forces one to document necessary and sufficient conditions
for cooperative behaviour.

A promise model thus consists of a graph of nodes (agents), and edges (either
promises or impositions) used to communicate intentions. Agents publish their intentions
and other agents may or may not choose to pay attention. In that sense, it forms a
chemistry of intent [Bur13b], with no particular manifesto, other than to decompose
systems into the set of necessary and sufficient promises to model intended behavior.

Example 59 (Ethernet protocol). The Ethernet protocol may be described simply in
terms of promises. The agents that keep promises to send and receive data are the
network interfaces. For example, in the Ethernet protocol, interfaces Ei promise to label
transmissions with a unique MAC addresses or string of digits.

Ei
+MACi|MACi 6=MACj−−−−−−−−−−−−−−→ Ej ∀i, j

When data are transmitted by an interface, the interface keeps its promises to use
messages that have (destination MAC address, data). Note: the message is not a promise,
the promise governs how the message is handled.

Ei
(+MACj ,+data)

Ej

92 CHAPTER 6. DIAGRAMMATICAL REPRESENTATIONS

Messages are sent ‘fire and forget’ as impositions on to a remote receiver. While all
interfaces generally promise to accept any MAC address, (unless they block with MAC
access control) only the interface whose MAC address matches the destination in the
message doublet actually promises to accept the message voluntarily. Note, there is
nothing other than convention to prevent all agents from accepting the data too; this

‘promiscuous mode’ is used for network monitoring, for example.

E∗
−MACj−−−−−→ Ei ∀i, j

Ei
(−MACj ,−data) if (i=j)
−−−−−−−−−−−−−−−−→ Ej

Since the channel is unprotected, agents effectively promise the data to all others in scope.
Moreover, all agents promise to decode the address and the data, but many will discard
the results.

While this set of promises is scale independent, the assumption that every agent has
to be in scope of every transmission does not scale, since it requires messages to be
flooded or broadcast to every node (agent), in principle. The primary issue with raw
Ethernet is that there are no ways to selectively limit the size of these broadcast domains.
This makes the ‘everyone please take a look at this’ approach impractical.

Figure 6.5: An Ethernet switching function.

In Fig. 6.5 we see two interfaces that promise MAC address 00:00:11:11:11:AA
(shortened to AA) and 00:00:11:11:11:BB (shortened to BB). Suppose we wish to send
data from AA to BB, then, since the Ethernet is a push-based imposition protocol, only
half a contract is needed for emergent delivery, and we leave the rest to trust.

EAA

+MACBB
Eswitch

Eswitch
−MACi−−−−−→ Ei ∀i

Eswitch
+forward MAC BB−−−−−−−−−−−−−→ EBB

In each point-to-point interaction, the agent has to formally promise to use (-) the
delivery service promised by the agent giving (+). This is the algebra of binding. There is

6.3. PROMISE THEORY 93

no notion of a permanent virtual circuit, as say in ATM. However, if we add handshaking,
a similar story can be told about ATM, Frame Relay, MPLS and other systems.

Example 60 (Internet Protocol). The Internet Protocol may also be rendered as in the
previous example. IP provides Wide Area Networking by issuing two part addressing to
cope with transmission scalability. IP addresses still promise to be globally unique, but
are interpreted as doublets.

(network prefix, local address)

Only addresses with the same prefix are considered in mutual scope for broadcasting,
and messages addressed from one prefix to another promise to be forwarded deliberately
rather than by ‘flooding’. IP is thus a cooperative effort that builds on promises rather
than impositions alone.

To make this work, IP needs two kinds of agent, which fall into different promise roles
(see figure 6.6): interfaces (terminating connections), which only transmit and receive
data intended for them, and forwarders (called routers or switches) that cooperate with
multiple interfaces, and promise to selectively forward data from one interface to another
between protected broadcast domain. This acts as a flood-barrier or firewall to packets
promised to different prefixed networks.

To model routers, without giving up the interface abstraction, we introduce the
concept of a route service (or link service), whose job it is to establish cooperative
forwarding between the interfaces.

Interface

Interface

Interface

InterfaceInterface

Router

128.39.78.128.39.78. 4

prefix local

1 177.16.1.1

src dest?

Figure 6.6: Internet promises. An end-node or leaf and its single interface promises to relay
through a ‘router’ which is surrounded by multiple interfaces, thus connecting multiple network
branches.

94 CHAPTER 6. DIAGRAMMATICAL REPRESENTATIONS

Consider Fig. 6.6. The source node has an address, normally written 128.39.78.4/24.
As a doublet, the promises see it in two parts as i = (prefix=128.39.78, local=4). We’ll
call this the source prefix, or, j = (prefix=128.39.78, local=1) for the router interface.
When a message is sent to an address with a different destination prefix, data are sent
by imposition to the interface on the router with the source network prefix (usually the

‘default route’):

Isourcei
+(destination,local),+data

Irouterj

Each router interface j promises the connected source interfaces i to use all such packets,
a priori, and to present them to the router (kernel) which keeps the following promises.

Irouterj

−(∗,∗),−data−−−−−−−−→ Isourcei

Irouterj

+prefix,+data−−−−−−−−−→ Router

Similarly, other interfaces connected to the router’s interfaces promise to accept messages
from the router that have their prefix:

Isourcei

−(prefix,source),+data−−−−−−−−−−−−−−→ Routerj

Crucially for messages to escape from a local region, the router promises all IP interfaces
to forward messages it receives on one if its own interfaces according to a set of promises
which we denote ‘forward’. The router interfaces, in turn, bind to this promise by
accepting it.

Router
+forward−−−−−−→ Irouterj

Irouterj

−forward−−−−−−→ Router

The forward promise has the following logic:

(1) If the prefix of the destination interface is the same as the prefix of one of the
router’s interfaces, forward the message onto that interface.

The remainder of the promise requires configuration with knowledge of the wider world.

(2) If the prefix of the destination interface is known to an internal database of
external knowledge, i.e. the Routing Information Base (RIB), forward the message
to the interface known to lead to the desired destination.

(3) Send all other message destinations to a pre-decided default interface, where
we expect to reach some other router with greater knowledge of how to find the
prefixed network.

6.4. CONNECTIVITY 95

Note that, like the Ethernet, this algorithm has only emergent behaviour that matches
its design goal. It cannot, by direct imposition, assure a successful delivery of messages,
because that requires the cooperation of potentially many intermediate interfaces and
routing agents. In spite of this apparent lack of control, the Internet works demonstrably
well. Trust plays a major role in operations.

6.4 CONNECTIVITY

Let ~h be a host or node vector whose components are 1 if a host is available and
zero if unavailable. The level of connectivity within a graph or closed network can be
characterized by an invariant scalar value χ:

Definition 30 (Connectivity). The connectivity, χ, of a network N , is the probability
(averaged over all pairs of nodes) that a message can be passed directly between any
two nodes. χ may be written as

χ =
1

N(N − 1)
~hTA~h . (6.4)

χ has a maximum value of 1, when every node is connected to every other, and a minimum
value of zero when all nodes are disconnected.

The connectivity of a graph is of great importance to systems. It tells us both how easy
it is for information to spread throughout the system and how easy it is for damage to
spread. This duality is the essence of the security-convenience conundrum. We explore
this issue further in the next section.

6.5 CENTRALITY: MAXIMA AND MINIMA IN GRAPHS

Where are the best connected nodes in a graph? These are nodes that we would like to
identify, for a variety of reasons: such nodes have the greatest possible access, to the rest
of the system. They might be security hazards, bottlenecks for information flows, or key
components in a system in which we need to invest money and resources to keep the
system running smoothly. From the standpoint of security, important nodes in a network
(files, users, hosts) are those that are ’well-connected’. We are thus interested in a precise
working definition of ’well-connected’ (see [BCE04a, CEM04]).

A simple starting definition of well-connected could be ’of high degree’: that is,
count the neighbours. We want however to embellish this simple definition in a way
that looks beyond just nearest neighbours. To do this. we borrow an old idea from both

96 CHAPTER 6. DIAGRAMMATICAL REPRESENTATIONS

common folklore and social network theory (see [Bon87]): an important person is not
just well endowed with connections, but is well endowed with connections to important
persons.

The motivation for this definition is clear from the example in figure 6.7. It is clear
from this figure that a definition of ’well-connected’ must look beyond first neighbours.
Nodes of equal degree have quite different levels of importance depending on their
position within the remainder of the graph.

Figure 6.7: Nodes A and B are both connected by five links to the rest of the graph, but node B
is clearly more important to security because its neighbours are also well connected.

We can now formulate a precise definition of the importance for non-directed graphs
using a concept called centrality. We begin by noting that the symmetrical adjacency
matrix consists of ones where a node has neighbours and zeros where is does not. Thus
multiplying a row of this matrix by a column vector of ones would simply counts the
number of neighbours for that node. We can use this fact to self-consistently sum the
entire graph.

Let vi denote a vector for the importance ranking, or connectedness, of each node i.
Then, the importance of node i is proportional to the sum of the importances of all of i’s
nearest neighbours N(i):

vi ∝
∑

j=N(i)

vj . (6.5)

This may be more compactly written as

vi ∝
∑
j

Aijvj , (6.6)

6.5. CENTRALITY: MAXIMA AND MINIMA IN GRAPHS 97

where A is the adjacency matrix. We can rewrite eqn. (6.6) as

A~v = λ~v . (6.7)

Thus the importance vector is actually an eigenvector of the adjacency matrix A. If A
is an N × N matrix, it has N eigenvectors (one for each node in the network), and
correspondingly many eigenvalues. The eigenvalue of interest is the principal eigenvector,
i.e. that with highest eigenvalue, since this is the only one that results from summing
all of the possible pathways with a positive sign. The components of the principal
eigenvector rank how self-consistently ‘central’ a node is in the graph. Note that only
ratios vi/vj of the components are meaningfully determined. This is because the lengths∑
i v

ivi of the eigenvectors are not determined by the eigenvector equation.
The highest valued component is the most central, i.e. is the eigencentre of the graph.

This form of well-connectedness is termed ’eigenvector centrality’ (see [Bon87]) in the
field of social network analysis, where several other definitions of centrality exist. We
shall use the terms ‘centrality’ and ’eigenvector centrality’ interchangeably.

Example 61 (Adjacency matrix). Consider the graph in fig. 6.8. This has adjacency
matrix

A =

0 1 0 1 1

1 0 1 0 1

0 1 0 1 1

1 0 1 0 1

1 1 1 1 0

 (6.8)

The matrix has eigenvalues λ = {−2,−1.2, 0, 0, 3.2}. The principle eigenvector is that
associated with the last of these, i.e. that with the highest value.

~P (A) = (0.43, 0.43, 0.43, 0.43, 0.52). (6.9)

This indictaes that node 5 is the most central. The remaining symmetrical nodes are have
symmetrical lower values. Thus the principal eigenvector maps te topography of the
undirected graph.

Figure 6.9 shows a centrality organized graph of the Gnutella peer to peer network.
Peer to peer networks are characterized by having no real centre. The centres here are
only marginally higher than their surrounding nodes.

Definition 31 (Eigenvector Centrality). The Eigenvector centrality of node i is the ith
component of the principal eigenvector ~v, normalized so that maxi vi = 1. This is used
in importance ranking of nods.

98 CHAPTER 6. DIAGRAMMATICAL REPRESENTATIONS

4

5

3

1

2

Figure 6.8: An undirected graph with an obvious centre.

We can use this importance ranking to define a height of each node in a graph and
hence draw the graph as an importance landscape. A local maximum in this landscape
defines a ‘regional maximum’ in the graph or a very important node. Low points indicate
nodes of little importance and, in between tops, we can identify nodes that act as bridges
between the local maxima. Eigenvector centrality provides us with a shape for the graph,
based on the density of its connections. This serves as a guide for locating hot spots in
networks. Note also that, in such diagrams, each dot or node could represent a subgraph,
allowing many levels of detail to be revealed or hidden.

6.6 RANKING IN DIRECTED GRAPHS

So far we have considered eigenvector centrality in undirected graphs, where its meaning
is unique and unambiguous. The same idea can be applied to directed graphs, but
with additional subtleties. The topic of ranking nodes in a directed graph has a history
associated with importance ranking by search algorithms for the World Wide Web (see
[PBMW98] and [Kle99]).

The arrows on graph edges now identify nodes of three types: sources, sinks and
relays.

Definition 32 (Source). A source is a node from which a directed flow only emerges. In
the adjacency matrix, this is represented by a row of 1’s with a corresponding column of
0’s.

Definition 33 (Sink). A sink is a node that is purely absorbing. In the adjacency matrix
has a column of 1’s and corresponding row of zeros.

6.6. RANKING IN DIRECTED GRAPHS 99

Figure 6.9: A graph of the Gnutella peer to peer network, using centrality to define local maxima
regions. Distinct regions are shown as distinct islands, using the Archipelago tool ([BCS+03]).

Definition 34 (Relay). A relay is a node that has both incoming and outgoing flows.

Principal eigenvector ranking is fraught with subtlety for directed graphs. It does not
necessarily have a simple answer for every graph, though it seems to work for some (see
section 11.8); nor is there a unique procedure for obtaining an answer for every case. All
is not lost, however. Once can still use the spirit of the eigenvalue method to learn about
graph structure and importance.

There is a fundamental duality about directed graphs that depends on the direction
of the arrows. To understand this, look at the two graphs in figs. 6.10 and 6.11.

In the first of these graphs (fig. 6.10), we have a number of nodes with arrows
that point mainly towards an obvious centre. This centre happens to be a sink, i.e. it
absorbs the flows. This diagram has an adjacency matrix A. The dual picture (fig. 6.11)
is described by the transpose of the adjacency matrix AT, since interchanging rows
and columns changes the direction of the arrows. There are thus at least two kinds of
importance in a directed graph, and that these are complementary:

100 CHAPTER 6. DIAGRAMMATICAL REPRESENTATIONS

0

1

2

3

4
5

6

7

8

Figure 6.10: A directed graph with a sink, i.e. a node (5) that is absorbing of all flows. This is
the complement or dual of fig. 6.11.

• Sink importance: a node is important if it gets a lot of attention from other nodes,
i.e. if it absorbs a lot of flows. This kind of node is also referred to as an authority,
since others point to it and hold it in esteem.

• Source importance: a node is important if it influences a lot of nodes, i.e. if it
originates many flows. This kind of node is also called a hub because it shoots
out its spokes of influence in all directions.

The problems with this simple use of the principal eigenvector are illustrated by the two
diagrams in fig. 6.12. These graphs cannot be distinguished by the basic eigenvector
method, since there is such great symmetry that all path lengths from the nodes are equal.
The eigenvalues are thus all zero and there is no way of finding a most important node,
despite the fact that the central node clearly has a privileged position. An interesting
approach to directed graphs that is able to distinguish these graphs has been presented
by Kleinberg ([Kle99]). The following symmetrized matrices enforce the duality noted
above explicitly, by tying together sources and sinks into nearest neighbour ‘molecules’.
A good source (hub) is one pointing to many good sinks and a good sink is one pointed
to by many good sources, at nearest neighbour level. They are guaranteed to have a
principle eigenvector.

AA = ATA (6.10)

points to an authority (i.e. its principal eigenvector assigns a high weight to an authority

6.6. RANKING IN DIRECTED GRAPHS 101

0

1

2

3

4
5

6

7

8

Figure 6.11: A directed graph with a source, i.e. a node (5) that is the origin of all flows. This is
the complement or dual of fig. 6.10.

Figure 6.12: These two graphs cannot be distinguished by the principle eigenvalue method.

or sink), while

AH = AAT (6.11)

points to a hub (i.e. its principal eigenvector assigns a high weight to a hub or source). It
is presently unclear what the advantages and limitations of these different approaches are.
None of these performs entirely satisfactorily for all graphs (particularly small graphs),
and a complete understanding of the identification of roles in directed graphs is still in
progress ([BCE04b]). In cases where both A, AT and the AA, AH yield an answer, they
often agree, with approximate correspondence:

A↔ AH = AAT

AT ↔ AA = ATA. (6.12)

102 CHAPTER 6. DIAGRAMMATICAL REPRESENTATIONS

See section 11.8 for an example.
In the hub-authority viewpoint, the matrices attach importance explicitly to local

clusters of sources and sinks, but why not longer range dependencies? Another approach
is used by the PageRank algorithm (see [PBMW98]) in which stochastic noise is added to
the actual adjacency matrix in order to generate loops that resolve the eigenvalue problem.
The success of the procedure is well known in the form of the search engine Google,
but it is also an arbitrary procedure that is now patented and out of public scrutiny. The
issues surrounding importance ranking will likely be resolved in future work, allowing
methods to be used as organizing principles for systems of all kinds.

6.7 APPLIED DIAGRAMMATICAL METHODS

A variety of heuristic diagrammatical forms are in use.

• Maps

Maps (or ‘mind maps’) are a loose representation of everything in a system. They
are used as a basis for identifying relationships and structure, as well as simply
documenting all the relevant parts (see fig. 6.13).

maintenance

equipment/tools economy

resourcesgeography

policy

staff

welfareservices

teams

ORGANIZATION

lawssociety

purpose

Figure 6.13: A ‘mind map’ of an enterprise, showing a brain-storming approach to understanding
the elements that are important, and their relationship to one another.

Note this is not a dependency diagram. It is simply a diagram of associations.

• Flow diagrams

6.7. APPLIED DIAGRAMMATICAL METHODS 103

These were common in the early days of programming and are still used sometimes
for representing simple algorithms graphically. Flow diagrams show the causal
sequence of actions and the decision branches in simple processes; they are a
graphical pseudo-code and thus provide a very low level picture of a system.
For large or complex systems, flow diagrams become unwieldy and more of a
hindrance to comprehension than an aid (see fig. 6.14). The Unified Modelling
Language (UML) attempts to extend this idea to make diagrams express a strict
grammar.

Start

End

Done

Yes

No

Figure 6.14: Flow diagrams a graphical pseudo-code that illustrate a sequence of actions and
decisions in a simple procedure..

• Transition diagrams

A system of distinct states is called a Finite State Machine (see section 5.7.1). It is
formally represented as a directed graph. Finite state machines are at the centres
of many systems (see fig. 5.5). They represent a coarse type of memory of context
in a system. Transition diagrams are related to functional structure diagrams. If
one labels being in each function as a state of a process, then they represent the
same information.

• Functional structure diagrams

A structure diagram is a chart of the independent functions within a process
and the flow of information between them. They are sometimes called Jackson
diagrams ([Jac75]).

A structure diagram describes a chain of command and maps the independent
methods in a process, showing how they relate to one another. For instance, the
functional declaration

104 CHAPTER 6. DIAGRAMMATICAL REPRESENTATIONS

food

Abstact entities

Enterprise

Main site Local site

Staff
Students
Trainees

Tools / Computers

Health Power Time Space

Work done here

Figure 6.15: An excerpt of a functional diagram showing the economic (resource) organization
of an enterprise. In many organizations this doubles as a chain of command diagram, since control
is often chosen to flow with the dissemination of resources, though this need not be the case.

begin function A

do function B

do function C

end function

would be drawn as in fig. 6.16. By the same token, it charts the flow of resources

A

B C

Figure 6.16: A simple Jackson diagram for a function with two dependencies.

in a system between the high level objects within. This diagram limits its view
to the top level structure, so its value is limited; it is most useful for top-down
approaches to system design.

• Dependency diagrams

6.7. APPLIED DIAGRAMMATICAL METHODS 105

time

Project

Plan

Resource

Management

Inspiration Analysis Tools

Travel Experience

Algorithms

Protocols

Execute Document Evaluate

Staff Policy

Figure 6.17: An excerpt from a functional diagram showing the resource organization of a
project, within a larger enterprise. This diagram takes a two dimensional view of an organization,
by plotting the two degrees of freedom project development versus dependency structure.

106 CHAPTER 6. DIAGRAMMATICAL REPRESENTATIONS

Dependency diagrams are the basic tool for fault analysis. Each arrow in a
dependency diagram should be read ‘depends on’ (see fig. 6.18 and fig. 6.19). If
a component or object in a system fails, all the components that point to it will
also fail. A fault tree is a special case of a dependency diagram.

Process

Activity

Freedom

Purpose

Resources Constraint

Figure 6.18: A trivial dependency diagram for a process.

In these diagrams we see the repeated significance of the process of classifica-
tion and sub-classification of objects., The role of object orientation and type
distinction is demonstrated.

• Entity relation diagrams

Entity Relation (ER) diagrams are used in the description of database tables, for
example, in the Structured Query Language (SQL). They describe the interrela-
tionships between objects of different types, as well as the cardinality (number of
objects that are involved in each type of relationship) that are possible between
objects of different types (see fig. 6.20).

Object diagrams that describe object-orientated programming relationships are
simplified forms of ER diagrams.

• Petri-nets and stochastic networks

Petri nets (see [DA94, MMS85]) are a graphical tool for modelling discrete event
systems, e.g. network services. They are similar in concept to flow diagrams, but
are able to describe concurrency, synchronization and resource sharing. Stochastic
networks are a related form of network for modelling discrete stochastic events.
These topics are beyond the scope of the book.

6.7. APPLIED DIAGRAMMATICAL METHODS 107

Society / rules / methods /economy

Policy / manifesto

Result

Project

Tools Staff

Welfare

Resource

Figure 6.19: An excerpt of a dependency diagram for an enterprise, such as that from figs 6.13
and 6.15.

Diagrammatical methods are only representations of systems and the systems they
represent can often be described more compactly in other forms, such as by algebraic
rules. The utility of diagrams lies mainly in human understanding and pedagogy; even
graph theory relies more on algebraic construction than on pictures. Some attempts have
been made to use diagrams to describe system behaviour in a rigorous way. The Unified
Modelling Language (UML) is one such attempt.

108 CHAPTER 6. DIAGRAMMATICAL REPRESENTATIONS

Name
Subnet

Name

Address

Address

Host

Project

Leader

N 1

N M

N

1 ?

Figure 6.20: Entity relation diagrams describe the structure of tabular data relationships. Each
square box is a tabular object with references to fields shown as ellipses. The links show N : M

relationships

Applications and Further Study 6.

• Identifying the main scales and structures in a system.

• Classifying system components.

• Visualizing relationships and roles between the components.

• Evaluating the importance of components within systems.

• Finding weak points or inconsistencies in systems.

CHAPTER 7

SYSTEM VARIABLES

To go beyond pictoral representations and be able to make quantitative statements about
systems, we must develop a representation of system properties in terms of variables.
One of the difficult notions to understand in the science of systems is how to describe
their changing properties. In particular, the transition from discrete, digital changes to
smooth differentiable functions is unfamiliar in computer science. Both types of variable
are required to describe human-computer systems.

7.1 INFORMATION SYSTEMS

Any system can be thought of as an information system (i.e. as the abstract develop-
ment of a set of variables), simply by describing activity with the help of an abstract
representation, i.e. by viewing a change performed by the system as being a change in a
description of the system’s basic resources. This is a one to one mapping. The resources
themselves describe and are described by variables, which yield information.

Example 62. A factory which manufactures cars is an information system, because it
receives input in the form of steel and changes the pattern of the steel into new shapes,
described by a certain amount of information, before emitting cars as output. We can
describe this system in terms of the actual physical cars that are produced, and the
resources that go into them, or we can describe it on paper, using numbers to represent
the flow of items. Accountants regularly consider businesses as information systems;
accountants do not get their hands dirty on the factory floor.

The converse is also true: in order to represent information, we must encode it in
a physical pattern, represented in some physical medium (brain cells, paper, computer

109

110 CHAPTER 7. SYSTEM VARIABLES

storage, steel etc). To create a pattern, there must be an attribute of some basic resource
which can vary, such as colour, height, size, shape, etc. and these attributes belong to
physical objects. Thus it would be wrong to try to divorce systems from their physical
limitations, even though we are interested in abstracting them and speaking only of their
information. Many of the limitations in systems arise due to the physical nature of their
representation.

Example 63 (Money). Money is a form of information which conveys the power of
purchase between individuals. Money began as a form of ‘I owe you’ (IOU) note during
barter, where immediate goods for trade were not available. Later it was embodied by
physical coins and notes, with no intrinsic value. In modern society, money is created
electronically by banks through loans, without any basis in a physical reality. Money is
information of accounting. Its value lies in its availability, non-specificity (fungibilty),
and the widespead acceptance by others in exchange for goods and services.

7.2 ADDRESSES, LABELS, KEYS AND OTHER RESOURCE

LOCATORS

In order to speak of change of location, we need to be able to measure and parameterize
location. This is not necessarily like measuring things on a ruler. If the locations are
named rather than measured, i.e. if it is the name rather than the distance which counts,
then one does not use a continuously varying parameter like x or t to describe it, but
rather a discrete number or label.

Once the medium for representation of information change has been identified, there
is the question of where and when the change takes place in that medium. Describing the
when and where in a system is called the parameterization of the system.

LOW LEVEL PARAMETERS

Ultimately, any system is bounded by physical limitations. In the real world, there
are only two variables which can parameterize change in a medium: location (space)
and time. Physical objects exist only in space and time. Thus, at the lowest level,
a physical dynamical system can only consist of values of the systems’ resources at
different spacetime locations. Mathematically, we denote this as functions which vary in
space and time:

q(~x, t). (7.1)

7.2. ADDRESSES, LABELS, KEYS AND OTHER RESOURCE LOCATORS 111

Example 64 (Morse code). Morse code is a pattern of sounds in time. A picture, or
shape is a pattern of material in space. A construction site is a pattern in both space and
time, since it has a definite form in space, but the form changes with time.

While space and time are sufficient to describe any system, they are too low-level to
be satisfactory in the description of abstract systems. One can create abstract freedoms,
such as the orientation of a non-trivial shape, or the loudness of a sound, by building on
ideas of space and time (this is what physics does), but it is not always necessary to refer
to such low level details.

DERIVED ADDRESSES

In the virtual world of abstract information, and hence of human-computers systems,
there are other ways of parameterizing spatial change (location):

• Geographical location of data.

• Memory location inside a computer.

• Internet address.

• Identity of a container.

• Ownership.

Each of these examples is an address, i.e. a label which denotes the location of a resource.
We may thus parameterize a change in terms of the value of a resource at an arbitrary
address and a particular time. Mathematically, we write this as a function:

q(A, t). (7.2)

HIGHER LEVEL PATTERNS: ASSOCIATIONS

A common generalization of the idea of a resource address is employed in abstract
information systems, such as databases, where one does not wish to refer to the physical
location of data, but rather to an abstract location. Instead of thinking of a pattern as
being a function of a particular location q(A, t) one can use a reference key. The key
itself is just a pseudonym-label or alias for the detailed physical address:

q(A, t)→ q(k, t), (7.3)

where the key k can be any collection of labels or ‘coordinates’ in whatever abstract
space one cares to imagine. e.g.

q(k, t)→ q(building, town, country,floor, project, t) (7.4)

112 CHAPTER 7. SYSTEM VARIABLES

Now, instead of thinking of pattern and structure as varying with address and time, one
views it as varying with different values of the abstract key. Thus we can say that a
system is a dynamical function of one or more abstract keys.

The key forms an abstract representation of the properties of the data structure within
the system; one creates an association, or associative relation between a key and a
resource value located by that key. Note that, in writing q(k, t), the time at which the
change takes place is itself simply a label identifying the time at which the value was
true.

Example 65 (Network arrivals). The arrival of incoming packets, on a network connec-
tion, is a signal that can be described by a function q(t), that varies according to the
chosen representation of the signal, e.g. a binary signal with q ∈ {0, 1}.

Example 66 (Memory Pattern). Consider a pattern of data in the memory of a computer,
or on some storage medium, described by q(~x, t), where ~x labels the objects of which the
pattern is composed. The pattern might be a software package, or an image etc. Since
the data change over time, at some rate, this function also depends on time.

Example 67 (Software variables). Suppose that the software package in the previous
example is determined by n criteria or tests that determine its integrity or correctness.
The package thus has n state variables, encoding 2n. Let us give new coordinate
labels to all such packages on the system, ~X , and consider the variable Q(X, t), where
Q ∈ {Q1, . . . , Qn}. This variable now describes the state of software packages over
time. The value describes the relative integrity of the system.

Example 68 (Graph variables). A graph is characterized by n nodes, linked together. Any
property of graph nodes can be represented by vectors of objects ~v = (v1, v2, . . . , vn).
Any property of links in the graph can be represented by a matrix Aij of appropriate
objects or values.

Describing systems formally using variables with particular representations is limited
only by the imagination. We are free to do whatever is helpful or productive.

7.3 FUNCTIONAL DEPENDENT RELATIONSHIPS

What variables should we look to to characterize the behaviour of a system? If we assume
that the outcomes function correctly (with the correct semantics) then all that is left is
performance. In any network of parts, i.e. system, communication is the main throttle to
performance. This suggests several q(t) worth following:

7.3. FUNCTIONAL DEPENDENT RELATIONSHIPS 113

• Latency of communication: what delays between stimulus and response?

• Traffic intensity: what is the total amount of traffic as a fraction of the total
capacity at each moment over repeated social intervals? It is well documented
that the human working week drives patterns of traffic[BHS98, BR00, BHRS01].
This is called the traffic intensity (see section 12.5).

• Number of errors detected per unit time, relative to some semantic probe. In
general we have to construct probes to measure specific semantics. These are
called unit tests and acceptance tests in software development.

• Sharing collisions contention events in resource sharing.

• Special probes to measure breaches of policy. These may relate to security
breaches or performance envelope breaches.

The semantics of variations in these variables are easy to encode, by measuring the
distributions of values to detect anomalies, so that automated policy responses can
respond immediately to regulate and maintain system state. Automated machine learning
is one way to do this.

Example 69 (CFEngine server management). In server management, the system moni-
toring engine CFEngine’s monitor daemon performs continuous machine learning of
variables, gathering distribution statistics. Human administrators may then express the
semantics of anomalous measurements and automate triggered responses. By setting a
policy for relative conditions of the system, one turns system sampling and measurement
into event generation for automated response[Bur06, BB05a].

An important use for variable quantities is to express relationships between measur-
ables. Comparisons and relationships between quantities are the basic tools one has for
expressing conditions of a system, and stating policy about them. To be able to express
and enforce what we want, we must be able to compare what is measured with what we
specify.

Example 70 (Performance variables 1). In system performance, configuration and
resource usage, we make various comparisons:

• Rate of job arrivals (<,>,≥,≤,=) rate of processing.

• State q(x, y, z, t) > q(x′, y, z, t).

Example 71 (Performance variables 2). Some variables are related to one another in
linear combinations:

114 CHAPTER 7. SYSTEM VARIABLES

• Total system communications capacity CT =
∑N
i=1 Ci.

• Average traffic at location x is the sum of traffics from locations x′ ∈ S: T (x) =∑
x′ T (x′).

Linear combinations of variables are often useful in parameterizing systems where
hidden relationships occur.

Example 72 (Parametric dependence). Suppose one finds that the probability of a
program crash is a function of the number of users logged on to a computer and the
number of processes being executed in separate measurements. One might observe that
most processes are started identically for all users (e.g. Window manager processes) and
that only negligible differences are measured between users. In this case we notice that
Nprocs ∝ Nusers and thus:

Pcrash(Nprocs, Nusers)→ Pcrash(Nprocs). (7.5)

Simplifications arise from a knowledge of relationships.

7.4 DIGITAL COMPARISON

What is the difference between two system configurations C1 and C2? This is a question
that is frequently asked in connection with device management. Rather than testing
whether a machine configuration is consistent with a policy (which normally involves
only approximate or fuzzy classifiers), it is common to compare a system configuration
C(x, t), at location x and time t, to a reference system C0 and characterize the difference
in terms of the number of items that do not agree:

∆C(x, t) = C0 − C(x, t). (7.6)

One can question how useful it is to compare of dyamic system C(x, t) to a static
snapshot C0, but we shall not discuss that here. How shall we make such a comparison?
What is the meaning of the difference symbol in eqn. (7.6)? Is it a numerical difference
or a difference of discrete sets? The ability to compare configurations depends on the
nature of the variables being compared: are they continuous or discrete? Although we
shall later argue for the use of continuous variables in chapter 16, most comparisons are
made digitally.

Example 73 (Digital comparison). Consider two configurations that are coded with
symbols A,B,C, . . .:

C0 = {A,D,F,G, . . .}

C(x1, t) = {B,D,F,A, . . .}. (7.7)

7.4. DIGITAL COMPARISON 115

These configurations can be compared symbol by symbol.

To define a measure of distance between two such configurations, one can take a
variety of approaches; there is no unique answer. Instead, we make a definition that suits
our purpose. Two strings differ if their symbols do not match. We define a distance
function (or metric) to define the distance between differing symbols. The most common
distance function is the Hamming distance, which is a count of the number of bits that
differ in the binary coding between two strings. A variation on this for higher level
coding is the function for comparing symbol q with reference symbol q′ is:

d(q, q′) =

{
a q = q′

0 q 6= q′
(7.8)

This is a linear function, thus the distance grows additively for strings of many symbols.
The distance between two configurations is thus:

D(Q,Q′) =
∑

q∈Q,q′∈Q′
d(q, q′). (7.9)

The straightforward comparison of strings is a naive way of comparing configurations
that assumes only substitution errors in the symbol string. In general, we can have
differences that are:

• Insertions.

• Deletions.

• Substitutions.

If one relates the differences or ‘errors’ between configurations to random processes,
then one can only speak of the probability of an error. A knowledge of underlying
mechanisms can allow the construction of a transition matrix (see section 5.4) that
measures the likelihood of a transition from one state to another. This allows us to define
a different kind of distance that is symbol dependent:

dsub = − log

(
P (q → q′)

P (q → q)

)
ddel = − log

(
P (q → ∅)
P (q → q)

)
dins = − log

(
P (∅ → q)

P (q → q)

)
. (7.10)

This is sometimes called the Levenshtein distance (see [BC95] and [OK98] for an
intelligent discussion of pattern comparison with generalized differences).

116 CHAPTER 7. SYSTEM VARIABLES

Applications and Further Study 7.

• Describing any system or phenomenon quantitatively.

• Quantitive analysis allows us to study scalability of systems to changes in param-
eters.

• Comparing systems with different characteristics and determining the ‘distance’
or metric that measures this distance.

• Refining algebraic formulations of a problem in order to better understand its
structure.

• Manipulating parameter choices in systems and exploring consequences.

• Pattern recognition in the layout of and input to systems for identification of
system problems (anomaly detection).

CHAPTER 8

CHANGE IN SYSTEMS

Change is probably the most important quality of systems. A system that cannot ex-
press change cannot perform a function and is therefore trivial. We need a way to
describe changes that occur in human computer systems; the natural language for this is
mathematics, since it is both expressive and precise.

8.1 RENDITIONS OF CHANGE

Change can be represented in many forms. We choose the mode of description that is
most convenient on a case by case basis. Some examples include:

EVENTS AND TIME

In a continuous system, time is an essentially mysterious dimension: a theatre in which
things happen, without explanation. Essentially we have no idea why changes occur
in systems. The information about the changes in information is not available in most
systems of interest. We merely accept that change happens. In a discrete system, change
defines time. This is because clocks are a part of the system, and if the clock doesn’t
change, then we cannot measure time[Bur14]. In the end, we simply accept the existence
of ‘events’ in which states change their value.

In most system descriptions, there is someone outside the system observing it as an
‘open system’ from without, surrounded by so many changes that we need to separate
out notion of time from what happens in the system. This allows us to separate change
from a definition of external time. This is the usual approach to talking about human-
computer systems. So, from now on, we shall assume that time exists independently

117

118 CHAPTER 8. CHANGE IN SYSTEMS

of transactions and changes within a system. Eventually, this assumption will get us
into trouble, especially in defining the concept of relativity and consensual agreement in
systems[Lam78, Lam01].

Example 74 (Event driven system). Event driven systems, also called reactive systems,
are driven by the arrival of events, usually network packet arrivals. Webservers are an
example of this, in which web transactions are initiated by remote clients. The emergency
services are also event driven. They remain in a largely dormant state until an event
triggers them to life.

TIME SERIES

The time series is one of the simplest ways of representing change graphically (see
[BJR94]). See, for example, figs 3.11 and 10.5. Time series are most easily plotted for
data that are dense, or almost continuously varying, however streams of discrete symbols
also form time series. Time-series are especially useful in the continuum approximation
to discrete systems, since they can be approximated by known functions, e.g. in Fourier
analysis.

TRANSITIONS, TRANSACTIONS AND ROLLBACK

Systems that change irregularly between well-defined states are often described in terms
of transition tables. Finite state machines and Markov processes fall into this category.
Transition systems are incredibly important in information theory and in physics. Any
system can be described in terms of transition tables1 Transition tables are essentially
like the adjacency matrices of graphs. They tell us what the possible transitions to
neighbouring states (nodes) are, given that we are already in a particular state (at at
particular node of the graph). Transitions can be deterministic or non-deterministic (see
section 8.2).

Example 75 (Rollback). The assumption that it is possible to reverse changes, or
create generic ‘undo’ buttons in arbitrary software systems, remains a persistent myth
amongst software developers, system designers, and system administrators in all areas
of computing. The term ‘rollback’ is often used to describe this form of repair, usurped
from its original usage in database transaction theory[RS87, WV01]. In current usage,
rollback refers to the act of undoing what has been done; it is intimately related to
checkpointing[LNP90, LNP91, PKD97, ABL+95, PT01], version control and release
management. The impossibility of rollback was proven for open systems in [BC11].

1The method of Green functions is the continuous generalization of transition matrix approach to
continuous systems. See ref. [Bur02a].

8.2. DETERMINISM AND PREDICTABILITY 119

INVARIANCE TO CHANGE: STABILITY IN FIXED POINTS

Changes in a system sometimes result in it converging towards a preferred state that is
not easily altered again — such a state exhibits some kind of stability and this makes
the system easy to predict; other times it results in chaotic, unpredictable behaviour that
has no compact description. If a system wanders into a state from which is does not
emerge without outside help, the state is said to be a fixed point of the system. This idea
is interesting in management, since it represents a notion of stability. See also section
5.8.

8.2 DETERMINISM AND PREDICTABILITY

A deterministic process is one that is governed by rules that are always obeyed with
complete certainty. For instance, it is generally assumed that the law gravitation is a
deterministic process: if one releases an object in a gravitational field, it falls (every
time). In a deterministic system, if a system variable has value q(t′) at some earlier time
and value q(t) at some later time, then the probability of a transition from the value q(t′),
given that the earlier value was q(t′) is unity:

P (t, t′) = P (q(t)|q(t′)) = 1. (8.1)

This certainty about the outcome of the process implies that we can use past knowledge
to predict behaviour in the future. The system behaves in the same way under identical
conditions, each time it is measured. In practice, this applies only to very simple systems,
or systems that are isolated from external influences.

Non-determinism means that the probability of making a successful prediction about
the system P < 1. The transition matrix for the process:

P (q(t)|q(t′)) < 1, (8.2)

for any t, t′. At each time-step there is a probability distribution indicating the likelihood
of obtaining possible measured values. The distribution P (q) is the probability of value
choice q at a given time. Since it is a probability distribution,∫

dqP (q) = 1. (8.3)

Non-determinism implies that we must make an educated guess about what is likely to
happen in the future. This means there is uncertainty about what we can expect. The
uncertainty is a direct result of what we do not know about the system. Even if there is
an underlying deterministic system, it is of such complexity that we cannot realistically
predict everything that will happen.

120 CHAPTER 8. CHANGE IN SYSTEMS

q(t)

U1 U2

Figure 8.1: The evolution of a function occurs as its value changes at each time step. In a
deterministic process, the choice at each time step dt is selected by a pre-determined function
U(t, t + dt), the result would always be the same, if one rolled back time and repeated the
measurements; i.e. we can predict the future. In a non-deterministic system, the value of the
function is picked at random, so that if one rolled back time and tried again, the outcome could
be different.

There are many ways in which randomness or unpredictability can enter into systems.
One common assumption is that randomness follows the pattern of a Gaussian or ‘normal’
distribution:

P (c) ∝ e−(c−µ)2/C. (8.4)

This would be equivalent to the assumption that the variable we were measuring had
some ‘true value’ µ that varied at random by about ±

√
C in either direction. This model

approximates some phenomena well, but not all.

Example 76 (Signalling). A transmitted signal is often some kind of variable that has
a ‘true’ or intended value, i.e. the signal that we are trying to send. This can pick
up random noise along the way. Such noise is often well approximated by a Gaussian
random error. Indeed, that is the assumption behind the Shannon formula for the capacity
of a communications channel:

C = B log

(
1 +

S

N

)
(8.5)

Example 77 (Random arrival process). The arrival of packets at a network switch is a
random process, but there is no ‘correct’ or ‘true’ value to this number. There will be a

8.3. OSCILLATIONS AND FLUCTUATIONS 121

probability distribution of values from different customers on different arms of the switch,
but even this distribution might change slowly over time.

0 50 100 150 200

t

9

10

11

12

13

q
(t

)

Figure 8.2: A random variable measured from incoming web traffic.

8.3 OSCILLATIONS AND FLUCTUATIONS

Few systems are ever truly constant as parameters such as time are allowed to vary,
but several systems exhibit change that averages out to nothing. Two examples of this
that provide a good illustration of the difference between deterministic change and
non-deterministic change are oscillations and random fluctuations. An oscillation is a
periodic pattern of change that can be expressed as a relatively simple combination of
sine and cosine waves:

q(t)osc =
∑
n

sin(ωnt+ φn), (8.6)

122 CHAPTER 8. CHANGE IN SYSTEMS

0 10 20 30

t (radians)

−3

−2

−1

0

1

2

f(
t)

Figure 8.3: An oscillation that is formed by the superposition of two simple waves.

for various constant circular frequencies ωn and phase shifts φn. The oscillation is
deterministic because we have written down its exact functional form and can therefore
predict its behaviour at any time with complete certainty.

Example 78 (Web traffic). Consider a simplistic model of arriving traffic to a Web
server over the course of a week. By measuring the actual arrival of requests at the
server, we find a complicated pattern that must be described as a random variable since
the requests are sent by a broad number of independent sources at unpredictable times
(see fig 8.2). This behaviour is clearly complicated, but for the purpose of estimating
system load one might try to approximate it by something simpler. We might try a test
function of the form:

f1(t) = 2 sin(t) + cos(2t) (8.7)

See fig. 8.3. This function does not really resemble the actual random data, but it has
some similar features. We see that there is a general decay in activity towards the end
of the week, and we could try to model this by adding an exponential decay term to our
approximate model:

f2(t) = (2 sin(t) + cos(2t))e−t/4 (8.8)

The figure starts to take on some of the general features of the actual measurements, but
it is still a long way off being a good approximation. On the other hand, the extreme
simplicity of the function f2(t) might outweigh its crude form.

Sometimes it is useful to model the average properties of a fluctuating function using
a deterministic oscillation, as in the example above.

8.4. RATE OF CHANGE 123

0 10 20 30
−4

−2

0

2

4

Figure 8.4: An oscillation that is formed by the superposition of two simple waves in which the
waves are both slowly dampened out.

Definition 35 (Fluctuation). A fluctuation is a change in a random variable. Fluctuations
δq(t) are sometimes measured relative to the mean value of a variable, i.e.

δq(t) = q(t)− 〈q(t)〉. (8.9)

Random fluctuations are characterized by probability distributions P (q), i.e. the mea-
sured likelihood P (q) that the variable has value q, or the cumulative distribution,

F (Q) = P (q ≤ Q). (8.10)

8.4 RATE OF CHANGE

Rates of change are important for modelling the dynamical interplay between competing
processes, at large scales, so we shall need to be able to describe these changes. In
physics, one nearly always assumes that we can use differential formulations of time
dependence, because of the ubiquity of deterministic approximations and infinite scale
resolution. For the kinds of random variables that we frequently meet in human-computer
systems, there are no smoothly varying quantities in the raw data: the data fluctuate
randomly. This makes the description of change more subtle.

In a continuum approximation, the description of rates is an easy matter: we have
the derivative or gradient operator, whose effect is given by

∂q(t, xi)

∂t
≡ lim

∆t→0

q(t+ ∆t, xi)− q(t, xi)
∆t

(8.11)

124 CHAPTER 8. CHANGE IN SYSTEMS

for the rate of change in time (speed). If there are other approximately continuous
dependent labels xi, or i = 0, 1, 2, . . ., then there will also be partial derivative for these:

∂q(t, xi)

∂xi
≡ lim

∆xi→0

q(t, xi + ∆xi)− q(t, xi)
∆xi

. (8.12)

For continuous functions, the limit lim∆t→0 is well defined, but for stochastic variables
it is not. However, one can employ the continuum approximation as described in section
8.5 to approximate the local average behaviour by a smooth function for convenience, or
simply use the definition above without the limit for a finite interval ∆t.

The error incurred by assuming that these derivatives are actual smooth functions,
i.e. ∆t→ 0 and δxi → 0 over an interval of time T is of the order ∆t/DeltaT , from
the continuum approximation.

Derivatives are used to find the extrema of a function, i.e. maxima, minima and
inflection points, that satisfy:

∂q

∂xi
= 0, (8.13)

(see fig. 8.5).
The second derivative or acceleration of the variable

d2q(t)

dt2
,
∂2q(t, xi)

∂x2
i

, (8.14)

describes the curvature of the function, and is commonly used to determine the nature of
turning points in a plot.

• At a minimum, the curvature is positive, i.e. the function is concave:

dq

dt
= 0,

d2q

dt2
> 0 (8.15)

• At a maximum, the curvature is negative, or the function is convex:

dq

dt
= 0,

d2q

dt2
< 0 (8.16)

Generalizations of these for several dimensions can be found in any book on analytical
geometry.

We shall have frequent use for the idea of a saddle point in describing processes of
competition (see fig. 8.5). A saddle point can be thought of as a region of a function
in which one parameter is maximized while another is minimized, i.e. a saddle is
both the top of a hill and the bottom of a valley. This structure occurs in ‘tug of war’
contests between different processes that share a common resource: one player is trying

8.5. APPLICATIONS OF THE CONTINUUM APPROXIMATION 125

(a) (b) (c)

Figure 8.5: Turning points characterize the extrema of functions: (a) is a maximum, (b) is a
minimum and (c) is a saddle point, or minimax.

to maximize gains and the opposing player is trying to minimize the first player’s gains.
This is a basic scenario in Game Theory (see chapter 19).

In discrete change systems, like information systems, and transactional systems,
changes are not described in terms of a time variable, but as sequences. Thus in-
stead of writing X(t) as a smooth differentiable functon, we would write a sequence:
X1, X2, Xi, . . . , XN , for events i = 1, 1

2
, . . . , N . This is true in information analysis

(see chapter 9), where we deal principally with Markoff processes.

8.5 APPLICATIONS OF THE CONTINUUM APPROXIMATION

In dealing with probabilities and statistical phenomena, we must distinguish between
what is true over short times and what is true over long times. Defining this distinction
is central to defining the average properties of systems, as experienced by users. One
example is Quality of Service and what this means to different parties, at different scales.
If there is a natural separation of time-scales then we can employ an approximation in
which we consider the average system behaviour to be smooth and continuous, up to a
limited resolution.

• ∆t: the interval at which we sample the system. The distribution of possible
outcomes is approximately constant over such a small time scale. Even though
each measurement contributes to defining the probability distribution of mea-
sured values, it would take many more measurements to change the distribution
significantly.

• T : the interval over which we can expect the distribution of values to change
significantly. This is usually several orders of magnitude greater than the sampling
time T � δt.

126 CHAPTER 8. CHANGE IN SYSTEMS

Do we want quality of service at the level of seconds, minutes or days? This is
an important issue. In systems that exhibit approximate stability (i.e. non-chaotic and
non-self-similar systems), it is usually possible to separate the deterministic behaviour
of system’s average behaviour, from the non-deterministic ‘fluctuation’ behaviour of
microscopic details. Suppose that random requests arrive at intervals of the order ∆t

and that large scale variations in traffic levels occur over times of the order ∆T , where
∆T � δt (see fig. 8.6).

∆ ∆ Tt

Figure 8.6: Short and long time scales represent actual and averaged variation in service rate. At
the microscopic level, there is much noisy variation that averages out at over larger periods.

Then, schematically, we may approximate the service rate function R(t), in terms of
the average rate Rav for all time, as

R(t) = Rav +Rav f(t) s(t)/2, (8.17)

where s(t) is a slowly varying function and f(t) is a rapidly varying function, both of
maximum order 1:

max f −min f ∼ 1

max s−min s ∼ 1. (8.18)

The ‘fast’ fluctuation function f(t) modulates the average level about the mean value, so
its average value over one of the larger time intervals Tn is zero:∫ Tn+1

Tn

f(t) dt = 0. (8.19)

8.6. UNCERTAINTY IN THE CONTINUUM APPROXIMATION 127

For example, f(t) = sin(2πN∆t/∆T), for some positive integer N . The slowly
varying change in traffic, on the other hand, grows only slightly over the same interval:∫ Tn+1

Tn

s(t) dt ≡ ∆s ∼ ∆t

∆T
. (8.20)

Thus, the average service rate, over such a long interval is approximately constant (indeed,
it tends to a constant as ∆T →∞):

〈R(t)〉n =
1

∆T

∫ Tn+1

Tn

R(t) dt = Rav (1 +O(∆t/∆T)) . (8.21)

The uncertainty in rate is quantified by the range of values measured over all quality of
service time intervals ∆T :

U =

√∑
n

(〈R(t)〉n − 〈R(t)〉∞)2

N

= O
(
Rav

∆t

∆T

)
. (8.22)

Clearly this approaches zero as ∆T � ∆t. This simply shows us that we can define any
kind of service behaviour as stable and as fulfilling our ‘quality’ requirements, just by
choosing a low enough time resolution. Thus, Quality of Service has no meaning unless
we specify how large ∆T actually is.

A comment is in order for this reasoning. It has been observed that some service
level patterns, such as Ethernet network traffic follow a self-similar pattern with very
large variances over large time-scales (see [LTWW94, WP98]). This makes the idea of a
quality time-scale very hard to implement in terms of averages, because the variances are
so large that ∆T needs to be impractically large to get a clean separation of scales. See
section 10.9 for further discussion on this.

8.6 UNCERTAINTY IN THE CONTINUUM APPROXIMATION

If we assume that a system changes smoothly and with infinite resolution, then we must
also be realistic about when that assumption will fail to live up to reality. We must
estimate the uncertainty in our estimate of the true value.

Example 79 (Timescale uncertainty). Many Service Providers and companies that sell
services claim guarantees on the level of service that they can provide, in spite of the
inevitable occurrence of random events that limit the predictability of their assumptions.
It is important to understand that service is about changes which occur in time, and thus
time is an essential element of any service level agreement. If we focus on shorter and

128 CHAPTER 8. CHANGE IN SYSTEMS

shorter intervals of time, it becomes impossible to guarantee what will happen. It is only
over longer intervals that we can say, on average, what has been the level of service
and what is likely to be the level of service in the future. We must therefore specify the
time-scale on which we shall measure service levels.

Example 80 (SLA). A Service Level Agreement for UUCP network connectivity could
agree to transfer up to 10 MB of data per day. This is an easy goal, by modern standards,
and it hardly seems worth including any margin for error in this. On the other hand, a
Digital Subscription Line (DSL) network provider might offer a guaranteed rate of 350
Mbs (Mega-bits per second). This is a common level of service at the time of writing. But
what are the margins for error now? If each customer has a private network telephone
line, we might think that there is no uncertainty here, but this would be wrong. There
might be noise on the line, causing a reduction in error-free transmission rate. When the
signal reaches the Service Provider’s switching centre, customers are suddenly expected
to share common resources, and this sharing must maintain the guarantees. Suddenly it
becomes realistic to assess the margin for error in the figure 350 Mbps.

Example 81 (Grading papers). A University Professor can agree to grade 10 examination
papers per day. It is not clear that the level of interruptions and other duties will not make
this goal unreasonable. The level of uncertainty is much higher than in a mechanistic
network switch. We might estimate it to be 10± 3 exam papers per day. In this case, the
Professor should include this margin for error in the contract of service.

Uncertainty is an important concern in discussing ‘Quality of Service’ (QoS); it is
calculated using the ‘Theory of Errors’. Error theory arises from experimental sciences
where one assumes, with some justification, that errors or uncertainties occur at random,
with a Gaussian profile, about some true value. The Gaussian property basically ensures
that errors are small or do not grow to an arbitrarily large size, compared to the rate of
change of the average. However, whether or not a phenomenon really has a Gaussian
profile or not, error handling techniques can be used to estimate uncertainties provided
there is a suitable separation of time-scales. If there is not, the system must be regarded
as unstable and therefore no guarantee can be made (see section 10.9). In section 3.9, the
method of combining uncertainties is presented.

Example 82 (Rate uncertainty). Consider the rate of arrival of data R, in bytes, from
the viewpoint of a network switch or router. The measurables are typically the packet
size P and the number of packets per second r. These are independent quantities, with
independent uncertainties: packet sizes are distributed according to network protocol
and traffic types, whereas packet rates are dictated by router/switch performance and

8.6. UNCERTAINTY IN THE CONTINUUM APPROXIMATION 129

queue lengths. The total rate is expressed as:

λ = rP. (8.23)

Using the method of combining independent uncertainties, we write:

λ = 〈λ〉+ ∆λ

r = 〈r〉+ ∆r

P = 〈P 〉+ ∆P,

and

∆λ =

√(
∂λ

∂P

)2

∆P 2 +

(
∂λ

∂r

)2

∆r2. (8.24)

Now, Asynchronous Transfer Mode (ATM) packets have a fixed size of 53 bytes, thus
∆PATM = 0, but Ethernet or Frame Relay packets have varying sizes. An average
uncertainty needs to be measured over time. Let us suppose that it might be 1kB, or
something of that order of magnitude.

For a Service Provider, the uncertainty in r also requires measurement; r represents
the aggregated traffic from multiple customers. A Service Provider could hope that the
aggregation of traffic load from several customers would even out, allowing the capacity
of a channel to be used evenly at all times. Alas, traffic in the same geographical regions
tends to peak at the same times, not different times, so channels must be idle most of
the time and inundated for brief periods. To find r and ∆r, we aggregate the separate
sources into the total packet-rate:

r(t) =
∑
i

ri(t) (8.25)

The aggregated uncertainty in r is the Pythagorean sum:

∆r =

√∑
i

∆r2
i (8.26)

The estimated uncertainty is

∆λ =
√
r2(∆P)2 + 〈P 〉2(∆r)2 (8.27)

Since r and ∆r are likely to be of similar orders of magnitude for most customers,
whereas ∆P < P , this indicates that uncertainty is dominated by demand uncertainty,
i.e.

∆λ ' 〈P 〉∆r. (8.28)

This uncertainty can now be used in queueing estimates.

130 CHAPTER 8. CHANGE IN SYSTEMS

8.7 CAUSATION IN SYSTEMS

Causation is the identification of a precondition that is necessary though not necessarily
sufficient for an event to occur. In a deterministic system, we assume that there is always
causation in every time step, bu virtue of system design. If we push the button, the light
turns on. Naturally, this assumes that all the parts of a system are in a working state.
In the language of promises, we need all components to keep their promises in order
for causation to propagate. This topic becomes increasingly subtle and thus we defer a
detailed discussion until we have a satisfactory formalism to cope with it, in volume 2.

Probabilistic causation is a troublesome topic, because we assume that causation
implies determinism. In probabilistic inference, there is a long standing discussion
about the difference between causation and correlation of events. This is an issue that
mixes semantics with the dynamical channels of influence, because inference methods
necessarily coarse grain (or aggregate) data into lumps that obliterate a precise record
of causation. One approach is to look for changes, and how a change at one location
precedes a change at another location[Pea88, Pea00]. However, as we shall see in the
next chapter, detecting change is also a matter for semantic interpretation, requiring a
chosen scale of measurement, and the wilful aggregation of signals into intentionally
chosen approximate categories that ultimately affect the definition of causal influence.
This is the subject of information.

Applications and Further Study 8.

• Identifying mechanisms and character of changes in systems.

• Identifying pathways of causation (cause and effect).

• Estimating uncertainties and graininess inherent in changes.

• Relate cause and effect by a specific model.

• Quantifying the limitations of a description in terms of variables (approximation).

CHAPTER 9

INFORMATION AND INFLUENCE

An important concept in describing human-computer systems is the information encoded
in changes that take place during their operation. This is one way of measuring the
work that is carried out by the system. In the administration of systems, one needs to
concept of information in several situations: to be able to match change with counter-
change by sending the opposite information (configuration maintenance), as a principle
of maximization or minimization for modelling randomness (disorder or predictability),
and as a measure of the wastage in human-computer systems due to the transmission of
uncontrolled information (noise).

The formulation of information in symbolic terms is important to system config-
uration and maintenance because, any problem that can be described in this way can
be analyzed using the tools of stochastic error correction. Information is where the
stochastic meets to deterministic.

9.1 WHAT IS INFORMATION?

The idea of information is rather subtle and is used in several different ways. The
study of information began in the 1930’s and 1940’s by mathematicians such as Church,
Turing, Von Neumann and Shannon. What one calls information theory today was
largely worked out by Claude Shannon (of Bell Labs) and published in 1949 under
the title The Mathematical Theory Of Communication. He defined the mathematical
measure of information, called the entropy, and devised many of the core theorems used
in information theory today.

Information theory is about the representation, interpretation and transmission of
patterns of symbols (data). We attach meaning to patterns of change and call the result

131

132 CHAPTER 9. INFORMATION AND INFLUENCE

information. However, it is vital to distinguish meaning from the amount of information
that represents it.

Example 83 (Morse code). In Morse code, combinations of the digits ‘.’ and ‘–’ are
used to ‘mean’ letters of the alphabet.

Morse code uses strings of up to six dots and dashes to represent every single letter of
the English alphabet. This seems to be rather inefficient, but there are only two symbols
that can be communicated in Morse: it is a binary encoding. Clearly, the number of
symbols, of a given alphabet, required to represent the same amount of information is
important.

Example 84 (Unix attention signal). In the Unix operating system, the symbol CTRL-C
means ‘interrupt program’, while the symbol # means ‘what follows is a comment and
should be ignored’.

Each of the symbols above conceals a whole series of actions that are carried out, as
part of their interpretation. What is significant is that both meanings could be compressed
into a single symbol, in the appropriate context. Context is very important in coding
meaning in symbols, but symbols can be transmitted by the same rules, regardless of
their interpretation; thus they form the basis of information.

9.2 TRANSMISSION

Patterns of data are mainly of interest when they are transmitted from a source to a
receiver, over some channel of communication: e.g.,

• Text read from page to brain.

• Morse code sent by telegraph or by lantern.

• By memo or letter.

• As speech transmitted acoustically or by telephony.

• Copy data from hard-disk to memory.

• Copy data from memory to screen.

In each case, a pattern is transferred from one representation to another and perhaps
retranslated at destination. Another way that data are transmitted is to copy data from
one place to another. In computer administration, this is a way of making backups or of
installing systems with software from a source repository. When data are copied, there is

9.3. INFORMATION AND CONTROL 133

a chance that noise will cause errors to be injected, so that the copying is not performed
with complete fidelity. The model of transmission again provides a model for discussing
this. Data might be sent:

• From one place to another.

• From the past into the future, without moving.

In the first case, data are transmitted by copying, e.g. during a system backup. In
the latter case, data do not move, but chance events (cosmic rays, moving magnets,
accidental destruction) can that compromise the integrity of the data, e.g. data stored on
a hard disk, or the programs and tasks that work in the system cause the data to evolve
deterministically.

9.3 INFORMATION AND CONTROL

The ability to control a system implies an ability to stabilize it by countering change.
In stochastic systems, such change is represented by the information content of the
stochastic environment. To control such an environment requires a counter-input of
information of comparable complexity. Information thus gauges the likelihood of one’s
ability to control a system. If the informational entropy of the environment is much
greater than the information content of the regulation scheme (e.g. the information
content of policy rules), then regulation cannot be guaranteed. We might define the
controllability of a system by the ratio of information input from the environment to the
information contained in its control policy:

C =
Ienvironment

Ipolicy
. (9.1)

9.4 CLASSIFICATION AND RESOLUTION

How shall we define information? We must contend with:

• Distinguishing and classifying patterns of symbols.

• Space-time coordinates and units. (Is a long beep the same as a short beep?
Quantization/digitization)

• The meaning of redundancy and repetition.

134 CHAPTER 9. INFORMATION AND INFLUENCE

Information arises from the abstract interpretation of changes in a medium.
To build a more precise picture of what information is, we begin with a signal

q(t, x, ..) which is a function or field which changes in time or space. We shall consider
only time, as though we are receiving a signal from a stationary antenna, e.g. a radio
signal. The signal is really a pattern formed by a disturbance in a physical medium. Our
everyday experience leads us to believe that there are two types of signal q(t):

• ‘Analogue’ or continuous functions q(t).

• Digital or discontinuous functions q(t) =
∑
i θ(t− ti)Qi.

We shall see that this distinction is artificial but that, in this distinction, lies the central
essence of what information is about. An analogue signal is a limiting case of a digital
signal.

time

States

Classes

f(t)

F
i

Figure 9.1: Coarse-graining or digitization is a coordinatization of the continuous signal.

In order to say anything about the signal, we have to map it out by placing it on
a discrete grid of coordinates. At some arbitrary level, one decides not to subdivide
space-time any further and one reaches a limit of resolution. This choice can result in a
loss of fidelity in describing the pattern, if the pattern is denser than the coordinate grid
(see figures). This is coordinatization is called digitization, or coarse graining of the
signal (see figure 1). Such a process always takes place, even if one is not conscious of it.
For instance, the eye automatically digitizes images for the brain since there is a finite
number of cells on the retina.

Information must be defined relative to this set of coordinates since it is the only
means we have of describing change. Let us begin by assuming that the detail in the
signal is greater than the resolution of the grid. We do the following:

9.4. CLASSIFICATION AND RESOLUTION 135

f(t)

time

Figure 9.2: A poor digitization cannot sensibly determine the value of the signal within the cells.

f(t)

time

Figure 9.3: A well-suited digitization without loss. This signal can be represented with just two
classes, i.e. binary digitization.

• Divide up the time axis into steps of equal width ∆t. Here we shall look at an
interval of time from t = 0 to t = N∆t, for some N .

• Divide up the q-axis into C classes Qi = [Q−i , Q
+
i], which touch such that

Q+
i = Q−i+1.

Digitization means that, whenever the function q(t) is mostly inside a cell Qi, its value
is simply represented by the cell. We have compressed the detail in the square region Qi
into a single representative value i, over an interval of time. There are good digitizations
and bad digitizations (see figures 2,3,4). Nyquist’s sampling law tells us that the interval
widths need to the half the width of the ‘finest change’ in the signal. In Fourier language,
the sampling rate must be twice that of the greatest frequency we wish to resolve.

Example 85 (CD sampling rate). CD players sample at 44.1 kHz and Digital Audio
Tape (DAT) samples at 48kHz: the limit of human hearing is about 20kHz when we are
young, and falls off to about 12kHz as we grow old.

136 CHAPTER 9. INFORMATION AND INFLUENCE

f(t)

time

Figure 9.4: The same signal, as in figure 3, this time digitized into 6 classes.

In the physical world all information is digital if we examine it with sufficient
resolution. Electrons are assumed to be indivisible, energy levels are really discrete.
Even if we could devise a fully continuous representation, it would not be useful for
carrying information because we would have to distinguish between an infinite number
of different values, which would be noise.

The digits Qi are regarded as the basic units of information: they are a strict model
for representing change. If C = 2, we have binary digits {Q1, Q2} = {0, 1} etc, or bits.

9.5 STATISTICAL UNCERTAINTY AND ENTROPY

In communicating commands and information, we associate meaning primarily to discrete
events, or symbols. These might be words, or numbers or even pictograms and glyphs. In
western languages, we have grown used to a fixed phonetic alphabet that is used to build
up words. In the administration of human-computer systems, communication occurs by
several methods:

Example 86 (Entropy avoidance). At the level of the computer, messages are passed to
the CPU as instruction opcodes that are read as a stream of words from the memory of
the computer. The size of each instruction is known to the processor, so that it always
knows where the current instruction starts and ends. The symbol lengths are all the same
size, since some instructions contain data and others do not.

Example 87 (English alphabet). The English language alphabet consists of letters A,
B, C, D. E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z, together with a
number of punctuation symbols: , ; . This is a basic set of symbols for forming messages
in English. This is the alphabet used to convey information in written communication.
In verbal communication, words can be broken down into phonemes or sound digits,

9.5. STATISTICAL UNCERTAINTY AND ENTROPY 137

though we known from computer speech that this is not always very realistic. Voice is a
continuous (non-digital) process.

Example 88 (Code books). In system administration, commands and communication
between humans and computers are often conveyed in a specific terminology of code
words, almost like a military code book. Special words are used: reboot, format, crash
etc. These have special meanings and therefore act as single letters in a command
alphabet. If we replaced them by their first letters: R, F, C, etc. the same meaning could
be conveyed in the context of system administration1. Unix commands have a special
alphabetic structure:

command -option1 -option2 ...

The set of commands is a finite set that can be labelled by a single digit for each command.
Each option (-v,-w, etc.) is also a digital symbol that communicates information to the
computer with standard interpretation. Windows commands are often conveyed through
menu selections and button selections. In this case each button or menu item is a digit,
with an interpreted meaning.

Example 89 (SNMP). The communication of simple configuration instructions by the
Simple Network Management Protocol (SNMP) makes use of an alphabet of configuration
codes with standard meanings, defined in Management Information Base (MIB) models
for a device. A MIB defines an effective symbolic alphabet for sending streams of
instructions with the modifiers: read, write, and trap.

In each of the actual examples above, we see communication – however complex
its actual representation – reduced to the transmission of codes or symbols with special
meanings. As long as the symbols can be distinguished, each symbol reduces the
uncertainty or increases the information of the receiver about the sender. Such a stream
of codes or symbols is the basis for nearly all instructions in a human-computer system2.

We therefore need to recognize each code or symbol in a data stream. As we saw
earlier, a signal q(t), digitized into symbols, or digits, by a digitization procedure (see fig.
9.5). Information is coded into the channel by the variation of the signal. This is digitized
into a string of digital symbols (called a message) which occur in a certain order, with a
particular frequency. When a digit occurs ni times out of a total of N digits, where∑

i

ni = N, (9.2)

1Indeed, technical workers have the uncanny habit of replacing all natural language with three letter
abbreviations!

2Even where speech is involved, or English text, we tend to reduce the number of possibilities to a few
simple symbolic cases by inventing forms to fill out, boxes to tick, or special verbal jargon that reduces the
amount of talking required to convey meaning.

138 CHAPTER 9. INFORMATION AND INFLUENCE

time

f(t)

E

A

B

C

D

F

time

f(t)

1/11

5/11

2/11

2/11

1/11

0/11

B

A

C

D

E

F

Figure 9.5: Coarse-graining or digitization is a labelling of the signal. First we divide up the
signal variability into discrete symbols or finite sized blocks (first picture), and then we approxi-
mate the true signal to the coarse representation. Collapsing the digit-blocks into a histogram,
by counting the number of occurrences (second picture) gives a graphical representation of the
average numbers of digits in the signal. By scaling this histogram, one obtains a probability
distribution for the signal. This is used to calculate the entropy, or average information content.

one may say that the probability of the symbol’s occurrence was

pi =
ni
N
. (9.3)

The probability distribution of symbols in the signal is found by collapsing the image
in fig. 3.3 into a histogram, as shown in the figure. Note that, it is assumed that only a
single symbol can occur at any one time, i.e. that the channel is a serial channel.

This probability distribution displays the average amount of uncertainty in the
symbols being transmitted. If the distribution shows that a message was concentrated
entirely around a single symbol, then the uncertainty is very small. If it shows that all
symbols were used in equal numbers, then the uncertainty is very large. To convey a
lot of information in a message, we need to use different symbols, thus uncertainty in
the average use of symbols is a measure of information content. This information is

9.5. STATISTICAL UNCERTAINTY AND ENTROPY 139

measured by the entropy:

H[p] = −
A∑
i=1

pi log2 pi, (9.4)

where A is the number of symbols in the alphabet. The entropy is measured in ‘bits’, or
binary digits, if the logarithm is base 2. Note that the entropy is a scalar functional of the
probability distribution.

If we define the expectation value of a function g = {gi}, on this discrete space, by

〈g〉p =
∑
i

pigi, (9.5)

then the entropy may also be written as the expectation value of the logarithm of the
number of symbols per message length:

H[p] = 〈− log2 p〉. (9.6)

If one further assumes that the transmission of symbols is discrete in time, so that each
symbol has the same duration in time, then this has the interpretation of an average rate
of bits per second.

Example 90 (Binary information). If we have a value x, we need log2(x) binary digits
(bits) to represent and distinguish it from other values, e.g. 8 requires at least log2(8) = 3

bits, 32 requires at least log2(32) = 5 bits, and so on. If we use base 10 numerals, 8
requires at least log10(8) = 0.9 i.e. 1 symbol to represent it, while 16 requires at least
log10(16) = 1.2 i.e. 2 symbols to represent it. Thus the amount of information that
needs to be distinguished to call a value x includes the values of values less than this
that must be coded separately, and the length of the symbol string measures the amount
of information required to code the value in some kind of digits.

The entropy is a single scalar characterization of a probability distribution. Since
it collapses all of the changes of the signal into a single number, it cannot distinguish
equivalent signals, i.e. signals with the same frequency distributions of symbols in
them. However, its interpretation as a transmission rate is very useful for considering the
efficiency of communication.

Suppose we consider the transmission of information over a communications channel,
then there is information both at the input of the channel and at the output. Under ideal
conditions, the average information entering the input would be the same as the average
information leaving the output; however, this is not necessarily the case if the channel is
affected by noise. Noise is simply unpredictable information, or extra uncertainty, which
enters the system from the environment and changes some of the symbols.

140 CHAPTER 9. INFORMATION AND INFLUENCE

noise

C

A
B

D

F
E

input output

Figure 9.6: Information passing through a noisy channel. The frequency distributions of symbols
can be altered by noise introduced by the environment, as the data pass through the channel.
Ideally, these two distributions would be equal. In the worst case, they would have nothing in
common.

Fig. 9.6 shows how the distribution of symbols in a message can be altered by
its transmission over a channel. The entropy may be used to characterize the average
information content at the input I and at the output O.

H[I] = −
A∑
i=1

pi(I) log2 pi(I),

H[O] = −
A∑
i=1

pi(O) log2 pi(O), (9.7)

where pi(I) are the probabilities at the input, and pi(O) are the probabilities at the
output. Note that I and O label sets of symbols, whose elements are the alphabet of
digits3. If tranmission of information is perfect, then,

H[I] = H[O]. (9.8)

This can only occur, if the information extracted from the output is predicatable using
the information at the input, i.e. if they are correlated. If p(I) and p(O) are independent
events, this cannot be the case, since output and input would be unrelated.

3In this picture, the transmission must be a congruent mapping of symbols: the same symbol set should
be used at the input and output of the channel. Usually the input and output alphabets are assumed to be
the same; however, if the channel is encrypted or otherwise encoded, this need not be the case. For now,
we shall assume that the number of symbols is A in both cases, and that the symbols map congruently, in
the same sequence.

9.6. PROPERTIES OF THE ENTROPY 141

9.6 PROPERTIES OF THE ENTROPY

The entropy H has the following properties:

• It is continuous in the pi.

• When the pi are equal to 1/C, it is a monotonically increasing function of C,
meaning that information is proportional to resolution.

• If the signal is completely ordered, i.e. pj = 1, and pi 6=j = 0, then the entropy
has a minimum value of zero. This tells us that a trivial signal which never changes
carries no information.

• If the signal is maximally randomized so that all the pi are equal to 1/C, then the
entropy takes on its maximum value logm C. This tells us that a lot of information
is needed to characterize a signal with a lot of change.

• It is independent of the route by which the final probabilities were achieved.
(Shannon III)

Information is about the length of the shortest message one could send that exactly
describes a string of data to someone else, i.e. so that they could reproduce it with
complete accuracy.

It is important not to confuse information with regularity of a signal, or orderliness.
We might think that a maximally random, noisy system (like a the fuzzy dots on a
television screen with no signal) has no information worth speaking of, whereas a system
which is very ordered does convey information. This is not true; in fact, the noisy
television screen contains so much information that extracting meaning from it is difficult.
This is a human cognitive problem.

9.7 UNCERTAINTY IN COMMUNICATION

To discuss how information is transmitted, we must broaden the discussion to allow for
unreliability in copying data. For this, we introduce the joint probability matrix, which
describes the probability that sending digit Qi from A actually results in symbol Qj
being received by B, for any i, j.

Suppose there are two sets denoted A and B, there is a joint probability matrix

pij(A,B) = pij(A ∩B), (9.9)

which specifies the probability that the i-th event will be measured in A in conjunction
with the j-th event is measured inB. In the case whereA andB are mutually independent

142 CHAPTER 9. INFORMATION AND INFLUENCE

events, i.e. the dual event occurs entirely by coincidence,

pij(A,B) = pi(A)pj(B) = pji(B,A). (9.10)

In this case, the probabilities factorize and the combined probability is the overlap of the
two sets, i.e. the product of the probabilities of the individual events, i.e. the two sets
have to have some common elements by coincidence (see fig. 9.7). Such a factorization
is not possible if A and B are more deeply related. In general, one can only say that

pi(A) =
∑
j

pij(A,B) (9.11)

pj(B) =
∑
i

pij(A,B). (9.12)

These are called the marginal distributions, and are formed by summing over all other
indices than the one of interest. It is natural to apply joint probabilities to the input and

I OP(I,O)

Figure 9.7: The overlap of independent sets is the probability of coincidental similarity of events
measured. Here we imagine that the two sets are the input values and the output values. For
dependent sets, the joint probability covers the whole of this Venn diagram.

output of a communications channel. Since we are interested in communication, the
worst case scenario is when the probability of an event at the output occurs completely
independently of an event being sent at the input. In that case, the output is purely
‘noise’, and the only chance of seeing the same data at input and output, is when there is
a coincidental overlap

pij(I,O)worst−case = pi(I)pj(O). (9.13)

The ideal case is when a transmission is reproduced with perfect fidelity; i.e. pij(I,O)

is a diagonal matrix

pii(I,O)best−case = pi(I) = pi(O), (9.14)

i.e. the probability distributions at input and output are identical.

9.7. UNCERTAINTY IN COMMUNICATION 143

Using the joint probability of events at the input and output, of a communications
channel, we can construct a joint entropy,

H(I,O) = −
A∑

i,j=1

pij(I,O) log2 pij(I,O), (9.15)

which measures the information in the whole channel, between input and output. As an
expectation value, it may be written

H(I,O) = 〈− log2 p〉p(I,O), (9.16)

where the probability set which performs the weighting is specified for clarity. If the
input and output are independent (worst case), then one has

H(I,O) = −
A∑

i,j=1

pi(I)pj(O) log2 pi(I)pj(O),

= −
∑
i

pi log2 pi −
∑
j

pj log2 pj

= H(I) +H(O). (9.17)

In general,

H(I,O) ≤ H(I) +H(O), (9.18)

i.e. the uncertainty (or information) in the joint system is less than that of the two ends
combined, because some of the information overlaps, or is common to both input and
output.

CONDITIONAL ENTROPY AND INFORMATION FLOW

The joint entropy measures a kind of correlation of events, but it is not a measure of
communication, since it does not specify the causal direction of the transmission. We
need a way of saying that a certain symbol arrived at the output, because it was sent into
the input. For this, we define the conditional probability of measuring A, given that we
are certain of B:

pij(I|O) ≡ pij(I,O)

pj(O)

=
pij(I ∩O)

pj(O)

=
nij(I ∩O)/N

nj(O)/N
. (nij ∈ (I ∩O)) (9.19)

144 CHAPTER 9. INFORMATION AND INFLUENCE

This measures the likelihood that the i-th symbol was presented to the input, given that
the j-th symbol was measured at the output. In the case where the input and output
are completely independent, the numerator factorizes, and p(I|O) → p(I), i.e. the
knowledge of the output makes no difference.

Another way of interpreting the set pij(I|Oj), for all i, j, is to ask: how many
different input distributions give rise to a given output distribution? The sketch in fig. 9.8
shows the regions of the symbol spaces which give support to this quantity. One may
also write,

pi(A) =
∑
j

pij(A|B)Pj(B) =
n(A)

(n(A) + n(B))
. (9.20)

The conditional probability represents the overlap region, scaled by the space of possible

I OP(I|O)

Figure 9.8: The receiver’s viewpoint: the conditional probability of input, given that the output
is known. This is the space of possible overlaps, given that the space of total possibility is now
restricted to those that belong to known outputs. The normalizing factor in the denominator is
thus reduced, and the conditional probability is greater for the knowledge of the output.

outputs.
The conditional entropy is defined by

H(I|O) = −
∑
i,j

pij(I,O) log2 pij(I|O)

= −〈log2 p(I|O)〉I∩O (9.21)

It is a scalar value, measuring the average variability (information) in I , given that the
input overlaps with the output, i.e. given that there is a causal connection between input
and output. The meaning is slightly non-intuitive. Although the conditional probability is
restricted to the output region, on the right hand side, the averaging is taken over the joint
probability space (see fig. refvenn3) and thus receives support from the whole region.
This measures the average uncertainty that remains about the input, given that the output
is known. That uncertainty exists because of the possibility of noise èn route.

We are assuming (hoping) that the probabilities p(I) and p(O) are not going to be
independent, since that would be an uninteresting system, so the joint probability is not

9.7. UNCERTAINTY IN COMMUNICATION 145

I H(O|I)

Figure 9.9: The region represented by the conditional entropy is the unrestricted region, plus
one point from the conditional region.

merely the overlap region, but the whole space of inputs and outputs. The region which
now overlaps with the specific output distribution is only one point, but there is still
uncertainty in the input.

The conditional entropy is a measure of information transmitted, because it contains
the noise which can be picked up along the channel. To filter out the noise, we consider
one final quantity: the relative entropy.

RELATIVE ENTROPY AND MUTUAL INFORMATION

The relative entropy is a measure of the information which is common to two possibility
spaces. Consider two spaces P and Q,

H(P/Q) ≡ +
∑
P

P log
P

Q
. (9.22)

This is a measure of the distance between P and Q. Although it is not a true metric, it
has the property of being zero when P and Q are identical. If we apply this to the input
and output of the communications channel, the result is called the mutual information, or
common entropy.

H(I;O) = H(I/O) = +
∑
ij

pij(I,O) log
pij(I,O)

pi(I)pj(O)
. (9.23)

The semi-colon is used to indicate that this quantity is a symmetrical function of the
input and output. It compares two situations: a source and a receiver that are completely
independent (Q), and a general source and receiver that are connected by a partially
reliable communications channel. It measures the average reduction in uncertainty about
the input that results from learning the value that emerges from the output. In other
words, it represents the what passes along the channel between input and output.

We can express the mutual information in a number of different ways. Noting that:

p(I,O) = p(O)p(I|O) = p(I)p(O|I), (9.24)

146 CHAPTER 9. INFORMATION AND INFLUENCE

we have:

H(I;O) =
∑
ij

p(I,O) log2

p(I|O)

p(I)

= H(I)−H(I|O). (9.25)

This has the form of the information (uncertainty plus signal) at the input minus the
uncertainty in the input, given a definite output. in other words, it is the part of the
input which was transmitted to the output, or the likelihood of transmission (the fidelity).
Another representation is:

H(I;O) =
∑
ij

p(I,O) log2

p(O|I)

p(O)

= H(O)−H(O|I). (9.26)

This is the information arriving at the output (signal plus noise), minus the uncertainty
information at the output, given a fixed input (i.e. the noise picked up along the way).
Again, this is the likelihood of correct transmission. A third form can be found from

H(I,O) = H(I|O) +H(O). (9.27)

Using this in eqn. (9.25), we obtain,

H(O; I) = H(I)− (H(I,O)−H(O))

= H(I) +H(O)−H(I,O). (9.28)

This is the sum of information entering the input and leaving the output, minus the total
amount of independent information in the system. What is left, must be the information
in the overlap region (see fig 9.10), i.e. the information which is common to both input
and output.

9.8 A GEOMETRICAL INTERPRETATION OF INFORMATION

The idea of classification, or quantization leads to the idea of states Qi. We say that the
signal, is in state Qi at time t. These states are linearly independent: matter how many
times we add together Q0, we will never get Q1 or Q2... The effect of a message is thus
to draw a vector in this space (fig. 9.11):

I =
C∑
i=1

ni êi = n1ê1 + n2ê2 . . . nC êC .. (9.29)

This vector summarizes a new kind of state: an average state. It does not preserve the
details of the path which was taken in order to reach the point. In fact there is a large
number of equivalent paths, of the same length, to the same point.

9.8. A GEOMETRICAL INTERPRETATION OF INFORMATION 147

H(I;O)H(I|O) H(O|I)

H(I)

H(O)

H(I,O)

Figure 9.10: The entropies visualized as measures on the space of all possible input and output
signals. The Venn diagram shows where the mutual information received support from the
input-output probabilities; it does not strictly represent the magnitude of the entropy.

The number of equivalent paths is a measure of how much effort one must
expend to describe the actual path, i.e. it is a measure of the information
represented by the path.

I summarizes the number of units of information in the signal, since each unit vector is a
character or digit in the message. The metric distance of the such a vector

|I|2 = IiδijIj = I · I (9.30)

is a measure of the number of digits, but that is not a good measure of the information.
The difference of two message vectors is a measure of how many digits were different
(without respect to ordering). This is related to a quantity called the Hamming distance,
which represents the number of symbols which differ between two messages. We shall
return to this when considering how messages are coded.

As digits are received and plotted in the lattice, we build up an average description
of the message. If the probability of receiving digit i is pi, then clearly, after N time
units, we have received N digits, and:

i =
I

N
=

C∑
i=1

ni
N

êi =

C∑
i=1

pi êi. (9.31)

pi is the amount of time the signal spends within class Qi. Suppose we reduced the num-
ber of classes of Qi to one: then there would only be a single path (ordering irrelevant),
and only one kind of digit would be possible. Only the number of digits (length) can
then convey information. If we had an infinite number of classes or dimensions, then
there would be an infinite number of equivalent paths and the amount of detail would

148 CHAPTER 9. INFORMATION AND INFLUENCE

d

0

->

->

Figure 9.11: A binary message may be drawn as a path in a two dimensional lattice. A 26
dimensional lattice would be needed to represent a word in English.

be infinite. No two signals would ever the same in practice, and the signal would be
indistinguishable from noise.

Let us call the number of equivalent paths between two points in this lattice h, (the
‘hopelessness’ or uncertainty of finding the right path, i.e. the correct ordering of digits,
given only the final state). It is possible to find a formula for this number:

h(N) =

(

C∑
j=1

Ij)!

C∏
k=1

(Ik!)

=
(I1 + I2 . . . IC)!

I1!I2! . . . IC !
. (9.32)

This grows very rapidly with the Euclidean distance |I| in this message lattice.

|~d| ≡ d =

√√√√ C∑
i=1

(Ii)
2. (9.33)

9.8. A GEOMETRICAL INTERPRETATION OF INFORMATION 149

If we consider messages over a fixed number of time intervals N∆t, then we can express
h as:

h(N) =
N !

(Np1)!(Np2)! . . . (NpC)!
. (9.34)

This is a large and awkward number to deal with, so we look at its logarithm H . This
represents the length of a string in base m digits that would be able to code the number.
This is an important measure, because it is the smallest number of digits that one needs
to be able to label the exact path, and therefore distinguish it from all the other alternative
paths:

HN = logm h. (9.35)

Moreover, by assuming that N is large (high resolution), then we can Stirling’s approxi-
mation to write this in a simpler form, without awkward factorials. Using:

logmN ! ' N logmN −N∑
i

logm(Npi)! '
∑
i

[Npi logm pi] +N logmN −N. (9.36)

we get

HN = −N
C∑
i

pi logm pi ≡ N〈i〉. (9.37)

To get the fractional uncertainty per digit, we divide by N . Shannon called this quantity
the informational entropy, or average information. He did not derive it in this way, but
on general grounds using similar combinatorial properties. It represents the average
information needed to distinguish the exact message from a random message with the
same probability distribution. It is measured in units of m-ary digits:

H = HN/N = −
C∑
i

pi logm pi. (9.38)

This geometrical interpretation is very helpful in interpreting the entropy. It can be
extended to the conditional entropies also. Imagine that the picture in fig. 9.11 leads to a
slightly different picture at the receiver, due to errors in transmission. Over time, there is
an ensemble of similar pictures that might be transmitted with various probabilities. There
is thus an additional uncertainty between I and O that is not caused by the information
in the message, but by unreliability of the channel. A person receiving a message knows
what they have received from the sender, so they are not completely ignorant. That
knowledge reduces their uncertainty about the message from a random jumble of digits

150 CHAPTER 9. INFORMATION AND INFLUENCE

to one of the possible causes, given our knowledge of the probable distortion by the
channel:

H(I,O)→ H(I|O) = H(I,O)−H(O). (9.39)

The conditional entropy picks out the ensemble of possible causes, i.e. the alternative
messages that could reasonably have given rise to the message received. From eqn. (9.39)
we see that this is the maximum possible uncertainty in the channel (H(I,O)) minus
the uncertainty that distinguishes a specific message from a random jumble of symbols
at the receiver (H(O)). The number of possible causes for the message that arrives is
therefore of the order

E ∼ mH(I|O), (9.40)

where m is the base of the logarithm in the entropy (m = 2 for binary digits). We
should never forget that the entropy makes statements about average properties, not about
specific instances.

9.9 COMPRESSIBILITY AND SIZE OF INFORMATION

Defining the expectation value of a vector Li by

〈L〉 =

C∑
i=1

piLi = Tr(pL), (9.41)

it is possible to view the entropy as the expected uncertainty per digit in the message:

H = 〈− logm p〉 = 〈logm p
−1〉 = 〈probable digits〉. (9.42)

Example 91 (Shannon Entropy). Consider a message variable which has 16 possi-
ble measurable values or states that occur with equal probability. In order to label
(and therefore describe) these outcomes, we need 4-bit strings, since 24 = 16. The
information/entropy is

H = −
16∑
i=1

1

16
logm

1

16
= logm 16. (9.43)

If we take binary digits m = 2 (alphabet length 2), we get H = 4, showing that the
average information per message needed to communicate the behaviour of the random
variable over time is 4− bits, as we assumed. This shows that, if we choose log-base 2,

9.9. COMPRESSIBILITY AND SIZE OF INFORMATION 151

the answer comes out in bits. This is the uncertainty per digit in the message, since all
digits occur with equal probability.

Suppose we encoded the information on a string of DNA (alphabet length 4), then
the result would be m = 4, H = 2, or 2 DNA characters (A,C,T,G). m is the alphabet
size of the message.

Example 92 (System monitoring). Consider a human-computer monitoring system in
which the probabilities of eight different faults, ∆i (i = 1 . . . 8), are found over time to
occur with the following probabilities:

p =

(
1

2
,

1

4
,

1

8
,

1

16
,

1

64
,

1

64
,

1

64
,

1

64

)
. (9.44)

Notice the degeneracy of the last four values. The entropy or information of this distribu-
tion is

H = −1

2
log2

1

2
. . .− 4

1

64
log2

1

64
= 2 bits. (9.45)

If we want to communicate a message that has this distribution of probabilities on
average (i.e. we are looking for long-term average efficiency) to an operator, it looks as
though we’ll need 3-bits in order to label the outcomes of the eight values. However, we
do not need to use the same number of bits to code each of the values. It makes sense to
code the most probable fault symbol using the smallest number of bits. Suppose we use
the bit strings

∆1 = 0,

∆2 = 10,

∆3 = 110,

∆4 = 1110,

∆5 = 111100,

∆6 = 111101,

∆7 = 111110,

∆8 = 111111, (9.46)

With this coding, we have distinguished both the distribution of the digits and their
positions with a minimum amount of information. The lengths of these strings are
L = (1, 2, 3, 4, 6, 6, 6, 6), and the expectation value of the length, given the probabilities
is

〈L〉 =

8∑
i=1

piLi = 2 bits. (9.47)

152 CHAPTER 9. INFORMATION AND INFLUENCE

This illustrates Shannon’s theorem that the entropy is a lower bound on the average
length to which any digit of a message can be compressed. In other words, if wait until
we have received N such fault reports, each coded according to the scheme above, then
the total amount of data will be approximately 2N bits long.

9.10 INFORMATION AND STATE

Informational entropy tells us about the statistical distribution of digits produced by a
system. It measures the average state of the system over an ensemble of measurements,
i.e. it is a cumulative result. The details of the current state are mixed up with all other
measurements so that specific information about present state is lost.

One of the surprises of information theory is that one does not usually need to know
the precise state of a system in order to be able to describe the system’s properties over
time4. This is an important point, because it means that we do not need to keep infinitely
many records or logs of what happened to a system in order to understand its history: it
is possible to compress that information into its statistical essence.

If we imagine that a string of symbols, with a certain entropy, is generated by a finite
state machine, or other computer program that remembers state, then the entropy also
tells us about the average state of the state machine. We cannot tell what state the system
is in by looking at the entropy; however, we can tell, at least in principle, that a change
of state has occurred within the time resolution of our measurements.

Consider the histogram in fig. 9.12, representing a system with three states: active,
waiting and terminated. If a command symbol is transmitted, causing this system to

Pi

i=A i=W i=T

Figure 9.12: The probability distribution of system state, A=active, W=waiting, T=terminated.

4This has been one of the most difficult ideas to accept for authors trying to model the system
administration process.

9.11. MAXIMUM ENTROPY PRINCIPLE 153

change state to ‘active’, then the column for the probability for ‘active’ gets relatively
taller and the others get a little shorter. This changes the entropy. If, however, on average
we receive equally many commands for each state, then distribution does not change,
and we say that the system is in a steady state.

Definition 36 (Steady state). A system is said to be in a steady state if the entropy of the
transitions in the system is constant over statistically significant times. Usually the only
stable steady state is one of maximal entropy.

If we want to change the average state of a system, we need to send it a persistent
command signal, consisting of many symbols of the same type (or subset of the whole).
This will tend to raise the level of one or more of the histogram columns at the expense
of the rest, and ‘sharpen’ the distribution. In the language of uncertainty, a persistent
signal reduces out uncertainty about the state of the system, since it forces the signal to
be in a known state more often.

This result, although seemingly innocuous, is of the utmost importance to system
administration; let us express it in three different ways:

• A stable average state requires no external information to be input to maintain it.

• A random sequence of commands, with maximal entropy, causes no change in the
statistical state of a system over long times.

• A sustained system reconfiguration requires the input of statistically significant,
low entropy information over long times.

Here ‘long times’ means long enough to be statistically significance in relation to any
noise or residual randomness. Referring to fig. (8.6), we require a signal of the order
of time ∆T to make a significant impact. We shall return to the issue of configuration
changes in chapters 15 and 16.

9.11 MAXIMUM ENTROPY PRINCIPLE

The concept of entropy characterizes the uncertainty or ‘bluntness’ of statistical distri-
butions. If we consider the statistical distributions in fig. 3.4 and in fig. 3.5, then the
complete certainty of fig. 3.4 characterizes an absolute minimum of entropy, whereas the
completely uncertain fig. 3.5 represents maximal entropy.

If we plot the entropy as a function of the probability of two events, it has the form
of fig. 9.13. This shows the shape of the entropy function. More general distributions
are multi-dimensional generalizations of this. They key point is that there is a maximum

154 CHAPTER 9. INFORMATION AND INFLUENCE

0 0.2 0.4 0.6 0.8 1

p

0

0.2

0.4

0.6

0.8

H
 =

 −
p
lo

g
(p

)
−

 (
1
−

p
)l
o
g
(1

−
p
)

Figure 9.13: The entropy values as a function of p for a two state system. This is used to
illustrate the shape of the entropy function on a flat diagram.

value for the entropy that is indicated by a turning point, in the middle of the graph.
There is also a minimum value at the symmetrical points p = 0 and p = 1, but there is
no turning point here. This means that, if we try to maximize the entropy by looking for
the stationary points of this curve, the result will only find the maximum value, not the
minimum (which is always zero, from the form of the function).

Let us work out the maximum entropy distribution for a histogram with C classes.
We do this using the method of Lagrange. Let the Lagrangian be

L = −
C∑
i=1

pi ln pi − α

(
C∑
i=1

pi − 1

)
, (9.48)

where α is a Lagrange multiplier, or parameter that enforces the constraint that the sum
of probabilities is 1, and we use the natural logarithm for convenience.

C∑
i=1

pi = 1. (9.49)

9.11. MAXIMUM ENTROPY PRINCIPLE 155

Maximizing this with respect to all parameters gives:

∂L

∂pi
= − ln pi − 1− α = 0

∂L

∂α
=

C∑
i=1

pi − 1 = 0. (9.50)

This is solved for pi by

pi = eα−1∑
i

pi = Ceα−1 = 1

i.e. pi =
1

C
. (9.51)

In other words, the completely flat distribution is the case of maximum entropy, in which
all probabilities are the same.

If we maximize the uncertainty about a system, entropy leads us to the distribution of
values that contains the least planning (the fewest assumptions), or the most randomness.
This is not particularly interesting until we apply additional constraints that tend to make
the entropy less than this value. This turns out to be a powerful tool.

Definition 37 (Maximum entropy distribution). A maximum entropy distribution is that
produced by a maximally random variable that is constrained by a function χ(p) = 0. It
is found by maximizing the Lagrangian function

L = −
C∑
i=1

pi ln pi − α

(
C∑
i=1

pi − 1

)
− βχ(p), (9.52)

and solving for pi.

Example 93 (Clustering and percolation). Find the least clustered (most distributed or
robust) network, as a function of node-degree, given that we have a fixed number of links
L to join the nodes together; i.e. where do we place L cables between a number of cities
in order to have the the best distribution of resources.

We begin by defining the probability of finding a node of degree k,

pk =
nk
N

=
Nodes with degree k

Total number of nodes
. (9.53)

To count the number of links in the graph, as a function of k, we note that every node of
degree k has k links attached to it, but only half the link is attached since the other half
is attached to another node. Thus the number of links is related to k and nk by

L =
∑
k

1

2
k × nk. (9.54)

156 CHAPTER 9. INFORMATION AND INFLUENCE

Our constraint is thus

χ(p) =
∑
k

1

2
k × nk − L =

∑
k

1

2
Npk − L = 0. (9.55)

The Lagrangian is therefore

L = −
C∑
i=1

pi ln pi − α

(
C∑
i=1

pi − 1

)
− β

(∑
k

1

2
Nkpk − L

)
, (9.56)

Maximizing this function gives:

∂L

∂pk
= − ln pk − 1− α− β

∑
k

1

2
Nk = 0

∂L

∂α
=

∑
k=1

pk − 1 = 0

∂L

∂β
=

∑
k

1

2
Nkpk − L = 0. (9.57)

This has the solution, from the first two lines in eqn. (9.57)

pk =
e−

1
2
Nβk∑

k e−
1
2
Nβk

. (9.58)

It is an exponential distribution, i.e. nodes of large degree are exponentially suppressed
(β > 0 else the distribution is not normalizable for arbitrarily large k) relative to
nodes with small k. To express this in terms of the constant L we can perform a final
mathematical trick. Suppose we define the generating function

Z =
∑
k

e−
1
2
Nβk, (9.59)

then we can express

L = − ∂

∂β
lnZ. (9.60)

Thus lnZ = −Lβ. The value of lnZ cannot be evaluated exactly, but it is constant, and
we can call it ln ≡ −ζ for convenience, so that β = ζ/L, thus we have:

pk =
e−

1
2
Nζk/L∑

k e−
1
2
Nζk/L

. (9.61)

If we express L as a fraction of N , this can be simplified even further. This probability
distribution is called the Boltzmann distribution after the physicist L. Boltzmann who
discovered its importance in physics. It tells us that most nodes should have small values

9.12. FLUCTUATION SPECTRA 157

of k > 0, and exponentially fewer large nodes should exist, for maximum entropy or
least clustering. Clearly this makes sense – the fewer large links, the less clustering there
will be. The question is why should be be any large degree nodes? The reason is clearly
that we have fixed the number of links and the number of nodes to be constants, and there
are limits to how many links we can fit into a small number of nodes – some of them will
have to be of higher degree if L > N . If N/L is small, this exponential falls off only
slowly and there will be larger numbers of higher degree nodes. Thus, this is the least
clustered network we can build.

Maximum entropy distributions occur in many situations where one wishes to make
the least possible assumption, or invoke the greatest range of possibility in a system.

9.12 FLUCTUATION SPECTRA

One application of maximal entropy distributions is in the characterization of fluctuating
random behaviour in systems.

Definition 38 (Fluctuation spectrum). A fluctuation spectrum is a probability distribution
of values that can be assumed by a random variable. i.e. if P (q) is the fluctuation
spectrum of the variable, then the average value over all times is:

〈q〉 =

∫
dq P (q)q. (9.62)

The maximum entropy principle allows us to characterize the likely signal behaviour of
random events, such as data requests arriving at a server, given the known constraints
under which the system can behave. We do this by assuming maximal entropy for P (q),
subject to any boundary conditions.

Example 94 (Planck spectrum). In ref. [Bur00a], this method was used to model the
observed fluctuation spectra of network services, such as the World Wide Web, using
a periodic model for requests based on the working week (see fig. 2.1). The resulting
distribution was a Planck exponential distribution (see fig. 9.14). There are many
maximum entropy distributions — as many as there are constraints to apply — and they
can often be related to simpler forms.

9.13 PROPAGATION OF INFLUENCE

When a change in one part of a system necessarily precedes a change in another, we use
the term causation. Our understanding of causation is intrinsically linked to approxima-
tion into symbol categories, as information. If we aggregate all changes into a binary

158 CHAPTER 9. INFORMATION AND INFLUENCE

0 20 40 60 80 100
0

10000

20000

30000

40000

Figure 9.14: The fluctuation spectrum of numbers of World Wide Web requests, corrected for
periodic variations has the form of a maximum entropy Planck distribution. The dotted line shows
a theoretical curve, calculated using a maximum entropy model, and the solid line is the measured
value. The horizontal axis shows the numbers of simultaneous requests, rescaled to a mean value
of 50, and the the vertical axis is the number of times the system had so many simultaneous
requests.

signal ‘something happened’, then causation becomes increasingly vague. If we trace
very precise channels of information from atomic and isolated parts, we can pinpoint
channels of causation with much greater plausibility. The dependence of causation on
approximation and aggregation means that it is scale dependent. If we look at a coarse
scale, it might be impossible to distinguish the order of prior events from final evidence.
This is a fault of the methodology, not a proof that causation is non-existent.

If we can reduce a system to a network of low level atomic parts, then each point to
point interaction may lead to transmission of influence, and thus propagation of causality.
However, even this might not be quite what we expect. Isolation of neat linear stories
is not possible in general, especially in non-linear, strongly coupled systems. Thus
causation can become circular.

Example 95 (Kernel monitoring). In computer monitoring, we are usually forced to
obtain information from kernel resource metrics. When fault finding, we look for changes
in these measured values as evidence of causation. A change in user behaviour might
lead to a change in the processes running on a computer. The change in processes leads
to a change in the measured aggregate resource consumption. This seems reasonable.
However, contention for resources may also lead to feedback on the processes, causing

9.13. PROPAGATION OF INFLUENCE 159

them to alter their behaviour, possibly even crash. Thrashing is such behaviour that can
even prove fatal to a process. It results from interactions between parts, not from a single
causal channel, thus we cannot definitely say that process changes cause performance
changes; it is also true that performance changes may cause process changes. There is
causation in both directions, at different scales.

In the latter example, these observations can be reduced to a discussion about whether
the active parts of a system are able to keep certain promises or not. For a full discussion,
we defer to volume 2.

Applications and Further Study 9.

• Quantitative discussion of the flows of information and instruction in a system.

• Measurement of workflow in a system.

• Gauging the controllability of a system.

• Determining how focused, constrained (low entropy) or distributed (high entropy)
a process or structure is.

• Maximization of entropy for balancing the idea of “what can happen will happen”
with the known constraints.

CHAPTER 10

STABILITY

One of our fundamental premises about systems is that medium term stability, allowing
for long term change, is a desirable concept. Systems must be predictable for long
enough to perform their intended function. This applies both to the human and machine
parts of a system. However we still need a quantitative description of what such stability
means, and on what timescales.

10.1 BASIC NOTIONS

If we place a ball at the crest of a hill, the slightest movement will cause it to roll down
to the bottom. A ball placed at the top of a hill is a mechanical system which is said
to be unstable to small perturbations, i.e. a small push changes the character of the
system. By contrast, a ball placed at the bottom of a valley or trough is said to be stable
to perturbations, because a small push will only take it a short way up the hill before it
rolls back down again, preserving the original condition of the system.

Stability is an important idea in systems. If a small change can completely alter a
system, then its usefulness is limited. A bomb is a chemical-mechanical system which
can only be used once, because it is impractical to reset it to its original condition once it
has exploded. Instability affects a great many dynamical systems, from financial systems,
to computers, to social systems. The idea of building stability into systems is thus of
central importance to human-computer administration.

Modern fighter jets are built with an inherent instability under flight, unlike passenger
jets which are inherently more stable. Fighter jets are much more maneuverable because
of this ability to lapse into instability. The price one pays for this is a much more essential
and risky regulation requirement that maintains the system right at the edge of instability,

160

10.2. TYPES OF STABILITY 161

allowing rapid, controlled change, but flirting with rapid, uncontrolled change.

10.2 TYPES OF STABILITY

There are various notions of stability, but they all have in common a search for states
that are not significantly altered when we perturb the system by a small amount. We can
write most notions of stability in the a generic form:

Definition 39 (Stability). A stable state is one that is preserved, up to a multiplying
factor, when perturbed by some operation. Let Q be a state of a system, and let ∆̂λ

be an unspecified operator that perturbs Q by an amount λ in some parameter. If the
generic perturbation leads to the same state Q multiplied by a scale factor Ω(λ), for
some function Ω, the state may be described as Ω-stable under this operation; i.e. the
result of a perturbation

δQ ≡ (∆̂λ(Q)− Ω(λ)Q) = 0. (10.1)

This definition associates stability with stationary variations. This is not a rigorous
definition, since the descriptions of ∆̂ and Ω are vague; however, it expresses the general
concept behind a broad range of ideas of stability. In some cases, it is desirable to demand
restrictions on Ω(λ).

10.3 CONSTANCY

The simplest kind of stability is constancy (∆ = Ω = 1). Mathematically, we express
this by saying that a system variable does not change at all with respect to its parameters:

q(t, x1, x2, . . .) = const = q. (10.2)

We can change time and the other parameters of the system xi, but such change has
no effect on q(t, xi) because the function is a trivial one. Such constancy is a rather
simplistic viewpoint that is rarely true of anything but the simplest systems, but it is a
convenient approximation in many cases. A slightly more realistic viewpoint is to only
expect constancy on average.

Average constancy allows a system to be dynamic and to change over short time
intervals, in an unspecified way, as long as it changes back again so that the average
result is zero over longer times:

〈q(t)〉∆t =
1

∆t

∫ +∆t/2

−∆t/t

q(t)dt = const. (10.3)

162 CHAPTER 10. STABILITY

An oscillation is a deterministic example of this; random fluctuations are a non-deterministic
example. This kind of stability allows us discuss situations where there are fluctuations
in the behaviour of system that average to zero over time. In this case we must ask: how
long do we have to observe the system before the fluctuations will average out.

An enhancement of the previous case is to allow the average of a function to change
by a small amount, i.e. to exhibit a trend, by varying slowly at rate that is much slower
than fluctuations that almost average out. This is called a separation of scales, and is
discussed in section 8.5.

Finally, a more advanced notion of stability, in dynamic systems that exhibit fluc-
tuations is statistical stability. Here we as the question, in a system that is stochastic,
i.e. exhibits unpredictable fluctuations, with a particular statistical distribution of values,
are there certain statistical distributions that are the natural result of system behaviour?
Are some distributions more stable than others, if we change the system slightly? Such
distributions summarize the stability of the management scale, without disallowing the
minutiae of the system.

10.4 CONVERGENCE OF BEHAVIOUR

Systems at any scale can exhibit oscillatory or random behaviour. It is sometimes a
desirable property and sometimes an undesirable one. An oscillation with fixed frequency
(such as a swinging pendulum or a daily task list) is said to be in a steady state, even
though it is changing in time in a regular way. Such a steady state is also called a limit
cycle, if it is the result of a process of convergence towards this final steady state from an
irregular pattern. Generally we are interested in systems that enter into a steady state, i.e.
either a static or dynamical equilibrium.

Another possibility is that oscillations die out and leave a static state. In order to
converge to a static state, oscillations must be dissipated by a drain on the system, that
behaves analogously to the friction in a pendulum.

Example 96 (Circular dependence). Circular dependencies often result in oscillations
that need to be damped out. Suppose host A requests a result from a database that is
located on host B, but the data in the database running on host B is located physically
on host A and is shared by a network service. A single request from host A results in
traffic

A→ B → A→ B → A. (10.4)

Moreover, a timeout, or failure could result in longer oscillations of period A− B. A
local cache of data could be used to dampen these oscillatory convulsions and relieve

10.4. CONVERGENCE OF BEHAVIOUR 163

the network of the unnecessary oscillatory behaviour, or the system could be reorganized
to alter the flow of communication between the client, the disk and the database.

Example 97 (Temporary files). The build up of temporary disk files on a computer system
can result in an escalating space problem that can be kept under control by introducing
a counterforce that makes the behaviour oscillatory. Human work patterns have a daily
rhythm, so daily tidying of garbage can keep the build up within manageable levels. Thus,
in this example we are trying to achieve a steady limit cycle from a behaviour that is
originally divergent, by introducing a countermeasure.

Example 98 (Tit for tat). Tit for tat reprisals between users and/or administrators are
ping-pong oscillations that could escalate or, in principle, never terminate. A prolonged
bout of tit for tat is warfare.

We have two possibilities for modelling converging oscillatory behaviour: discrete
or continuous models. Discrete changes models use graphs or chains of discrete changes
can be used to trace the possible changes in the system. Cycles can then be identified by
looking at the topology of the graph of allowed transitions. One way to define convergent
behaviour is to consider the transition function Tij of the system that determines what
state qj a system that is in a state qi will make a transition to. Suppose that, no matter
what state we are in, a number n of transitions will bring us into a definite state qc:

(Tij)
n q = qc (10.5)

Tij qc = qc (10.6)

(10.7)

Such a transition function Tij may be called convergent. Such a state qc is called a fixed
point of the function (see section 10.13).

If we are willing to ignore the discrete details of the system, over longer times, then
another picture of this can be drawn for smooth and differentiable systems (the continuum
approximation). Let q be the state of the system and γ is the rate at which it converges to
a stable state. In order to make oscillations converge, they are damped by a frictional or
counter force γ. The solutions to this kind of motion are damped oscillations of the form

q(t) ∼ e−γt sin(ωt), (10.8)

for some frequency ω and damping rate γ. Three cases are distinguished: under-damped
motion, damped and over-damped motion. In under-damped motion γ � ω, there is
never sufficient counterforce to make the oscillations converge to any degree. In damped

164 CHAPTER 10. STABILITY

motion the oscillations do converge quite quickly γ ∼ ω. Finally with over-damped
motion γ � ω the counter force is so strong as to never allow any change at all.

Under-damped Inefficient: the system can never
quite keep oscillations in check.

Critically-damped System converges in a time scale of
the order the rate of fluctuation.

Over-damped Draconian: changes are stopped before
completing a single cycle.

An over-damped solution to system management is rarely acceptable. An under-
damped solution will not be able to keep up with the changes to the system made by
users or attackers.

10.5 MAXIMA AND MINIMA

The extrema of smooth functions can be used to define stability. The extrema are found
at the turning points of functions, where the rate of change of the function is smallest.

dq(λ)

dλ
= 0. (10.9)

Thus, both maxima and minima exhibit local sluggishness to change; however, only
minima are stable to perturbations.

Maxima and minima can also be defined for non-smooth domains, such as the nodes
of a graph, provided there is a function which defines a value φi on each node i. For
instance, if we have a graph formed from a discrete set of nodes, a node is a maximum if
it has a greater value φi than any of its neighbouring (adjacent) nodes.

Definition 40 (Local maximum). If φ is a mapping from a domain i to some range, then
a node i in the domain is a local maximum of the mapping if the nearest neighbours j of
node i have strictly lower values φj than node i itself; i.e., if Aij is the adjacency matrix
of the graph, a local maximum satisfies:

φi > φj , ∀{j|Aij 6= 0}. (10.10)

This definition works equally well for sparse or dense sets, i.e. for functions of a
continuous variable or for discrete graphs.

10.6. REGIONS OF STABILITY IN A GRAPH 165

10.6 REGIONS OF STABILITY IN A GRAPH

Another way of talking about the stability of structures is to define regions of persistence
in mappings (like the eye of a storm, amongst all the connections). If a mapping leads us
into a natural resting place, the graphical equivalent of a basin or minimum, then we can
use that to define stability.

There are two distinct notions of stability for graphs that are very useful for us
throughout this book.

Definition 41 (Internal stability). A set S ∈ X in a graph (X,Γ) is said to be internally
stable, if no two nodes in S are connected, i.e. if

ΓS ∩ S = ∅. (10.11)

S

X

Figure 10.1: An internally stable set is a set of peers within a graph, that are unconnected by any
single hop. Once we get into an internally stable state, we cannot get into any other internally
stable state without backtracking out of the internally stable region.

In other words, internal stability says that a region of internal stability consists of points
that are cannot be exchanged for one another (fig. 10.1). None of them have any arrow of
link between them that might identify one as being better than another in the sense of the
mapping A. This property makes them ‘as good as each other’ as end points in a journey
through the graph. In the theory of games, that we shall turn to later, this property is used
to mean that none of the points in an internally stable set dominate any of the others, thus
they are all equally valid solutions to the game.

166 CHAPTER 10. STABILITY

X

T

Figure 10.2: An externally stable state is accessible to all points outside the externally stable
region, by a single hop.

Definition 42 (External stability). A set T ∈ X in a graph (X,Γ) is said to be externally
stable if every node x 6∈ T , outside of T , satisfies

Γx ∩ T 6= ∅, (10.12)

i.e. the image of every node inside of T lies outside of T , or conversely: every point
outside of T (in the complement set X − T) maps into T by the inverse mapping

X − T ∈ Γ−1T. (10.13)

External stability tells us that a stable set is a place, like a local minimum, where the
graph connections lead us into an end point. In other words, at least one node inside the
externally stable set is ‘better’ than any node outside the set, in the sense of the mapping
A.

Definition 43 (Kernel). A set in a graph that is both internally and externally stable
is said to be a kernel of the graph. The kernel is free of loops and contains all points
x ∈ X for which Γx = ∅.

The importance of the kernel for systems is that Γ can be regarded as a mapping of
states, i.e. of transitions between states of a system — and we are interested in having
these transitions converge towards some stable end state. The kernel of a graph contains
all the states that can be regarded as being such end states1. Internal stability tells us

1Note: the kernel of the mapping is not to be confused with the ‘Heat Kernel’ generating functional of
the graph (see[Chu97]) that is related to algebraic geometry and field theory.

10.7. GRAPH STABILITY UNDER RANDOM NODE REMOVAL 167

the possible candidates that are at the end of a sequence of arcs, and that once we arrive
inside the set, we have chosen one of the set. External stability tells us that we can always
get to one of those points from outside the region, thus the region is accessible to the
whole system. If we require both, then the conclusion is that the kernel is the set of states
that is accessible to the whole system and is stable under single hop perturbations.

The kernel is an important concept of equilibrium in games. The notion of a kernel
was introduced into game theory by Von Neumann and Morgenstern ([NM44]) as a
proposal for the solution of a game, for finding preferential strategies. Since a point
in the kernel is internally stable, no other point is preferable to it; moreover, since it
is externally stable it is preferable to any place outside the kernel. Not all graphs have
kernels, but kernels are guaranteed in a number of cases (see, for instance, [Ber01]).

Note that although we will always be able to reach a stable node in the kernel, from
any point in the system, we will not necessarily be able to find the ‘best’ node according
to some extra criterion, such as centrality or some other ‘hidden variable’. The graph
mapping Γ itself does not distinguish between the nodes in the internally stable set —
they are all valid end states. However, by jumping out of the region and back into it
through multiple hops, we can find alternative points in the region that might satisfy
additional criteria. This means that other notions of ‘preferable’ could be allowed to
select from the set of states in the kernel of the graph.

10.7 GRAPH STABILITY UNDER RANDOM NODE REMOVAL

The stability of regions and graph structure to node removal has been discussed by various
authors. See [AB02] for a review. The stability of local regions in a graph is somewhat
unpredictable to the removal of nodes. If we use centrality to define regions (see section
6.5), then it might seem that the removal of the most central nodes in a network would
have the most damaging results. However, some graphs with random graph properties are
extremely invulnerable to random node removal, including the most central nodes. Peer
to peer graphs are examples of this: because they have no true centre (the maxima are
rarely very ‘high’ above the rest), their structures remain largely unchanged by random
node removal. Other structures, such as hub configurations are extremely susceptible
to node removal, since the most central points are of significantly greater importance to
the connectivity of the graph. Node removal is clearly more serious to the network as a
whole, but perhaps not to individuals (see fig. 10.3).

One might be tempted to use centrality as a measure of stability, however there is no
direct correlation between the centrality values and the connectivities, since the scale-free
eigenvector values do not retain information about total numbers of nodes in a graph,
thus tiny graphs of a few nodes could have similar centrality values to a huge graph.

168 CHAPTER 10. STABILITY

Figure 10.3: Network tolerance to node removal: nodes are more important than connectors.

Centrality is only of interest as a relative measure for connected components with a fixed
number of nodes.

Susceptibility to node removal can be gauged by examining the degree distributions
of the nodes

P (k) =
n(k)∑
k n(k)

, (10.14)

where n(k) is the number of nodes with k connected neighbours. Studies show that
random node removal of a fraction f of a graphs nodes has varying effects depending
on this degree distribution (see [AB02] for a review). Large networks undergo phase
transitions from states of being connected to being fragmented when critical fractions of
nodes are removed.

Scale free (power law) networks have node degree distributions

P (k) ∝ 1

kα
, (10.15)

for some positive constant α. These are especially robust to random node removal, and
it is known that peer to peer graphs have this structure (see [Bar02]). Other reports of
self-similar and power law behaviour can be found in connection with the World Wide
Web (see [BA99, BAJ00, AJB99, GHH91]).

Attacks by deliberate targeting of the largest nodes are more efficient and breaking
up graphs than random failures. Studies typically show numbers at around the order of
magnitude of ten percent level for fragmenting graphs. A greater fraction of nodes must
be destroyed to break up a highly connected graph (see section [AB02]).

10.8. DYNAMICAL EQUILIBRIA: COMPROMISE 169

10.8 DYNAMICAL EQUILIBRIA: COMPROMISE

A ball sitting at the trough of a valley is said to be in a state of static equilibrium. The
forces acting upon it are balanced, and the result is that nothing happens. A ‘tug of war’,
on the other hand, is only in a state of dynamic equilibrium when the two groups pulling
on the rope are not moving. Disk storage is a tug of war.

Example 99 (Garbage collection). A computer storage system under normal usage, is
being filled up with data by the actions of users, but there is no counterforce which frees
up any of the space again. This is not in equilibrium. A garbage collection service can
maintain a dynamic equilibrium if the average amount of storage in use is constant over
time.

Example 100 (Parking lot). In a car park (parking lot), cars come and go. The rate of
arrival and the rate of departure determine whether the total number of cars is increasing,
decreasing or in balance. If the number of cars is in balance, then we say that a dynamic
equilibrium has been reached.

Equilibrium can be mechanical, chemical, or statistical. By implication, equilibrium
is a balance between opposing forces. In a dynamical equilibrium, there is motion which
is continually being reigned in check by other processes.

10.9 STATISTICAL STABILITY

A system that settles into a predictable average behaviour, that withstands perturbations to
its fluctuation distribution, can be said to exhibit statistical stability (see [Hug95, Sat99]).

Suppose that a system is characterized by a measurable q(t) that varies with time
(the same analysis can be applied to any other control parameter). As the state q(t) ∈
{q1, q2, . . . , qi} varies, it changes value within a set of possible values. In a deterministic
system, the pattern of change is predictable at any given moment; in a non-deterministic
system it is unpredictable. Either way, if there is sufficient regularity in the behaviour
of the system — so that a knowledge of the past can predict an outcome in the future —
then we can characterize the change over time by plotting the distribution of values as a
histogram (see fig 10.4) that represents the probability P (q) of measuring a given qi.

But what happens when we mix together different signals, each with their own
distribution of values? The result will surely be a different distribution that is neither
the one nor the other, but are there any special distributions that are the stable end result
of a lot of mixing of this kind? These would represent the limits of predictability for
otherwise unpredictable systems. A. Cauchy and P. Lévy asked this question: what

170 CHAPTER 10. STABILITY

PP

q q

Figure 10.4: The probability distribution of values qi for a given measurable characterizes the
average spread of values that occur over time. If this distribution maintains the same form, as the
system develops then it can be called a stable distribution. For systems with random changes,
there is only a few possible distributions that are stable over long times: these are the Lévy
distributions and the Gaussian ‘normal’ distribution.

distributions have the property that, when perturbed by mixing, they retain their essential
features? Or, is there a P (x) such that the convolution of two signals with the same p(x)

results in the same distribution:

P (q) =

∫
dq′P1(q)P2(q − q′)? (10.16)

Another way of expressing this is that, if q1(t) and q2(t) are random variables with
stable distributions, then so is q1(t) + q2(t). The Gaussian distribution is one solution to
this problem; the other solutions are called the stable Lévy distributions. Some of these
have infinite variance and therefore cannot truly represent the behaviour of real systems.
However, they do describe systems approximately2.

The Lévy distributions are denoted by Lα(q) (0 < α ≤ 2), and most of them cannot
be written down as analytical expressions in terms of q. The Fourier transforms (or
characteristic functions) of the distributions

Lα(k) =

∫
dq eiqkLα(q) (10.17)

(called their characteristic functions) can be written down however. The symmetrical
distributions have characteristic functions of the form

Lα(k) = exp (−cα|k|α) , (10.18)

2Exponentially truncated forms of the Lévy distributions are sometimes used to discuss realistic
examples.

10.10. SCALING STABILITY 171

for constants cα. These allow one to work out the asymptotic behaviour for large q,
which turns out to follow a power law behaviour:

Lα(q) ∼ αA

|q|1+α
, q → ±∞. (10.19)

for constant A. Two exceptions exist that can be integrated straightforwardly to obtain
an analytical form (see appendix D): one is the so-called Cauchy distribution:

L1(q) =
c1/π

q2 + c21
; (10.20)

the other is the Gaussian

L2(q) =
1

2
√
πc2

e−q
2/4c2 . (10.21)

For other values of α, the full asymptotic form can be used for large q →∞:

Lα(q) =

∞∑
n=1

(−1)n+1

π

cnα
q1+nα

Γ(1 + nα)

Γ(n+ 1)
sin(παn/2). (10.22)

and for small q → 0:

Lα(q) ∼ 1

π

∞∑
m=0

(−1)m

(2m)!

q2m

c
2m+1
α

α

Γ

(
2m+ 1

α

)
. (10.23)

The range of values of α that leads to stable behaviour is limited to 0 < α ≤ 2,
due to the scaling behaviour noted in section 10.10; α must exceed 0 in order to have
non-negative probabilities, and must be less than or equal to 2 or else there is only
short-range dependence of the data and the distribution has insufficient ‘memory’ to form
a stable distribution. This phenomenon is sometimes called α-stability and the parameter
α is related to the Hurst parameter H = 1/α described in section 10.10.

Investigating statistical stability allows us to determine whether probabilistic man-
agement policies are sustainable over time. For example, if the fluctuations in a system
are not stable, then we can make no guarantees about the system in the future.

10.10 SCALING STABILITY

A related form of stability to the statistical stability is stability under scaling. This is
also called scale-invariance, and it asks a more specific version of the same question
as in section 10.9: if we have a fluctuating variable q(t), how does the size of the
fluctuations depend on how closely we examine the system. If we view the system
through a ‘magnifying glass’ by focusing on small times, we might see large fluctuations,

172 CHAPTER 10. STABILITY

but if we reduce the resolution by stepping back from the system and examining large
time intervals, how does the size of fluctuations change i relation to our resolution. A
scale transformation on time is called a dilatation.

If the relative size of fluctuations is the same at all scales, the system is said to exhibit
statistical self-similarity. The scaling hypothesis, for a function q(t), under a dilatation
by an arbitrary constant s,is expressed by:

q(st) = Ω(s) q(t). (10.24)

In other words, the assumption is that stretching the parameterization of time t → st,
leads to a uniform stretching of the function q(t), by a factorizable magnification Ω(s).
The function retains its same ‘shape’, or functional form; it is just magnified by a constant
scale.

This property is clearly not true of an arbitrary function. For example, q(t) = sin(ωt)

does not satisfy the property. Our interest in such functions is connected with dynamical
systems which exist and operate over a wide range of scales. Physical systems are always
limited by some constraints, so this kind of scaling law is very unlikely to be true over
more than a limited range of s values. Nevertheless, it is possible to discuss functions
which, indeed, scale in this fashion, for all values of s, as an idealization. Such functions
are said to be scale invariant, dilatation invariant, or self-similar.

Exact self-similarity, for all s, is only a theoretical possibility, and has led to the
study of fractals, but a similarity in statistical profiles of functions is a real possibility
over finite ranges of s. This is a weaker condition, which means that the behaviour of a
complete system S is invariant, but that q(t) itself need not be.

S[Ω−1(α)q(αt)]→ S[q(t)]. (10.25)

From eqn (10.24), the symmetry between q(t) and Ω(s), tells us that

q(x) ∼ Ω(x), (10.26)

i.e. that they must possess similar scaling properties. In fact, q(t) and Ω(s) must be
homogeneous functions, in order to satisfy this relationship:

q(t) = tH

Ω(s) = sH , (10.27)

for some power H . In other words, one has a general scaling law:

s−Hq(st) = q(t). (10.28)

We apply this to locally averaged functions:

s−H〈q(st)〉 = 〈q(t)〉. (10.29)

10.10. SCALING STABILITY 173

The exponent H is called the Hurst exponent, after the Hydrologist H.E. Hurst who
studied such behaviour in the flows of the Nile river. It can be estimated for real data by
noting that, over an interval ∆t,

〈max(q(t))−min(q(t))〉s∆t = sH〈max(q(t))−min(q(t))〉∆t, (10.30)

i.e.

H =
log
(
〈max−min〉s∆t
〈max−min〉∆t

)
log(s)

. (10.31)

Note that this estimator will give an incorrect answer for exponential functions exp(tn)

that increase monotonically; it should only be used on genuine time series. For the
Gaussian distribution, we have H = 1

2
, since

(max−min)
1√

2πσ2
exp

(
− q2

2σ2

)
∼ 1

σ
, (10.32)

and

σ(st) =
1√
s
σ(t), (10.33)

thus

HGauss =
log(

√
(s))

log(s)
=

1

2
. (10.34)

The parameter H is related to the parameter α from the previous discussion in section
10.9 on α-stability by H = 1/α. The Hurst exponent characterizes several properties of
the signal q(t)’s correlation functions. The auto-correlation is sometimes referred to as
the ‘memory function’ of the system.

For 1
2
< H < 1 processes have long-range dependence, or are correlated signif-

icantly with values of the function in the distant past. For H = 1
2

observations are
uncorrelated, and for 0 < H < 1

2
they have short-range dependence and the correlations

sum to zero (see [Ber94] for details).
For H ≥ 1 the second moment of the probability distribution (the variance σ2)

diverges as a further symptom of long-range dependence. This means that the system
can have significant numbers of fluctuations of arbitrarily large size.

Statistical self-similarity as been observed in network traffic ([LTWW94]).

Example 101 (Time series). Time series measurements3 from a local area network
measured over an eleven weeks span at 5 different time scales of up to a week, give the
following root mean square values for the Hurst exponent, with 10% tolerance (see fig.

174 CHAPTER 10. STABILITY

Table 10.1: Estimated Hurst exponents for time series of traffic intensities for different traffic
types, measured on a single computer over several weeks. Human activities such as numbers
of users follow a basically Gaussian profile H = 1

2
, while local and wide area network driven

measurements show higher values of the Hurst exponent. Measurements like these are sometimes
used to show evidence of self-similar behaviour in computer service patterns, but closer study of
the data is required to draw this conclusion.

Variable 1
2
< H < 1

No. of users 0.5

Root processes 0.6

Other processes 0.7

Diskfree 0.8

Load average 0.6

Incoming netbiosns 1.6

Outgoing netbiosns 1.8

Incoming netbiosdgm 1.4

Outgoing netbiosdgm 1.5

Outgoing netbiosssn 1.6

Incoming nfsd 2.0

Outgoing nfsd 2.3

Incoming smtp 1.6

Outgoing smtp 2.0

Incoming www 2.5

Outgoing www 1.1

Incoming ftp 1.7

Outgoing ftp 2.2

Incoming ssh 1.5

Outgoing ssh 1.4

Incoming telnet 1.2

10.10. SCALING STABILITY 175

0 50 100 150 200

t (hours)

0

20

40

60

80
q
(t

)

Figure 10.5: Some of the averaged time-series resulting in table 10.1

10.5 and table 10.1). Here we find no values lower than H = 1
2

, which means that
all of the results belong to potentially α-stable distributions. Incoming Web traffic, in
particular has a high value of H which tends to suggest a long tailed distribution that
signifies very large fluctuations at all the measurable scales. However, this is is slightly
misleading and is the result of a stable non-equilibrium process that is superimposed on
the fluctuating signal as shown in [BHRS01].

The Hurst exponent measures apparent self-similarity. Self-similarity is sometimes
linked to long-tailed distributions that are typical of the asymptotic Lévy distributions.
However, care in needed to draw any connection between estimates of the Hurst exponent
and estimates of the distribution of values measured from limited amounts of data. Heavy
tailed distributions can be caused by monotonically growing fluctuations during the
sampling period, for instance, without any scale-invariant behaviour in the fluctuations.
It is not just the distribution of values that is important to scale-free behaviour, but the

3These measurements were made using the cfenvd daemon in cfengine ([Bur93]).

176 CHAPTER 10. STABILITY

order in which the distributed values occur. Thus self-similar behaviour is not the same
as stability of fluctuation distributions. This is the peril of basing conclusions of average
measures.

10.11 MAXIMUM ENTROPY DISTRIBUTIONS

Entropy measures the even distribution of resource consumption in a system. A high
entropy means a high degree of resource fragmentation. Maximum entropy distributions
are also a kind of stability criterion. By maximizing entropy, we assure a most probable
distribution, in the limit of long times. It is a limiting point that a system will tend to by
virtue of randomness. Put another way, chance will never favour a different configuration
once we have arrived in a maximum entropy configuration, so this provides an important
reference point for a future state of any system. See section 9.11 for more about this
topic.

10.12 EIGENSTATES

Eigenvalues are especially stable solutions of simultaneous linear equations. For an
N ×N matrix M , eigenvectors ~vλ and their associated eigenvalues λ satisfy the matrix
equation

M~vλ = λ~vλ, (10.35)

or in component form:

Mij~v
j
λ = λ~viλ. (10.36)

Put another way, when the matrix M acts on certain vectors, the vectors can become
longer or shorter (by a factor λ) but they still point in the same direction. If this were
to be true for any vector ~v, it would only be true for diagonal matrices; however, every
non-singular N ×N matrix has this property for a special set of N linearly independent
vectors, and for special values λ. These vectors are the eigenvectors and eigenvalues of
the matrix.

Eqn. (10.35) has the form

δ~vλ = (M~vλ − λ~vλ) = 0, (10.37)

and thus defines a set of stable vectors. For λ = 1, the vectors are invariant, or constant
under the perturbation by M .

10.12. EIGENSTATES 177

1

2

3

Figure 10.6: A three node graph with symmetry about node 2.

Example 102 (Adjacency matrix). Consider the adjacency matrix of a simple graph
(fig 10.6). The adjacency matrix plays a dual role for a graph: both as a representation
of the connectivity between adjacent nodes and as a recipe for summing over nearest
neighbours (see section 6.5). Consider the simple three node graph, where nodes (1,2)
and (2,3) are joined by two links. The adjacency matrix is given by

A =

 0 1 0

1 0 1

0 1 0

 (10.38)

This has eigenvalues λ = {0,±
√

2} and corresponding eigenvectors: v1

v2

v3

 =

 1√
2

 1

0

−1

 ,

 −
1
2

1√
2

− 1
2

 ,

1
2
1√
2

1
2

 . (10.39)

The structure of the eigenvalues and eigenvectors reflects the symmetry of the graph, and
the principal eigenvector (that belonging to the highest eigenvalue) has its highest value
for node number 2, indicating that it is the most ‘central’ node it the graph.

Sometimes eigenvectors and eigenvalues have more subtle meanings that arise from
the mathematical structure that underlies a problem. One must always be careful in
interpreting mathematical results, in terms of the assumptions that are entered at the start.

Example 103 (Load sharing). Consider two service departments or servers d1 and d2

that work together share the load of work between them, with managerm (fig 10.7). Both
departments have a limited capacity C and can only just cope with the total work load
alone. If both worked flat out, they could muster a total of

Cmax =
√
C2

1 + C2
2 , (10.40)

178 CHAPTER 10. STABILITY

1

2

3
m

d1

d2

Figure 10.7: Two redundant servers and a manager, represented in three dimensional space.
Redundancy is represented as a circular (rotational symmetry) between the departments d1 and
d2.

as independent units. However, in order to provide for full redundancy, we must not use
up this total capacity, but instead require C1 = C2 = Ctot. Now, to balance their load
and provide redundancy they split the workload between themselves in such a way that
either one could take over at a moment’s notice, by changing a management parameter
θ.

d1 → d1 cos θ + d2 sin θ (10.41)

d2 → −d1 sin θ + d2 cos θ. (10.42)

Are there any stable or preferred solutions to this problem? It is helpful to draw this
situation geometrically by defining a vector:

 d1

d2

m

→
 v1

v2

v3

 (10.43)

in three dimensional space.

Consider a matrix M representing a two dimensional rotation about the m axis. The
manager can choose to rotate the load from one department to another by changing the

10.13. FIXED POINTS OF MAPS 179

angle θ. What are the privileged vectors for this perturbation matrix?

M =

 cos θ sin θ 0

− sin θ cos θ 0

0 0 1

 (10.44)

The characteristic equation for the eigenvalues is

det|M − λI| = 0, (10.45)

giving

λ = 1, exp(±iθ), (10.46)

and eigenvectors v1

v2

v3

 =

 1√
2

 1

i

0

 ,
1√
2

 1

−i

0

 ,

 0

0

1

 . (10.47)

In this example, two of the eigenvalues are complex numbers, but this should not distract
from the interpretation of the result. For λ = 1, we find an eigenvector along the
management rotation axis. This tells us that the management axis has a privileged
status in this system: it is independent of any change by varying θ. The remaining two
eigenvalues and eigenvectors appear to be lines pointing at 45 degrees into the complex
plane. If we substitute these values into the eigenvalue equationM~v = λ~v, we find that it
is identically satisfied, i.e. no conditions are placed on θ or a specific configuration. This
makes sense, from our original system design: the rotational symmetry was introduced
to provide redundancy, or independence of configuration, so any balance is as good as
any other4.

This last example illustrates an important point: eigenvectors and eigenvalue so-
lutions fall into two categories: solution by linear identity and solution by invariance
(symmetry), so eigenvalue solutions will always tell us the intrinsic, stable or invariant
properties of the perturbation matrix. Eigenvectors are important in dynamics because
systems often have preferred configurations that are described by their eigenvectors.

10.13 FIXED POINTS OF MAPS

In the theory of dynamical systems, stationary points where derivatives vanish are
sometimes called fixed points, however there is a more fundamental and interesting

4The presence of i =
√
−1 = exp(iπ/2) in (1,±i) signals a phase shift between the preferred

solution for d1 and d2 of 90 degrees (π/2 radians). This is exactly reflected in the placement of cos and
sin in eqn. (10.42), since sine and cosine are phase shifted by 90 degrees with respect to one another.

180 CHAPTER 10. STABILITY

definition of fixed points that is of great importance to average stability of human-
computer systems.

Any function x′ = f(x) defines a mapping from some domain of values to a range
of values. In a continuum description, the domain and range are normally subsets of the
Euclidean space of real numbers Rn. A fixed point x∗ of a mapping f(x) is any point
that maps onto itself:

f(x∗) = x∗. (10.48)

In other words, if a system finds itself in x∗ by iteration of this mapping, it will remain
there. This is clearly a definition of stability, since:

δQ∗ = (f(Q∗)−Q∗) = 0. (10.49)

We are particularly interested in functions that determine the time development or running
of a system, since Q∗ is a natural choice for a configuration of a system that is required
to be stable.

In this section we describe, without proof or detailed explanation, two notions of
fixed point that relate to continuous functions: the Brouwer fixed point theorem and the
Kakutani fixed point theorem5.

Theorem 1 (Intermediate values). Let f : [a, b]→ R1 be a continuous function, where
[a, b] is non-empty, compact, convex subset of R1 and f(a)f(b) < 0, then there exists
an x∗ ∈ [a, b] such that f(x∗) = 0.

This theorem makes the simple point that if two points lie in the range of a continuous
function, and one point is positive and the other is negative, then the function has to cross
the f = 0 axis, by virtue of its continuity. The only way that a function would not satisfy
this property is if it were broken into disjointed pieces. Although the theorem uses the
value f = 0this construction, the result remains true if we relabel the axes to any values.
The important point about this theorem is a corollary. If we restrict the domain and range
to the unit interval (for convenience)

Corollary 1. Let f : [0, 1]→ [0, 1] be a continuous function, then there exists a fixed
point x∗ ∈ [0, 1] such that x∗ = f(x∗).

This tells us that, for a function that is convex over the unit interval, and therefore
covers the range [0, 1], the function must cross the 45 degree line x = f(x) at at least
one point x∗. This leads us to Brouwer’s theorem, which is a generalization of this idea
for more general sets.

5Several excellent explanations of these results exist, often in books on the Theory of Games. The
World Wide Web also has numerous helpful pages on these theorems.

10.13. FIXED POINTS OF MAPS 181

0

f

a b

Figure 10.8: The Intermediate Value Theorem says that a continuous function must cross a line
that passes between two points that lie in the function’s range. The figure makes it obvious why
this must be true.

To describe the two fixed-point theorems, we need to use mathematical terms de-
scribing sets: convex and upper semi-continuous6.

Theorem 2 (Brouwer). Let f : S → S be a continuous mapping from a non-empty
convex, compact set S ⊂ Rn into itself (see fig. 10.9). Then there exists an x∗ ∈ S such
that x∗ = f(x∗).

The convex property is important here: if the upper and lower portions of the curve F
were not connected and convex then the mapping would not necessarily intersect the 45
degree line and thus there would be no fixed point. (The set of rotations of a circle by
irrational angles has no fixed point, since the set has gaps.)

In system administration we are often interested in procedures that map some input
state to some output state. Arbitrary discrete sets of operators need not map convex sets
of states. This places limits on what kinds of operator can have a stable outcome. One of
the challenges of system administration is determining ways of ensuring that a system
has a fixed point.

Example 104 (Average state). Discrete operations do not necessarily have fixed points,
but a continuum approximation created by a local averaging procedure can interpolate
a non-convex set of operations into a convex one, allowing a virtual fixed point to be
defined, on average. This is one of the main themes of this book. It is the essence of

6Also called upper hemi-continuous in some texts.

182 CHAPTER 10. STABILITY

the maintenance theorem (see section 16.8) and it is a major reason for abandoning a
strictly discrete formulation of systems.

x

f(x)

Figure 10.9: Brouwer’s Fixed Point Theorem. At some point, a function that satisfies the
convexity conditions must cross the diagonal line. Thus a mapping from one axis to the other
must have a fixed point.

Kakutani’s generalization of Brouwer’s theorem allows us to map not just points to
points, but sets to sets, or points to sets. A correspondence is a mapping from a point
to a set. This allows us to have not just stable points for simple mappings from point to
point, but also in mappings that are formed by sewing together disjointed pieces into a
consistent union.

Theorem 3 (Kakutani). Let F : S → S be an upper semi-continuous correspondence,
or mapping from a non-empty convex, compact set S ⊂ Rn into itself (see fig. 10.10),
such that, for all x ∈ S, the set F (x) is convex and non-empty, then F (·) (which can now
have a multitude of values as it is a set) has a fixed point x∗ ∈ S such that x∗ ∈ F (x∗).

The importance of this theorem is in being able to identify fixed points even in functions
that map sets that are more complicated than one-to-one mappings: we can talk identify
regions in parameter spaces.

The theorem tells us that there is at least one point x = P within the values laid
out along the axes that map that meets itself within the regions that are defined by the
correspondence. In fig. 10.10, there is a range of values where the 45 degree line
intersects the region that are fixed points. Thus we have a fixed subset.

The importance of this final theorem is that is applies to objects (sets) that are
general enough to be able to describe policy in a continuum approximation. Although

10.13. FIXED POINTS OF MAPS 183

x

f(x)

P

Figure 10.10: Kakutani’s Fixed Point Theorem. The Brouwer theorem can be generalized to
regions, provided the regions touch and have the same convexity properties. A point on the
horizontal axis now maps to a range of values within itself indicated by the brace. Had the two
regions not touched and been intersected, there the system would have been doomed to oscillate
between the two regions and never stabilize.

the figure illustrates this for a subset of R1, i.e. a single parameter, the regions can be
multi-dimensional, so we can identify stable sub-spaces. It is seldom that we can identify
a single ‘correct point’, but a correct region is a more likely prospect in a complex system
of many variables. Note, however that these theorems apply to continuous functions, and
thus apply to the continuum approximation of human-computer systems, which in turn
applies on average. That is another reason why regions are important – we must allow
for uncertainty. Discrete systems do not necessarily have stable fixed points.

Example 105 (Policy stability). An important equilibrium for defining system policy
is based on the notion of a fixed point of the graph of all rational strategy preferences
(see below). This is not stability of the system’s evolution, but stability of the choice
of end point in the kernel under different policy decision criteria. This equilibrium
is best known as the Nash equilibrium, or Kakutani fixed point (see [Mye91] for an
excellent introduction) of the preference graph. It looks for a subset of states that can
be regarded as a limit points of competing decision criteria. In a two-person zero sum
game, this corresponds to the minimax solution that is used below. The idea of an ideal
configuration Q∗ for a system can be defined as a fixed point of the ‘response matrix’
for mapping non-ideal states onto ideal ones. This matrix is readily defined in terms of

184 CHAPTER 10. STABILITY

convergent mappings ([Bur95, BR97]),

Q′ = R(Q), (10.50)

However, the convergence property is not enough to select a stable base state for a
convergent process, because convergence can be applied to any state. In order to prevent
configuration loops and find the set of self-consistent fixed points that can be identified
with policies, we must solve

Q∗ = R(Q∗). (10.51)

This condition is the essence of the Nash equilibrium in Game Theory (see chapter 19).

10.14 METASTABLE ALTERNATIVES AND ADAPTABILITY

If a system has a single global minimum, or stable end point, it will seek out this point
and never emerge from it. Few systems benefit from being this stable, since changes in
their environments usually demand a greater flexibility.

A system that can adapt to new conditions needs to be able to get out of its state of
stability, by perturbing it with a large enough perturbation of an appropriate type. We
would then like it to settle into a new and ‘better’ stable state that is more appropriate to
the new conditions.

Systems that have some kind of symmetry (a choice that doesn’t matter), will
naturally have several equivalent stable states, each of which is equally good. The
archetypal model for such a system is a system that has several internally stable regions
(fig. 10.11), with barriers in between. If we provide a sufficient perturbation, we can end
up in a different minimum that is as good. This is called tunnelling.

This kind of multi-stability will not help the system to adapt, unless the criterion
separating them suddenly becomes important in making one state better than the other.
In this case we say that the symmetry has been broken.

Example 106 (Password database). Consider the set of states for access permissions to
a computer password database. In fig. 10.11, the first minimum is the end state in which
read-only permissions are granted to all; in the second minimum read-write permissions
are granted to all; in the third minimum, privileged access is given to the administrative
user. Now suppose that, initially, only a single administrative user has physical access to
the database so that the permissions on the database are irrelevant. If conditions change,
so that several users are introduced to the system, then the symmetry is now broken under
the criterion of ‘security’, where security means access to restricted data.

10.15. FINAL REMARKS 185

x

Γ

Figure 10.11: Multi-stability means that there are several alternative stable states that are equally
good. These are said to be symmetrical. As environmental conditions change, one of these states
might become preferable to all of the others. Then the symmetry is said to be broken. To tunnel
from one state to the next, we must jump out of the region of internal stability, and back into it in
a different location.

The idea of metastability or multi-stability is connected to the notion of the kernel of
a graph. The kernel consists of stable end-points of a system’s policies, or preference
criteria. If conditions change, then we want to be able to break down the internal stability
or allow transitions out of it, backtracking out and then transferring into a new state. If
we are interested in adaptability, then it is wise to arrange for several of these alternative
states to exist, so that a rapid change of policy can select the new ‘best choice’ without
major architectural change.

10.15 FINAL REMARKS

Stability is a powerful concept, with many interpretations. If we cannot make a system
stable over a timescale of importance to us, we can’t generally make it work for us at
all. Thus stability is the first step towards a functional system. We have considered a few
possible interpretations in this chapter, but this by no means covers the full repertoire.
The stability of mappings, for instance, are quite general — they are generic behaviours
that one would expect to find in any directed mapping and thus we can expect these
concepts to emerge in a variety of situations.

Equilibria of games, discussed in chapter 19, are a natural extension of the idea of
stability to decision making. In collaborative networks, such as peer to peer networks,
cooperation or conflict between rational members of the collective can be modelled

186 CHAPTER 10. STABILITY

as persistent coalitions between individuals pursuing selfish interests. The concept of
imputations, or coalition that strictly increase a player’s benefit arises in this case (see
[Rap70] for a lucid introduction); ψ-stability can then be used to describe the likelihood
for lasting cooperation.

Stability provides a set of concepts that we can draw on to analyze the behaviour of
human-computer systems — both stochastic and some to rule based systems. Concepts
of stability prove to be particularly important when defining the meaning of a sustainable
policy.

Applications and Further Study 10.

• Characterizing and quantifying stability.

• Relating stabilty to predictability.

• Using stability as a basis for choosing arbitrary policy in a system.

• Looking for controllable or maintainable pathways of change.

CHAPTER 11

RESOURCE NETWORKS

This chapter considers the relationship between a system and its critical dependencies:
the description of basic resources that permit the system to function. It was commented
earlier that any system can be thought of as an information system, because anything that
happens to its resources must be described with the help information; thus one is never
more than one step of abstraction away from talking about the change of information
about objects, rather than talking about the objects themselves.

11.1 WHAT IS A SYSTEM RESOURCE?

The word resource is often used to describe the assets of a system or enterprise, which is
often used by businesses to describe what things are valuable to the business. Resources
or assets are the objects that describe the make-up of a system; they are also the freedom
to change in the system. The word resources is preferable to assets, since it does not
imply something that is automatically good.

Processes manipulate a system’s resources, leading to a change in their organization
or perhaps to an exchange of one resource for another. It is the book-keeping or account-
ing of resources that is described by the dynamics of a system. In short, all systems
follow a kind of ‘economy’, where the accounting parameters have names and properties
that go beyond money and goods.

A whole plethora of words has been introduced to describe assets and resources.
Some of them refer to tangible, physical items and others are more abstract qualities.
Here are some examples.

• Raw materials (stock)

187

188 CHAPTER 11. RESOURCE NETWORKS

• Processing power (CPU or human)

• Storage space (memory or archive)

• Movement in space

• Time

• ‘Potential’ for reward

• Personnel

• Property (real estate)

• Intellectual capital

• Respect, status

• Privilege

Resource availability is something that results in both freedoms and constraints. The
availability of space allows a system’s expansion; conversely, the limited size of a space
is a constraint on what can develop.

There are two issues with resources: how resources change and how they are or-
ganized, e.g. do we have access to them? Another way of saying this is that there are
both local and global issues. Resources can be modelled as a number of nodes within a
network topology, where the network indicates the pathway for interaction between the
resources.

11.2 REPRESENTATION OF RESOURCES

We want to be able to talk about resources, their distribution and their usage formally.
In mathematical or formal terms, a resource is a quantity can be measured about the
system. A measurable must be represented as a variable that depends on parameters that
describe its distribution and change with respect to time.

Let us separate space and time as resources, and think of these rather as parameters
that are perhaps restricted by boundary conditions.

Definition 44 (Resource variables). The resources of a system are functions of time,
space and other parameters that describe their distribution and patterns of change. They
are written as variables of state

qi(t, x, . . .) for i = 0, 1, 2, (11.1)

11.3. RESOURCE CURRENCY RELATIONSHIPS 189

Definition 45 (Degree of freedom II). The tuple of parameters (x, t, . . .) ∈ X , rep-
resents degrees of freedom; they are labels that describe the different alternatives or
possible arrangements of resources: for instance, a particular time, a location in space,
a given person, a colour etc.

The parameter space X is sometimes called the configuration space of the system,
because it describes how resources are arranged or configured.

Resources take values that are measured in some form of currency (see section
4.9), and they represent the valuables of the system, both actual, potential, material and
social. A set of resource variables describes a partial state of the system. The amount or
availability of a resource is described by a value, measured in its own form of currency,
which represents the balance of payments which led to the current state of resources.

A description of resources involves a set of values at various locations q(t, x). The
set of all such values, {q(t0, x)}, at a given moment t0 is called a configuration of the
system. Managing system resources includes managing their configurations over time.

11.3 RESOURCE CURRENCY RELATIONSHIPS

Resources come in many flavours, and depend on various location parameters. A resource
can also have a value measured on any number of different currency scales. If one wishes
to express a statement saying that a resource has a value with respect to more than one
system of values, then one must specify a relationship between those values, i.e. the
value systems are not independent. This applies to any relationship between values in the
system.

Example 107 (Time is money). ‘Time is money’ is a functional relationship between
a parameter t and a value M belonging to a state space consisting of all the possible
values that money can take. It is written M(t) saying that time and money are related by
a formula, e.g. in the simplest case,

M(t) ∝ t = k t. (11.2)

This example is often quoted frivolously, but it expresses an economic truth about
systems, in which the constant of proportionality k is the the average sum of money that
can be earned by the system per unit time. Since human-computer systems are frequently
driven by economic interests, this kind of relationship will be used frequently, and will
feed into models of the system.

Example 108 (Intellectual capital). Consider social scales which drive the human
components in a system. Intellectual capital is a potential for innovation within a human

190 CHAPTER 11. RESOURCE NETWORKS

system. If intellect leads to respect and status, it could also lead to privilege or even
money. Each of the emphasized words is a social value system. By identifying a
relationship between them above, we are saying that they are all related. Thus, we might
choose to measure intellect by IQ, but if intellect leads to respect, then respect must be
measured on a scale which is a function of intellect (and other inputs), calibrated to the
respect scale. Similarly, if this leads to status, then status must be a function of respect
(and other inputs) calibrated to the status scale. This dependency chain continues.

In practice, particularly in the West, human social systems are organized around
money, and all other scales can be measures in terms of money, according to some
elaborate formula. While this is certainly a cynical view of things, and somewhat of
an oversimplification, it is a pragmatic reality precisely because it leads to a concrete,
measurable value for what is happening in society. A similar situation exists in computer
systems, where most measurements can be associated with a certain amount of processing
time, or memory consumed.

In making informed decisions about human-computer systems, we are often forced
to make value judgements of the kind described above. The key to making rational,
rather than ad hoc, decisions lies in quantifying that value system in relation to the other
valuables in the equation.

Example 109 (Security payoff). Suppose we are interested in implementing a security
system for online banking (see section 19.10). A security consultant has determined
the relative security of different available technologies and how much they will cost to
implement, but how do we decide whether it is worth paying more money for a better
solution or not? We can do this by defining the ‘payoff’ or utility of the solution, and
define is by

Payoff (Π) = Security evaluation (S) - cost of implementation (C).

At this stage, however, security and cost of implementation are measured using quite
different scales, so we need to relate them to one another. Let us measure payoff on a scale
from 0 to 100, and the security evaluation on the same scale. The cost of implementation
can be measured in Euros, so we must relate Euros to security level. Let us suppose that
the cost/security ratio is constant (“you get what you pay for”); then:

Π = S − f(C) = S − k C, (11.3)

for some constant k. There is no rational way of determining k. It is a human value
judgement: determining it must be a part of policy. Policy necessarily intrudes on the
rational process through the need for certain ad hoc judgements.

11.4. RESOURCE ALLOCATION, CONSUMPTION AND CONSERVATION 191

11.4 RESOURCE ALLOCATION, CONSUMPTION AND

CONSERVATION

Resources are both the machinery and the fuel in a system; thus they fall into two
categories.

Definition 46 (Reusable resources). These are resources which are allocated temporarily
to a particular task. Once they are no longer needed, they can be passed on to another
task. Reusable resources include people, computers, storage, and communications lines.

Example 110 (Parking lot). A car park (parking lot) consists of a number of parking
spaces, which become occupied for a certain time and then are freed for re-use. A
computer disk has a number of sectors which are used to store data for a certain time
and are later freed for re-use.

Example 111 (Shared infrastructure). Shared infrastructure of all kinds is a reusable
resource. If we view a state of continuous operation as a business objective, in a cloud
infrastructure service (IaaS) , then we can imagine container or virtual machine slots to
be like reusable parking spaces for jobs. This is like air traffic control slots. Although
one can never recover a particular moment in time, the progression of time itself becomes
an irrelevant variable in continuous operation. As soon as a slot becomes empty, it can
be used by a new job, continiong the renewal process.

Definition 47 (Consumed resources). These are resources which can only be used once.
Once they are used, they disappear from the resource pool. The resource pool can be
refilled, if a new quota of resources becomes available.

Example 112 (Absolute time). Absolute time is a resource which cannot be re-used.
Money, electricity, oil, write-once memory and damaged equipment are other examples.

Example 113 (Storage consumption). Permanent storage is a consumed resource. It
suggests that we need to carry out some kind of garbage collection to prune useless data
that unintentionally gets used up.

In the physical world, resources do not simply disappear or get used up; rather,
they are converted from one form into another, or bound in some role, where they
cannot be freed for re-use. In practice, however, it is convenient to think of resources as
disappearing from the pool of resources. One says that the system is an open system. The

192 CHAPTER 11. RESOURCE NETWORKS

mathematical expression of conservation, as expressed in the continuum approximation
is given by the formula:

∂

∂xi
J i = −∂ρ

∂t
, (11.4)

for some vector ~q(t, xi) = (ρ, J i). It expresses the idea that, if there is regional
conservation in a system, the density of a system property ρ(t, ~x) cannot change except
by spreading out into a current or flow J i(t, ~x) from that location (see for instance
[Bur02a]).

Another consequence of open systems is that the distribution of resources is not
always under the control of the system itself. Some resources are distributed at random,
or by external agents.

Example 114 (Bus queue). The number of passengers arriving at a bus stop is not
determined by the bus transport system, but the arrival of buses is. The number of
E-mail messages arriving at a computer system is not determined by that system, but the
availability of CPU and memory to handle the requests is.

The problem of utilizing available resources which are under local control involves
two issues: allocation and reclamation.

Definition 48 (Resource allocation). Resource allocation is the association or assign-
ment of a resource from a shared pool to a process within the system. The concept of
ownership of a resource is achieved by attaching an extra parameter to the tuple X .

Example 115 (Process resources). When a process is defined, it is built up of an assembly
of resources.

Definition 49 (Resource reclamation). Resource reclamation is the freeing of a reusable
resource back into a shared pool.

Example 116 (Resource reclamation). When a process is terminated, the resources that
were attached to it are returned to a state of disuse. When cars leave a car park (parking
lot), the spaces become available for others to use, i.e. the spaces are not reserved from
private use. Disk space that is allocated by quota to a given computer user does not
become free for other users when it is no longer used by the private user.

11.5. WHERE TO ATTACH RESOURCES? 193

11.5 WHERE TO ATTACH RESOURCES?

A system does not function without resources. Resources come in may forms, both
literal (e.g. processor time, memory, floor space, raw materials) and abstract (e.g.
goodwill, permission, credit). Materials, workforce, creativity, tools and equipment are
all resources. We describe these resource by variables q(t, A) that vary in time and
address.

For a system architecture to work optimally, resources must be made available at the
right places and times. Once we know where the resources are needed, this becomes a
scheduling problem. Methods for approaching these matters have been considered in the
previous chapters.

• Have the resource requirements been targeted correctly?

• Will resources reach their target or disperse before arriving?

teaching

faculty

examinationresearch

examinerspapersmonitorslectures

studentstheatre

labpedagogy

recruitmentwelfare

ideas

inspiration

travel ?

? ?

staff

Figure 11.1: A simplified functional dependency structure diagram for a university
faculty department. The level of dependency increases with distance down the page.
Note that, while the goal of the department is to furnish society with knowledge, the
dependencies point to the staff as being the central element on which almost everything
above depends. This indicates that investment in this resource is important to the system.
The dependency chart continues downwards, of course, with food, power, and so on. A
formal method for this analysis is given in section 6.5.

194 CHAPTER 11. RESOURCE NETWORKS

In order for resources to be available to other parts of the system, there has to be a route
connecting them to their point of consumption. Resources may be provided by direct
injection, or by controlled delivery through a mediator (a metaphorical or literal valve or
regulator). There are often administrative overheads involved with regulation.

Direct access to resources allows maximum efficiency, but sometimes resources have
to be transported by an unreliable channel that is shared by several tasks.

Example 117 (Resource monitoring). The monitoring of resource usage (e.g. system
accounting, or bureaucracy) can result in inefficiency, because it relies on sharing the
same resources as the system itself. Thus it becomes overhead which takes resources
away from the main purpose of the system. We must decide whether this overhead is
worth the loss of resources.

Example 118 (Network topology resources). Network topology alone can offer guidance
to where resources are likely to be needed by looking at how the probability of resource
utilization has hotspots. Graph theoretical considerations may be of help here. See
section 11.7.

The distance from resources supply to point of usage should be minimized in order
to minimize delay and other losses. Food, power and basic freedoms are at the bottom of
any system involving humans or machines. If access to these is restricted or constricted,
the system performance will suffer. There are two extremes for injecting resources:

• Bottom up: Resources are inserted directly at the location within the functional
tree, closest to the action (direct access, but no control or accountability)

• Top down: Resources are inserted at the top of the functional tree: disseminated
by percolating down from above (has to pass through many junctures - this is
inefficient, but accountable)

If two processes share a common dependency, resources can be inserted at the
dependency for maximum efficiency, i.e. we can make the dependency a formal service
that supplies resources to the processes. This is a form of system normalization (see
chapter 14).

11.6 ACCESS TO RESOURCES

The ability for information and resources to spread through a system depends on the
availability of free channels of communication within the system. Percolation is the
phenomenon that occurs when a fluid manages to penetrate a porous medium. For a
network, the term is used in the following way.

11.6. ACCESS TO RESOURCES 195

Definition 50 (Percolation transition). A network is said to percolate, if it is possible to
reach any node from any other by at least one route.

This means that information or resources can be communicated to the parts of the system
where they are needed; conversely, it might mean that an attacker can reach any part
of the system from any other. Either way, the percolation transition in any network is
important to understand. It tells us both about security and availability.

Since connectivity has such basic ramifications for a system, it is of considerable
interest to be able to measure it. This is a particularly difficult task in large organizations
where we might have only partial information about. In a dynamical system pathways
of communication open and close and different times, perhaps for security reasons, and
perhaps for efficiency reasons.

Since it is not always possible to measure a system completely or directly, we are
interested in gauging the probability for percolation in two distinct cases:

• Perfect information: if we know precise details about the graph of a system, it
is possible to work out whether there is a route connecting any two nodes. The
All Pairs Shortest Distance Matrix, as defined by standard algorithms by Floyd or
Dijkstra ([CLRS01, BG99]), for instance, is an example algorithm for evaluating
the possibility for communication between nodes in a graph. Another measure is
based on the connectivity comes from asking how many pairs of nodes, out of all
possible pairs, can reach one another in a finite number of hops. We thus define
the ratio RC of connected pairs of nodes to the total number of pairs that could be
connected ([BCE04a]):

RC =
∑

i=clusters

1
2
ni(ni − 1)

1
2
N(N − 1)

= 1. (11.5)

This is simply the criterion that the graph be connected. Normally it is only possi-
ble to evaluate this quantity for theoretical models, or for very small organizations
under tight control, with perfect information, so we need other ways of estimating
percolation with only partial information.

• Partial information: a system administrator is not always aware of every de-
tail of the system or its users. Real systems are inherently probabilistic. In
human-computer systems, especially, there is the possibility of covert channels of
communication that link together parts of the system in a non-obvious fashion. For
instance, a married couple working in different fragments of a system could easily
leak information to one another. Conversely, an artificial barrier between nodes
might be introduced by sickness or accidental disconnection of a node. In such

196 CHAPTER 11. RESOURCE NETWORKS

cases, we must admit to possessing only incomplete or probabilistic information
about a system and make do with an estimate of the likelihood for percolation.

In both cases, there are methods for determining the likelihood of complete connectivity
within a part of the system.

In Appendix C, the results for percolation thresholds of approximately random
graphs are derived. These are based on the work of [NSW01] for huge random graphs,
and were adapted for small graphs in [BCE04a]. Random graphs are a useful measuring
stick for actual graphs because they tend to percolate very easily, with only a small
number of connections. They are very efficient at covering the nodes with available
routes.

A connected part of a graph is called a cluster. We would like to find the sizes of
clusters in a graph and see when they become large, i.e. of the same order of magnitude
as the size of the graph. The giant component or cluster is thus defined to be a cluster
that is of order N nodes. If such as cluster exists, then other smaller clusters of order
logN might also exist (see [MR98]). The large-graph condition for the existence of a
giant cluster (of infinite size) is simply∑

k

k(k − 2) pk ≥ 0. (11.6)

Here the sum is over k, the degrees of nodes in the graph, and pk is the probability of
finding a node of degree k in the graph, i.e. it is the number of nodes of degree k divided
by the total number of nodes nk/N (see section 6.2).

This provides a simple test that can be applied to a human-computer system, in order
to estimate the possibility of complete penetrability. If we determine only the pk, then we
have an immediate machine-testable criterion for the possibility of a systemwide security
breach, or efficient transmission.

The problem with the above expression is that it is derived under the assumption
of there being a smooth differentiable structure to the average properties of the graphs.
This is really only a good approximation in the infinite graph limit, so it is mainly of
interest to huge systems like the entire Internet. For a small graph with N nodes, the
above criterion for a giant cluster is inaccurate. Clusters do not grow to infinity, they can
only grow to size N at the most, hence we must be more precise and use a dimensionful
scale rather than infinity as a reference point. For a small graph the size of a giant cluster
is N and the size of of below-threshold clusters is log(N) (see [MR98]). An improved
criterion was found in [BCE04a], and is given by:

〈k〉2 +
∑
k

k(k − 2) pk > log(N). (11.7)

This can be understood as follows. If a graph contains a giant component, it is of order
N and the size of the next largest component is typically O(logN) (see [MR98]); thus,

11.7. METHODS OF RESOURCE ALLOCATION 197

according to the theory of random graphs the margin for error in estimating a giant
component is of order ± logN . We thus add the magnitude of the uncertainty in order
to reduce the likelihood of a false positive conclusion.

Ad hoc networks are dynamically random graphs in which connections are initiated
and broken in a non-deterministic way. The above criteria are useful for estimating the
penetrability of mobile and other ad hoc networks, on the fly.

11.7 METHODS OF RESOURCE ALLOCATION

Since resources are crucial to the ability for a system to function, resource allocation
is a critical dependency. There are two sides to the problem: one is the organization of
resources given to a single process, the other is how several processes can co-exist within
shared resources. There has to be a pool of resources that acts as a constraint on the
operation. Methods of assignment often need to make certain compromise.

Example 119 (Allocation of space in 2D). Suppose you need to draw a complicated
map on a small piece of paper. How will you allocate the space on the page?

Since a dynamical system requires the flow of work or information, restrictions on
the flow can limit the performance of the system. Time resources must be assigned to
process incoming information to maintain the flow. Mismatches of flow rates between
parts of the system can be a problem. If one part of a system has more resistance to the
flow of work than another, it becomes a bottleneck that delays the entire collaborative
network.

Example 120. Many systems employ resources to monitor the usage of other resources,
e.g. bureaucratic controls or SNMP monitors. Too much monitoring or verification
communication ties up resources which could be used to do useful work. In such a case,
a resource becomes an overhead.

11.7.1 LOGICAL REGIONS OF SYSTEMS

Systems are well described by graphs, and graphs have properties that allow them to
be classified into regions. A fitness landscape view of a graph can be created using
eigenvalue centrality to define the ‘height’ of any node above an imaginary sea level or
null point of zero centrality. Local maxima, the tops of the mountains, in this landscape
provide a notion of maximum local importance. The nodes that are connected to these
local maxima then define a region connected to that local centre. If we trace regions by
travelling outwards from a local maximum and find nodes and meet a node in between
two maxima, then it lies in a valley between the tops, and we can call it a bridge between

198 CHAPTER 11. RESOURCE NETWORKS

Region 2

Region 1
Bridge

Top

Top

Figure 11.2: The classification of a graph into regions and bridges, using eigenvalue centrality
as a sort criterion.

regions. Thus we classify regions into maxima, bridges and regions. This will prove to
be widely useful tool for identifying distinct regions in systems.

11.7.2 USING CENTRALITY TO IDENTIFY RESOURCE BOTTLENECKS

The graph theoretical technique above allows us to identify the places in a network
where work flow resources are most crucial to the continued functioning of the system.
Eigenvector centrality (see section 6.5) is a relatively easy and straightforward way of
identifying the confluences of information flows in a network. It can be applied with
various levels of approximation to take account of different aspects of the system. Let us
consider how to identify the ‘hot-spots’ in a network, i.e. the places where resources will
need to be invested in order to provide optimum fuel for the system.

Let the graph of the systems (X,Γ) with configuration space X and arcs Γ be a
representation of any aspect of a system involving association.

1. Draw a graph of the human-computer system, with all information flows or
associations represented as arcs between the nodes.

2. For each connected fragment of the graph, construct the symmetrical adjacency
matrix for the non-directed graph, setting a constant value (e.g.) 1 for a connection
and a zero for no connection.

3. Calculate the principal eigenvector of the adjacency matrix, i.e. the eigenvector
belonging to the highest eigenvalue.

4. Normalize the elements so that the maximum value is +1.

11.7. METHODS OF RESOURCE ALLOCATION 199

5. We now find the regions and bridges as described in section 11.7.1.

Each of the elements in the principal eigenvector now rank the importance of the nodes
in the graph to workflow.

Example 121. Consider the human-computer system for Internet commerce depicted in
fig. 11.3. This graph is a mixture of human and computer elements: departments and
servers. We represent the outside world by a single outgoing or incoming link (node 5).
The organization consists of a web server connected to a sales database, that collects

5

3 DB

8

9

10

11

12

13

OUTSIDE WORLD

Marketing7. system admin4 Web server

1 Dispatch

6 Register

orders

2 Order

processing

14 Management

Staff

Figure 11.3: Unstructured graph of a human-computer system — an organization that deals with
Internet orders and dispatches goods by post.

orders which are then passed on to the order registration department. These collect
money and pass on the orders to order processing who collect the orders and send them
to dispatch for postal delivery to the customers. A marketing department is linked to
web server through the system administrator, and management sits on the edge of the
company, liaising with various staff members who run the departments.

Let us find the central resource sinks in this organization, first assuming that all of
the arcs are equally weighted, i.e. contribute about the same amount to the average flow

200 CHAPTER 11. RESOURCE NETWORKS

through the organization. We construct the adjacency matrix, shown in eqn. (11.8):

Aij =

0 1 1 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 1 0 1 0 0 0 0 0 0

1 0 0 1 0 1 0 0 0 0 0 0 0 0

0 0 1 0 1 1 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 1 1 1 0 0 0 0 1 1 0 0 0 0

0 0 0 1 0 0 0 1 1 1 1 1 1 0

0 1 0 0 0 0 1 0 0 0 0 0 0 1

0 0 0 0 0 1 1 0 0 0 0 0 0 1

0 0 0 0 0 1 1 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 1 0 0 0 0

. (11.8)

Some elements are marked bold here, for later removal. The eigenvalues of this matrix
are now computed and the transposed principal eigenvector is

~vT = (0.29, 0.49, 0.54, 0.75, 0.21, 0.89, 1.00,

0.58, 0.69, 0.69, 0.28, 0.28, 0.28, 0.55) (11.9)

Node 7 is clearly the most central. This is the system administrator. This is perhaps a
surprising result for an organization, but it is a common situation where many parts
of an organization rely on basic support services to function, but at an unconscious
level. This immediately suggests that system administration services are important to
the organization and that resources should be given to this basic service. Node 6 is the
next highest ranking node; this is the order registration department. Again, this is not
particularly obvious from the diagram alone: it does not seem to be any more important
than order processing. However, with hindsight, we can see that its importance arises
because it has to liase closely with all other departments.

Using the definitions of regions and bridges from section 11.7.1, we can redraw the
graph using centrality to organize it. The result is shown in fig. 11.4. The structure
revealed by graph centrality accurately reflects the structure of the organization: it is
composed largely of two separate enterprises: marketing and order processing. These
departments are bound together by certain bridges that include management and staff
that liase with the departments. Surprisingly, system administration services fall at the
centre of the staff/marketing part of the organization. Again, this occurs because it is
a critical dependency of this region of the system. Finally the web server is a bridge

11.8. DIRECTED RESOURCES: FLOW ASYMMETRIES 201

1

2

3

6

14

8

5

12

13

7

MARKETING ORDER PROCESSING

MANAGER

11 4

OUTSIDE WORLD

10

9

Figure 11.4: A centrality self-organized graph showing the structure of the graph centred around
two local maxima or ‘most important’ nodes, that are the order registration department and the
system administrator. There are also 4 bridge nodes and a bridging link between the regions.

that connects both departments to the outside world — the outside hanging on at the
periphery of the systems.

The results of the example above could be enhanced by weighting the different
connections in the adjacency matrix to reflect the work load. In a more realistic graph,
one would measure the volumes of communication between different nodes and create a
more detailed model. The inclusion of every person and computer as a separate node
would then automatically provide the appropriate weighting.

Resource centrality is a powerful method for identifying stable regions of resource
networks, as a guide to the appropriate investment of resources. Taking account of the
directed nature of a graph can also affect the identification of regions (see section 6.6).

11.8 DIRECTED RESOURCES: FLOW ASYMMETRIES

As noted in section 6.6, the centrality of directed graphs is much harder to interpret;
indeed, the concept falls apart for graphs that do not have enough return paths to make a
self-consistent picture. As long as there is a well-defined principal eigenvector, we can
use directedness in the centrality method to find important hot-spots in systems.

202 CHAPTER 11. RESOURCE NETWORKS

Consider the direction of the flows in fig. 11.3, and let us suppose that some of the
flows are directional, as in fig. 11.5. The adjacency matrix is now made asymmetrical,
by setting to zero the bold connections in eqn. (11.8).

5

3 DB

8

9

10

11

12

13

OUTSIDE WORLD

Marketing7. system admin4 Web server

1 Dispatch

6 Register

orders

2 Order

processing

14 Management

Staff

Figure 11.5: The organization in fig. 11.3 with some directed flows. Although management
becomes a ‘non-listening’ source, the stable structure does not break down and importance
ranking proceeds as for the non-directed case.

Both A and AT have a principal eigenvector, with the following ranking:

i ~P (A) ~P (AT) ~P (AAT) ~P (ATA)

1 0.1 0.2 0.1 0.1
2 0.03 0.14 0.03 0.2
3 0.3 0.3 0.3 0.3
4 0.4 0.4 0.3 0.4
5 0.1 0.1 0.13 0.1
6 0.4 0.4 0.5 0.3
7 0.5 0.5 0.5 0.4
8 0.2 0.0 0.2 0.1
9 0.3 0.3 0.2 0.4
10 0.3 0.3 0.2 0.4
11 0.2 0.2 0.1 0.2
12 0.2 0.2 0.1 0.2
13 0.2 0.2 0.1 0.2
14 0.2 0.0 0.3 0.0

The highest values in each eigenvector are labelled in bold face. As expected, A

11.8. DIRECTED RESOURCES: FLOW ASYMMETRIES 203

and AAT tend to identify the most sink-like centres, or ‘authorities’, while the two
transposed quantities pick out source-like centres or ‘hubs’. In this graph, there is no
clear distinction however: node 7 is both a source and a sink as far as its role in the system
is concerned. In directed graphs, understanding the structure requires more consideration
than in the undirected case. In particular, nodes that have both incoming and outgoing,
uni-directional and bi-directional connections to their neighbours can play multiple roles
simultaneously.

Applications and Further Study 11.

• Organizing and planning the deployment of system resources.

• Formalizing the economic aspects of a system, both for humans and machines.

CHAPTER 12

TASK MANAGEMENT AND

SERVICES

Never fear the event
– Horatio Nelson (1801)

In previous chapters, we considered how resources fit into the scheme of a system.
Now we consider how to optimize their allocation, according to quotas or allocation
criteria. The resource we focus mostly on is time, since this is the fundamental currency
underlying all dynamical systems, however this chapter is really an extension of the pre-
vious chapter on resource usage. Time allocation applies both to humans and computers
and affects a strong dependency on the ability of the system to process information.

12.1 TASK LIST SCHEDULING

Scheduling is a way of parsing a tree of tasks as efficiently as possible. The techniques
for scheduling are well known from parallel processing and operating system design
([KN84, AD96]). An important aspect of configuration management is how management
operations are scheduled within a system, both in response to specific events and as a
general matter of the maintenance of the system.

Example 122 (Help desk). A service help-desk receives calls at a peak rate during the
middle of the day, in its time zone, and at a slower rate at other times. The number of
jobs, with a certain level of difficulty, follows a rough pattern. The number of available
case handlers is also maximal during the day, but the numbers are not quite certain

204

12.2. DETERMINISTIC AND NON-DETERMINISTIC SCHEDULES 205

due to possible sickness. What is the optimum approach to completing all the incoming
tasks?

Example 123 (Maintenance schedule). A list of routine maintenance operations, includ-
ing system backup, security checks and software updates, must be completed each day to
satisfy policy. Which ordering of tasks causes the least disruption to normal activities
and leads to the most up-to-date, best maintained system.

Scheduling clearly encompasses precise comparisons and heuristic value judgements.
Specifying a schedule naturally becomes a part of any policy.

Scheduling takes many forms, such as job-shop scheduling, production scheduling,
multiprocessor scheduling, human time management and so on. It can take place within
any extent of time, space or other suitable system parameter. The two main classes of
scheduling are dynamic and static scheduling. Dynamical schedules can change their
own execution pattern, while static ones are fully predetermined. In general, solving
static scheduling problems belongs to the class of NP problems (it is presumed to be
computationally intensive).

If we represent scheduling as a graph theoretical problem, it involves assigning the
vertices (task nodes) of an acyclic, directed graph onto a set of resources, such that the
total time to process all the tasks is minimised. The total time to process all the tasks is
usually referred to as the makespan. An additional objective is often to achieve a short
makespan while minimising the use of resources. Such multi-objective optimisation
problems involve complex trade-offs and compromises, and good scheduling strategies
are almost based on a detailed and deep understanding of the specific problem domain.

Most approaches belong to the family of priority-list scheduling algorithms, differen-
tiated by the way in which task priorities are assigned to the set of resources. Traditionally,
heuristic methods have been employed in the search for high-quality solutions ([KN84]).
Over the last decade heuristics have been combined with modern search techniques such
as simulated annealing and genetic algorithms (see [AD96]).

12.2 DETERMINISTIC AND NON-DETERMINISTIC

SCHEDULES

There is a distinction between the arrival of a random event (a stochastic task such as
a telephone call or a server request) and a planned or structured task with long term
predictability, (such as periodically executed tasks like daily cleaning, regular software
updates, system backups). This is reflected in two possible ways of initiating a system
task:

206 CHAPTER 12. TASK MANAGEMENT AND SERVICES

• A random starting point in the system graph.

• A random arrival time at some point in the graph.

Whichever method is used to parse the graph of tasks, the result of the process must end
up with n ordered lists, to be carried out by n ‘servers’. A server might be a person, a
computer or an enterprise.

EVENT HANDLING

System administration, employing agents or software robots, is an administrative method
that potentially scales to large numbers of hosts in distributed systems, provided each
host is responsible for its own state of configuration (see [BC03]). However, the inter-
dependencies between networked computers makes cooperation essential, and the dis-
tributed nature of the system makes the timing of events, for all intents and purposes,
random.

Example 124 (CFEngine maintenance). Policy based configuration languages associate
the occurrence of specified events or conditions, with responses to be carried out by an
agent. CFEngine accomplishes this, for instance, by classifying the state of a host, at
the time of invocation, into a number of classifiers. Some of these represent the time of
invocation, others the nature of the environment, and so on. For example:

files:

(linux|solaris).Hr12::

/etc/passwd mode=0644 action=fixall inform=true

The class membership is described in the second line. In this instance, it specifies the
class of all hosts which are of type Linux or Solaris, during the time interval from 12:00
hours to 12:59 (Hr12). Tasks to be scheduled are placed in classes which determine the
host(s) on which they should be executed, or the time at which they should be executed.
Actions are placed in such classes and are only performed if the agent executes the code
in an environment which belongs to one of the relevant classes. Thus, by placing actions
in judiciously chosen classes, one specifies actions to be carried out on either individual
machines or on arbitrary groups of machines which have a common feature relating
them. This is a scheduling procedure. We thus have:

• Scheduling in time.

• Scheduling by host attribute (location, type, etc).

12.2. DETERMINISTIC AND NON-DETERMINISTIC SCHEDULES 207

b

d

a

e f

g h i

c

j

Figure 12.1: Scheduling of constrained policies.

TASK SCHEDULING

A set of ordered tasks or precedences can be represented by a directed graph, (V,E),
with vertices, V , and directed edges, E. The collection of vertices, V = {v1, v2, ..., vn},
represents the set of n tasks to be scheduled and the directed edges, E = {eij}, define
the precedence relations that exist between these tasks (eij denotes a directed edge from
task vi to vj). The graph might contain loops or cycles. These can cause unwanted
repetition of tasks by mistake. Edges can be removed and the graph to convert it into an
acyclic graph, or spanning tree that avoids this problem.

The task management process can be understood as scheduling in several ways. A
graphical representation allows modelling of task management (see fig. 12.1).

Within a single set of policy rules there is a set of schedulable tasks that is ordered by
precedence relations (arrows in the graph). These relations constrain the order in which
policies can be applied, and thus how the graph has to be parsed.

A second way in which scheduling enters, is through the response of the system to
arriving tasks. Should the server agents activate once every day, hour or minute, in order
to check for scheduled tasks, or immediately; should they start at random times, or at
predictable times? Should the policies scheduled for specific times of day, occur always
at the same times of day, or at variable times, perhaps random.

Finally, although scheduling is normally regarded as referring to extent over time, a
distributed system also has two other degrees of ‘spatial’ extent: h and c. Scheduling tasks
over different hosts, or changing the details of software components is also a possibility.
It is possible to confound the predictability of software component configuration to
present a ‘moving target’ to would-be attackers (see [BS01, San01]).

208 CHAPTER 12. TASK MANAGEMENT AND SERVICES

12.3 HUMAN-COMPUTER SCHEDULING

Configuration management is a mixture of a dynamic and static scheduling. It is dynamic
in the sense that it is an ongoing real-time process where policies are triggered as a result
of the environment. It is static in the sense that all policies are known a priori during any
work interval. Policies can be added, changed and removed arbitrarily in a dynamical
fashion. However, this does not really interfere with a static model because such changes
would typically be made during a time-interval in which the configuration tool were idle
or offline (in a quiescent state).

The separation of time-scales is an issue that we harp on continually in this book.
It is important here too. The management of time can only be successfully prosecuted
by separating independent time scales from one another. Using the method of local
averaging (see appendix B) can be used to identify time scales over which average
behaviour is only slowly varying. These are the independent levels of scheduling.

Example 125 (Timescales). A simple analogy is helpful for understanding this. Suppose
we are interested planning the time of an enterprise that deals with selling furniture on
the Internet (see fig. 11.3). The timescale at which products are redesigned is on the
order of a year, so we expect to have to update web pages on this time scale. We must
therefore allocate a number of man-hours per year to this task. (It is not necessary to
check this every few minutes.) However, the time scale on which sales requests arrive is
about one per hour, so we need to allocate sufficient order processing power on the scale
of an hour to check and process these orders. The number of web page accesses is on the
order of several hits per second, so a the web server must schedule resources to cope
with this demand.

Example 126 (Cloud computing). In modern shared infastructure, known as cloud
computing, the scheduling of jobs and memory, network, and processing resources is
one of the key problems to solve. Open source schedulers[SKAEMW13] like Openstack,
Kubernetes, Mesos and associated modules take on the task of trying to place jobs in a
network with specific topology to as to reduce the key variables of latency, traffic intensity,
and collisions. It never pays to be sending data over a shared network if that can be
avoided, so scheduling of unknown demand across a fixed supply, with redundancy
and sufficient overcapacity for handling peak demand is a problem one must revisit
continually as systems and workloads evolve.

12.4. SERVICE PROVISION AND POLICY 209

12.4 SERVICE PROVISION AND POLICY

In networks and systems alike, we are interested in maintaining predictable levels of
service. Service providers would, after all, like to sell these services to customers and
thus need to be able to offer guarantees about what will be delivered and what service
will cost. This brings up two issues:

• Quality of Service (QoS): Quality of Service a goal of all service providers,
whether the service is a network transmission rate or a system up-time level.
Although one often has the impression of service quality as being a solved problem,
this is far from the case. Guaranteeing service levels requires one to address the
uncertainties in service provision at all levels, and these are often complex.

• Service Level Agreements (SLA): A Service Level Agreement is a contract of
service levels that is offered to a customer by a provider. The provision of service
cannot be guaranteed with complete certainty, as we shall see below, so Service
Level Agreements are above determining acceptable margins of behaviour in the
system, and what recompense will be offered to a customer if the levels are not
met.

A strategy for meeting service level guarantees is over-provision to provide a margin
that can absorb sudden demand. Clearly, no system can absorb any sudden change in
demand, thus maximum limits are placed on expectancy.

12.5 QUEUE PROCESSING

Queues are an important model of load handling in any system, whether human or
machine. Whenever there is a confluence of information at some point in a system, there
is a serialization of processing that bottlenecks information into a queue. In stochastic
systems and queueing theory, these processes are called birth-death processes. In physics,
they are referred to as creation-annihilation processes or prey-predator models.

Although a vast amount of research has gone into studying queues[Kle76, GH98,
SNO71, Coo90, Wal90, Gun93, Gun08, GPT15], we know that queues have basically
two states. They are either lightly loaded and working well, or they are completely
jammed and the system is ‘thrashing’ to keep its head above water. It is enough to gain
an appreciation of the simplest models to get the basics of queueing behaviours.

Queueing networks are representations of resource consuming systems on graphs,
such that information or work flows from node to node, often with cyclic repetition. A
queue is a generic processing model: jobs arrive as events, or they are pre-allocated and

210 CHAPTER 12. TASK MANAGEMENT AND SERVICES

some form of human-computer processing must be applied to eliminate them from the
‘to-do’ list.

Queueing models have been devised with all levels of complexity (see [Jai91] for
an introduction); they are statistical models that describe the steady state properties of
stochastic task systems. At the coarsest level of approximation, mean value theory can be
used to obtain order of magnitude estimates of processing efficiencies. Queueing models
consist of a number of choices or parameters:

• Arrival time distribution process

If service requests occur at times t1, t2, . . ., the values of the random variable
t̃i = ti − ti−1 are called the inter-arrival times of the process. It is commonly
assumed that these form a Poisson (exponential) distribution; however, many
network processes have long-tailed distributions (see section 10.10).

• Process time distribution

The time that each client is engaged in requesting a service.

• Number of servers

The number of humans, computers or other entities responsible for processing
requests. The work-rate is a function of this number.

• System processing limit

If the system has a maximum throughput, or processing rate, this limits the
behaviour of the system as a whole.

• Maximum population size

The maximum number of clients that can ask for services.

• Scheduling policy:

Various queueing policies are used to try to empty the queue as quickly as possible.
The most common is First Come First Served (FCFS) which is a first-in-first-out
(FIFO) structure. Round-robin scheduling is a way of sharing time between
multiple jobs. Shortest Job First picks the task whose estimated completion time
is least. This potentially suffers from starvation of some tasks, i.e. long jobs never
get executed because resources are saturated with an influx of new small jobs.
Shortest Remaining Time First is a variation on the previous policy. Clearly, there
are many possible strategies for processing requests. In a human context, a policy
that is often used is Loudest Voice, First Served, i.e. those clients who make the
biggest nuisance of themselves are disposed of quickly. The efficiency of these

12.6. MODELS 211

different policies is often difficult to evaluate, and depends on the nature of the
system. In general, experimental analysis is required to determine an appropriate
choice, or combination of choices.

12.6 MODELS

Queues are denoted in Kendall notation in the form A/S/c(/B/K/P), where A is the
inter-arrival distribution that usually takes one if the following values

M Memoryless (exponential/Poisson)
Ek Erlang with parameter k
Hk Hyper-exponential with parameter k
D Deterministic
G General

A deterministic distribution has constant inter-arrival times, with no variance, and ‘gen-
eral’ means that the model’s results apply for any distribution. The term memoryless
implies that the arrival process is a steady state process, in which the current state of the
distribution does not depend on what happened in the past: i.e. if the arrival time has
a given form now, then it will have the same form for all subsequent arrivals—i.e. it is
statistically stable.

S is the processing time distribution, with the same values as for A. c is the number
of servers or service entities. B is the number of buffers (the system processing limit),
K is the maximum population size and P is the policy, if these are specified.

Example 127. M/M/1 queue The basic queue in section 12.7 is referred to as an
M/M/1 model.

Example 128 (The Machine Repair-man Model). The Machine Repair-man Model
([Sch67]) is a simple queueing model that considers the problem of assigning the repair
of machines to a repair queue. When a machine breaks, it is put into a queue until a
repair-man can service it.

Example 129 (The Central Server Model). The Central Server Model ([Buz73, Buz76])
is an event driven model, with polling. A central server schedules a visit to a device
(i.e. it polls a number of devices). If a request is pending, it is serviced; after polling is
finished, the device returns to processing other tasks until the next event.

Example 130 (SNMP). The Simple Network Management Protocol (SNMP) uses essen-
tially the Central Server Model. When an event or ‘trap’ occurs from a monitored device,
a manager can poll the devices in the network and attend to any configuration changes
in turn.

212 CHAPTER 12. TASK MANAGEMENT AND SERVICES

12.7 THE PROTOTYPE QUEUE M/M/1

At a service centre (server), the incoming traffic has to balance with the outgoing traffic,
or a queue will grow. In the worst case, incoming jobs will have to be dropped.

Suppose we have an average of n− 1 tasks already in a queue and tasks are arriving
at a rate of λ per second, then as soon as there are n tasks in the queue some tasks must
be forwarded at rate µ, otherwise the average number of tasks in the queue will not stay
constant. We can write this

λ pn−1 = µ pn,

pn = ρpn−1,

for any n, where ρ = λ/µ. ρ is called the traffic intensity. If ρ > 1 then the incoming
rate is higher than the outgoing rate. Now since the recurrence relation above holds for
all n, clearly

p1 = ρp0

p2 = ρ2p0

pn = ρnp0.

The sum of probabilities is always 1, so
∞∑
n=0

pn = 1.

This is a geometric series, so we can find p0:
∞∑
n=0

pn =
p0

1− ρ = 1.

Thus we have, for any n,

pn = (1− ρ)ρn.

Although this is clearly an idealization (there is never an infinite number of tasks, even
on the whole Internet), this gives us a distribution that we can use to estimate the average
number of tasks in the queue. The expectation value of the number of tasks is:

E(n) = 〈n〉 =

∞∑
n=0

npn.

Substituting for pn,

〈n〉 =

∞∑
n=0

n(1− ρ)ρn

=

∞∑
n=0

nρn −
∞∑
n=0

nρn+1

12.7. THE PROTOTYPE QUEUE M/M/1 213

Relabelling n→ n+ 1 in the second term gives us another geometric series:

〈n〉 =

∞∑
n=0

nρn −
∞∑
n=1

(n− 1)ρn

=

∞∑
n=1

ρn

=
ρ

1− ρ
Thus the mean number of tasks is

〈n〉 =
ρ

1− ρ
→∞ (ρ→ 1)

The variance can also be worked out

〈(n− 〈n〉)2〉 =
ρ

(1− ρ)2

This gives us an estimate of the size of queue that we need in order to cope with a normal
traffic rate.

The system is busy whenever there is at least one job in the system. We can use this
to characterize how busy a server is.

Definition 51 (Load average or Utilization). The probability of finding at least one job
in the system is called the load average. It is ‘NOT’ the probability of finding no jobs in
the system, i.e. 1− P (n = 0).

For the M/M/1 queue, we thus write the load average, also called the Utilization, as

U = 1− p0 = 1− (1− ρ) = ρ =
λ

µ
. (12.1)

The assumptions above, that a fixed steady state (memoryless) rate equation holds, imply
that the arrival times are Poisson distributed. However, research over the last ten years has
revealed that Internet traffic does not satisfy this pattern. Voice traffic on the telephone
system has always been well modelled in this way, but packet switched traffic is “bursty”
– it has no scale that can be averaged out.

Example 131 (Sharing and contention). Some resources can only be used by one client
at a time. If several clients try to use these simultaneously there is contention. Is the
solution to put these requests in a queue, with some scheduling policy, or to make them
try again later? A scheduling of requests requires a protocol or even a service to exist,
to manage the queue. Without this, clients will compete and contend for the resource.
To fully appreciate the nature of contention, we need to combine queueing theory with
contention theory. See section 19.9 for a more complete method of analysis.

214 CHAPTER 12. TASK MANAGEMENT AND SERVICES

System loads which does not even out over reasonable time scales is said to be
long-tailed and sometimes statistically self-similar (see section 10.10). This is often
associated with a ‘burstiness’ or a power-law clustering of events. In self-similar traffic
there is long-range dependence, and theoretically infinite (at least unpredictably large)
fluctuations. This is means that queue size estimates need to be re-evaluated to avoid the
queue length from growing uncontrollably.

GARBAGE COLLECTION AND OVERFLOW

Not all systems have procedures in place to reclaim resources that are no longer in use.
The reclamation of reusable resources, and the discarding of consumable byproducts
is called garbage collection. In a queue, there is automatic reclamation as items are
removed from the queue, but in memory or space allocation that is not necessarily true.
Resource reclamation is crucial for the survival of systems in the long term1.

12.8 QUEUE RELATIONSHIPS OR BASIC “LAWS”

Basic dimensional analysis, or linear rate equations provide a number of basic “laws”
about queues. These are rather simple relationships that barely deserve to be called
something so elevated as laws, but they express basic truths about rate flow systems.
They are nicely summarized in [Jai91]. We mention a few examples here by way of
illustration. The laws express basic linear relationships about service flow rate. These
form the basis of subsequent approximations in section 18.5, for instance. We use the
following definitions for the ith server:

Arrival rate λi =
No. of arrivals

Time
=
Ai
T

(12.2)

Throughput µi =
No. of completions

Time
=
Ci
T

(12.3)

Utilization Ui =
Busy time

Total time
=
Bi
T

(12.4)

Mean service time Si =
Busy Time

No. of completions
=
B

C
. (12.5)

THE UTILIZATION LAW

The utilization tells us the mean levels at which resources are being scheduled in the
system. The law notes simply that:

Ui =
Bi
T

=
Ci
T
× Bi
Ci

(12.6)

1Humans eventually die because DNA does not perform (inverse) garbage collection of telomeres that
are involved in DNA replication.

12.8. QUEUE RELATIONSHIPS OR BASIC “LAWS” 215

or

Ui = µiSi. (12.7)

So utilization is proportional to the rate at which jobs are completed and the mean time
to complete a job. It can be interpreted as the probability that there is at least one job in
the system (see eqn. 12.1).

Example 132 (Web utilization). Suppose a web server receives hits at a mean rate of
1.25 hits per second, and the server takes an average of 2 milliseconds to reply. The law
tells us that the utilization of the server is

U = 1.25× 0.002 = 0.0025 = 0.25%. (12.8)

This indicates to us that the system could probably work at four hundred times this rate
before saturation occurs, since 400× 0.25 = 100%.

Although the conclusion in this example is quite straightforward and only approxi-
mate, it is perhaps not immediately obvious from the initial numbers. Its value therefore
lies in making a probable conclusion more obvious.

Example 133 (Unused resources). A University teacher complains that most of the
terminals or workstations in the terminal room of the University are idle, when he looks
in the afternoon, so there must be too many terminals and money can be saved by at least
halving the number. The students, on the other hand, complain that they can never find a
free terminal when they need one. Who is right? The system administrator decides to
look through the logs and apply the Utilization law. She finds that the time an average
student spends at a terminal is S = 1 hour, and the average number of users using a
given terminal per working day (of 8 hours) is µ = 4/8 = 0.5 per hour. The utilization
is thus U = 0.5 × 1 = 0.5. In other words, the terminals are in use about half of the
time.

The system administrator realizes that the peak load on the system is time-dependent.
Around midday, many students arrive looking for a terminal and cannot find one. In the
early mornings and late afternoons the students are all sleeping (or in lectures, or both),
so there are many spare terminals. By reorganizing their time, the system administrator
concludes that the students could make use of the machines that are there but that an
overcapacity of double is acceptable for covering peak load.

SERIES AND PARALLEL UTILIZATION

When dealing with arrangements of queues, working in parallel (independently) or in
series (waiting for each other), it is sometimes helpful to replace the array of queues with

216 CHAPTER 12. TASK MANAGEMENT AND SERVICES

a single effective queue. We can rewrite the formulae to obtain effective formulae for
these cases by assuming conservation of jobs: what goes in must come out. This leads us
basically to the analogy with Ohm’s law in electrical circuits, or Kirchoff’s laws.

If a number of queue servers is arranged in series (see fig. 12.2), then the utilization
law applies to each component. System components in series have the same average flow
rate µi through each component, assuming that the system is running in a steady state
– otherwise the pressure in the system would build up somewhere in one component,
which would eventually cause a failure (like a burst pipe). Thus the utilization of each

Figure 12.2: System components in series have the same average flow rate through each
component, assuming that the system is running in a steady state – otherwise the pressure in the
system would build up somewhere in one component, which would eventually cause a failure
(like a burst pipe).

component is

Ui = µSi. (12.9)

The utilization for the whole series of queues is thus

Utot =
∑
i

Ui = µ
∑
i

Si

= µSserial. (12.10)

Thus we see that the average service time for the whole series is

Sserial =
∑
i

Si. (12.11)

It is simply the sum of the service times of each sub-queue. If, on the other hand, we
couple the queues in parallel (see fig. 12.3), then it is now the total utilization that is
shared equally between the queues, i.e. U is common to each queue. Thus

µ =
N∑
i=1

µi =

N∑
i=1

U

Si
=

U

Sparallel
, (12.12)

and we can write

1

Sparallel
=

N∑
i=1

1

Si
. (12.13)

12.8. QUEUE RELATIONSHIPS OR BASIC “LAWS” 217

Figure 12.3: System components in parallel share the flow between the different server queues.
Here it is the average utilization that is common to each server, since each experiences the same
average incoming load.

If we have N identical servers Spar → 〈S〉par/N , i.e. the service time is reduced by
a factor of N on average. Alternatively, throughput can be increased by a factor of N .
Note, however, that this does not tell us how long a client task will have to wait for
completion. To determine that, we need a more advanced analysis (see section 12.9).

Example 134 (Shared workstation). Suppose a student terminal room has 100 computers
to share between 500 students. If the number of students increases now by 60, how many
extra computers do we require to maintain the same level of utilization? The simplest
answer to this is a naive ratio estimation, using the ratio of students to machines.

Students

Terminals
=

500

100
=

560

x
(12.14)

Thus x = 112 terminals. However, this result assumes that students actually arrive as a
predictable flow process. In fact, they arrive as a random process, and things are not
as bad as this. Utilization of overlapping random processes can be more efficient than
for predictable processes the events of one process can slot into the gaps in another. See
section 12.9.

LITTLE’S LAW

Another self-evident consequence of rates is Little’s law of queue size. It says that the
mean number of jobs in a queue Qni , in queue i, is equal to the product of the mean
arrival rate λi (jobs per second) and the mean delay (seconds) Ri incurred by the queue:

Qni = λiRi. (12.15)

If one assumes that the queue is balanced, as in eqn. (12.1), then λi ∝ µi, and we may
write

Qni ∝ µiRi (12.16)

218 CHAPTER 12. TASK MANAGEMENT AND SERVICES

or

Qni = cµiRi. (12.17)

Another way of speaking this equation is to say that the amount of information in the
queue is proportional to both the throughput rate and the amount of time each job takes
to execute.

Before leaving this section, note that this equation has the generic form V = IR,
similar to Ohm’s law in electricity. This an analogy is a direct consequence of a simple
balanced flow model; it is not so much as analogy as an isomorphism. We shall make
use of this result again in chapter 18.

Example 135 (Response time). In the M/M/1 queue of section 12.7, it is useful to
characterize the expected response time of the service centre. In other words, what is the
likely time a client will have to wait in order to have a task completed? From Little’s
law, we know that the average number of tasks in a queue is the product of the average
response time and the average arrival rate, so

R =
Qn
λ

=
〈n〉
λ

=
1

µ(1− ρ)

=
1

(µ− λ)
. (12.18)

Notice that this is finite as long as λ � µ, but as λ → µ, the response time becomes
unbounded.

RESPONSE TIME LAW

A situation that parallels the coupling of Ohmic resistances in series is to consider the
coupling of a number of queues in series. This is common in systems of all kinds: once
one part of a system is finished with a task, it is passed on to another part for further
processing. What then is the response time of the whole system?

Let Qtot be the total number of jobs in the system. Then clearly,

Qtot = Q1 +Q2 + . . .+Qn. (12.19)

Also, the total time can be written by Little’s law as a product of the average throughput
and the total response time. as

Qtot = 〈µ〉Rtot. (12.20)

12.9. EXPEDITING WITH MULTIPLE SERVERS M/M/K 219

The law applies to each of the component queues also, so eqn. 12.19 becomes

〈µ〉Rtot =

n∑
i=1

µiRi, (12.21)

where 〈µ〉 is the average throughput of the system. Thus, we have the response time

Rtot =

n∑
i=1

µi
〈µ〉Ri =

n∑
i=1

xiRi, (12.22)

where xi is the capacity of the component, or the fraction of jobs that are held in flow on
average in component i:

xi =
µi
〈µ〉 =

Jobs/s in component

Average total jobs/s
=

Ci
〈C〉 . (12.23)

This tells us that the total response time is simply a weighted sum of the individual
response times and any moment. It allows us to see where bottlenecks are likely to occur,
so that processing resources can be reallocated.

12.9 EXPEDITING WITH MULTIPLE SERVERS M/M/k

How does the ability to process input change if we add more servers to accept jobs from
the input queue? Intuition tells us that this must be more efficient, but as always the
answer should be qualified and quantified to be certain about what we mean.

Suppose we have k servers in parallel, removing jobs from a single input queue. We
assume that the servers are identical components (computers, humans etc), so that the
input rate is still λ and each server has a processing rate of µ. Clearly the maximum
processing rate is now kµ when all of the servers are busy. If we assume that there is no
overhead incurred in allocating tasks to servers, then this is also the rate at which work is
expedited. If there are fewer than n < k jobs waiting, then the average service rate will
be nµ. Thus our balance equations are now:

λpn−1 =

{
nµ pn (0 < n ≤ k)
kµ pn (n > k)

(12.24)

These can be solved to give:

λpn =

 p0

(
λ
µ

)n
1
n!

(0 < n ≤ k)

pk
(
λ
µ

)n−k
1

kn−k
= p0

(
λ
µ

)n
1

k!kn−k
(n > k)

(12.25)

and p0 is found by normalizing:

∞∑
n=0

pn = p0

(
k−1∑
n=0

(
λ

µ

)n
1

n!
+

∞∑
n=k

(
λ

µ

)n
1

k!kn−k

)
= 1, (12.26)

220 CHAPTER 12. TASK MANAGEMENT AND SERVICES

i.e. if we now let the traffic intensity per server be ρ = λ/µk,

p0 =

(
1 +

k−1∑
n=1

(kρ)n
1

n!
+

(kρ)k

k!(1− ρ)

)−1

. (12.27)

The probability that a tasks will have to wait to be performed κ is the probability that
there are k or more tasks already in the system,

κ ≡ P (n ≥ k) =

∞∑
n=k

pn =
(kρ)k

k!(1− ρ)
p0. (12.28)

Similarly, the average number of jobs in the system is the expectation value of n:

〈n〉 =

∞∑
n=0

npn = kρ+
κρ

1− ρ . (12.29)

Little’s law again gives the average response time for the system in responding to a task
as

R =
〈n〉
λ

=
1

µ

(
1 +

κ

k(1− ρ)

)
. (12.30)

Readers can verify that κ(k = 1) = ρ and that the expressions above agree with the
single server queue for k = 1.

The k dependence of the above expression is rather complicated; in terms of power-
counting κ is approximately neutral to changes in k, but decreases slightly for increasing
k. Expression (12.30) therefore tells us that as the number of servers k increases, the
response time for incoming jobs falls off slightly faster than 1/k. Thus, the response
time of a single queue with k servers is slightly better than k separate queues, each
with a 1/kth of the tasks to complete. This assumes that all of the jobs and servers are
identical, of course. Why should this be? The reason is that single queue servers make
all jobs wait even when load is low, whereas a parallel server strategy can keep the level
of incoming jobs below the queueing threshold a greater percentage of the time. The
difference becomes most noticeable as the traffic intensity increases.

Example 136 (Scaling servers). A web hotel company has five customers who need their
sites hosted. The company must decide whether to use a separate computer for each web
server, or whether they should host all sites as virtual domains on a single site with a
load balancer or multiple CPUs. Considering the performance aspect, they note that
traffic arrives most of the time at a rate of 10 hits per second (λ = 0.01 per millisecond
(ms)) and that the web server has a service rate of 20ms (µ = 0.05 per ms). Let us model
this as an M/M/5 queue.

12.9. EXPEDITING WITH MULTIPLE SERVERS M/M/K 221

The traffic intensity is ρ = λ/kµ = 0.04, and thus the probability that the server is
idle is:

p0 =

[
1 +

(5× 0.04)5

5!(1− 0.04)
+ 5× 0.04 + . . .

]−1

= 0.82. (12.31)

Clearly normal traffic levels are low, and this is a high probability. The probability that
all the terminals are busy is

κ =
(kρ)k

k!(1− ρ)
p0 = 1.1× 10−5. (12.32)

Hence the average response time is:

R =
1

µ

(
1 +

κ

k(1− ρ)

)
= 20 ms. (12.33)

Now, suppose we have used 5 separate machines each with an M/M/1 queue. The effective
arrival rate λ can be divided evenly between them, so that λ′ = 0.01/5. The probability
of a given queue being idle is

p′0 = (1− ρ′) = 0.96, (12.34)

and the average response time is

R′ =
1

µ− λ = 20.8 ms. (12.35)

This shows that the multiple queues lead to a slightly larger result, even at this low level
of utilization.

Suppose now, we compare the behaviours of these two alternatives at peak times,
where the number of arrivals is ten times as much. Substituting λ = 0.1 and λ′ = 0.1/5,
we find that the probability that the response time for the M/M/5 queue is largely
unchanged

R = 20 ms. (12.36)

However, the response times of the multiple M/M/1 queues are

R′ = 33.3 ms. (12.37)

We verify that a multiple server handling of a single queue is at least as good as
multiple queues, because the probability of a multi-server handler being idle is much
smaller. Multiple queues with separate servers force even the shortest jobs to wait
unnecessarily, whereas the a multiple server scheduling would have cleared these jobs
quickly, leaving a greater chance of being able to handle incoming tasks immediately.
This phenomenon is related to the ‘folk theorems’ in section 18.3, eqn. 18.24.

222 CHAPTER 12. TASK MANAGEMENT AND SERVICES

12.10 LOAD BALANCING FROM QUEUEING THEORY

As more services move into high volume datacentres, we increasingly see architectures
based around theM/M/nmodel for handling bulk user traffic. Meeting the requirements
set by Service Level Agreements (SLA), with variable demand and resources is essential
to businesses[Sea, XZSW06, LSZ06]. A common strategy for keeping service promises
is to opt for “over-capacity”, i.e. providing more resources than are strictly needed on
average, by some acceptable margin. This is a straightforward way of dealing with
uncertainty, but it can be a relatively expensive way and, without a model for capacity,
it is not clear exactly what margin is required for meeting the peaks in demand. The
cloud computing model grew precisely out of the desire to escape from this overhead by
sharing high entropy workloads[Bur13a]. A simple approach, which remains popular, is
to adapt the service scheduling strategy and resource pool to better adapt to changing
requirements[XZSW06, LSZ06]. In each case, there is a role for parallelism in the
provision of the services both for the purpose of load sharing and redundancy.

One may examine how the simple queueing models behave as estimators of local
load balancing techniques, by seeing how response times vary as a function of traffic
intensity and number of servers[BU06b, BU06a, BB06] (see figure 12.4). It is known
that the limitations of bottlenecking traffic for splaying to multiple queue processors is a
strategy that network device manufacturers have not been motivated to solve efficiently,
as their business is about selling boxes to perform just this function.

Figure 12.4: A typical load balancer configuration, with a single input stream splaying to a
number of servers. The policy of the load balancing node tries to approximate the M/M/n

queue, with varying policies to scheduling

Example 137 (Load balancing). If one believes the manufacturers of network equipment,
load balancing is a simple problem. One approaches the problem from the viewpoint
that the network has no capacity limitations, and that servers all have somewhat similar

12.10. LOAD BALANCING FROM QUEUEING THEORY 223

tasks, capacities and behaviours. In fact, jobs have both semantics and dynamics. There
are three main problems to load balancing:

1. Accmulating all requests in a single broadcast domain.

2. Forwarding requests to an array of server queues.

3. Maximizing the entropy (balance) of requests to maximize througput.

What criterion should we use to try to balance the load? Simple sequential round robin?
Least recently used server? Queue length? CPU utilization? Load average? Free
memory of the server? Whatever choice we make, we base the choice on assumptions.
Because networking equipment cannot have knowledge of the intended semantics of jobs
and services, it can only offer purely dynamical measures on which to make a selection.
However, this cannot allow for differences in job size, or knowledge of time to complete,
or the resources needed to complete the request. Jobs handled by a single server can
be in contention with one another, leading to highly unpredictable service times. The
problem here is that load balancers have no cooperative relationship with the servers,
and therefore ‘impose’ work leading to conflicts. An alternative is for servers to be in
the driving seat of reasoning about their load capacity. They may ‘pull’ tasks [BB08] to
maximize both dynamical and semantic information.

The results of experiments to test a commercial load balancer against the theoretical
values, even in the mid 2000s, was quite interesting. The authors in [BU06b] found that
for low loads, any sharing policy was equally fine; however, at high loads there was little
to gain from trying to optimize the sharing according to different policies (round robin,
least recently used, etc). While some performed better for a while, the additional cost
quickly came to nothing the the critical point. The best advice was simply to stay away
from the critical region and not waste money on expensive hardware. Buying more of
cheaper commodity switches was a better strategy, as they all failed in a similar way (see
figure 12.6). It is worth noting how this study actually revealed the performance of the
load balancer itself as a bottleneck when adding more servers. The problem of queue
marshalling is not only dependent on traffic intensity but also number of destination
queues. The study in [BU06b] called into question what still remain the most popular
methods of load balancing in datacentres today.

The experiments were based on pushing into queues, with an unpredictable Markov
process, but why would we expect this to give the best results for load sharing? Anycast
methods have also grown in popularity for small networks, but they suffer from similar
contention issues[EPB+98]. Allowing each server to throttle its own traffic using a ‘pull’
approach could also be considered. This would avoid the queueing instability all together
on the server side, and push the uncertainty onto clients, where only single requests need

224 CHAPTER 12. TASK MANAGEMENT AND SERVICES

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 50 100 150 200 250
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

R
e
s
p
o
n
s
e
 T

im
e
 [
m

s
]

C
P

U
 U

ti
liz

a
ti
o
n
 [
p
e
rc

e
n
t]

Requests/Second

Response Time Server Utilization

Figure 12.5: The performance of a queue approaching the critical unstable traffic intensity. At
around 100 requests per second, we see the response time for a server grow suddenly and rapidly
as the queue becomes overloaded. This shows the two regimes of the queue: ‘all is well’ versus
‘thrashing*, with a sudden instability in between. At this point, all predictability falls apart. Thus,
staying below this threshold is critical.

to be handled. Pull based load balancing was studied in [BB08] and showed several
benefits over the push approach, using voluntary cooperation as a paradigm for sharing.
However, few systems are designed to scale in this way. One exception is the so-called
Content Delivery Networks (CDN)[CHC+11, VP03]. Regrettably, shared computing
infrastructure or ‘clouds’ do not make currently such methods available to clients in
a simple way. The theory suggests that this is a mistake. We’ll return to this issue in
volume 2, where the notion of autonomous cooperation is studied at length.

12.11 MAXIMUM ENTROPY INPUT EVENTS IN PERIODIC

SYSTEMS

One of the themes that we return to repeatedly in this book is the idea of systems that
respond to random events. When these events change measurables in an unpredictable
way, we call them fluctuations. Characterizing fluctuations is important because it is a
way of representing the spectrum of input.

12.11. MAXIMUM ENTROPY INPUT EVENTS IN PERIODIC SYSTEMS 225

 0

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500 600

R
e
s
p
o
n
s
e
 T

im
e

Requests/Second

M/M/1
5 M/M/5 Response time

Figure 12.6: Showing how the M/M/5 performs compared to the theoretical M/M/1× 5 pre-
shuffled. We see, as expected, that the M/M/5 outperforms 5 M/M/1 queues. The response
time of a real switch tracks the M/M/5 well far from critical intensity; however, close to
instability, it fares below the M/M5 theoretical value too, even for only 5 servers.

The problem with random events is that they come from an environment that is
complex and that we know little about. By definition, the environment is that which is
outside our control, so how should be describe the unknown? One way of approaching
this problem is to assume the greatest level of randomness, given a constraint that says
something about the interaction of the system with the environment.

If we characterize input as an alphabet of symbols labelled by i and with probability
distribution pi, then the assumption of maximum randomness can be accomplished by
using a maximum entropy principle (see section 9.11). This is a form of ‘constrained
fair weighting’ that is sometimes used as a way of scheduling events between different
service centres (servers).

Example 138 (Input stream distribution). Consider the problem of modelling the input
event stream of a server, with expected input current I symbols per second, formed from
the weighted sum of individual symbols rates Ii:

〈I〉 =

N∑
i=1

piIi. (12.38)

226 CHAPTER 12. TASK MANAGEMENT AND SERVICES

Thus, we maximize entropy given this ‘constraint’ on pi. The result is the well known
Boltzmann distribution pi ∝ exp(−βIi).

The most common solutions of the maximum entropy hypothesis are the completely
flat distribution (all input events equally likely) and the exponential Boltzmann distribu-
tion that follows from a constant sum constraint.

How good is this assumption of maximal entropy fluctuation? This was investigated
partially in ref. [BHRS01], where it was found that the assumption is a good representa-
tion, but only if a modification is made to the maximum entropy signal. The modification
is a periodic scale transformation that follows the daily and weekly rhythm of system
behaviour.

If we fit a maximum entropy distribution to actual data, it will have constant variance,
or the moments of the distribution will remain fixed. However, this would imply that the
environment was a steady state process, which we know to be false. Observations show
that there is a distinct periodicity, not only in the expectation values of environmental
signals, but also in their variance over a periodic representation of several weeks (see fig.
2.1).

Some authors maintain that this is evidence for self-similar behaviour, and the
modified distribution is in fact a power law spectrum rather than a maximum entropy
distribution. One possible explanation for this is the similarity in form between the
asymptotic form of the stable Lévy distributions and the form of the periodically corrected
maximum entropy model ([Sat99]).

12.12 MISCELLANEOUS ISSUES IN SCHEDULING

Numerous additional factors about human-computer systems can be incorporated into
time management: humans get bored, they have different specializations and prefer-
ences, different skill levels etc. Finding the optimal use of time, given these additional
constraints requires a more sophisticated model, with heuristic currencies.

Once model that describes human scheduling of interruptions or intervals of con-
centration is the game theoretical payoff model described in section 19.9. In this model,
which concerns cooperation versus competition, we can think of time-cooperation as giv-
ing humans space to work in fixed schedules and competition for time as being continual
interruptions at random. In other words, tasks cooperate in orderly scheduled quotas, or
they demand resources at random. This model addresses many situations, and we can use
it for human scheduling too. The basic result from game theory, although simplistic, tells
us that random event competition works well as long as the number of jobs is small, i.e.
as long as there is plenty of time and no one is taxed to the limit. However, as someone
becomes very busy, it is better to schedule fixed quota time-slices for jobs, otherwise all

12.12. MISCELLANEOUS ISSUES IN SCHEDULING 227

jobs tend to suffer and nothing gets done. The overhead of swapping tasks at random can
lead to great inefficiency if time is short.

The potential for harvesting the vast computing resources of the Internet has led to
the notion of Grid computing, or massive distributed parallelism. To accomplish world-
wide cooperation of computing resources, models extend their time-scales to include
batch-style processing as part of a larger task. Examples of this include the screen-saver
processing methods used by the Search For Extraterrestrial Intelligence (SETI) project.
Each of these cases can be studied with the help of parallel and distributed scheduling
models.

Applications and Further Study 12.

• Designing workflow patterns and schedules.

• Resource deployment.

• Measuring workflow and effciency.

• Modelling of generalized queuing processes.

CHAPTER 13

SYSTEM ARCHITECTURES

In the foregoing chapters we considered mainly systems that could be described by
simple scalar variables, with no larger structure. That was a useful simplification for
considering the basic effects of change and dynamics, but few human-computer systems,
worthy of investigation, are this simple. In technology, we normally want to design a
system with a specific function in mind. System design requires a number of elements:

• Strategy.

• Policy.

• Procedure.

• Activity.

These fit together into flows of information that govern change within the system.

13.1 POLICY AND PROMISES OF ORGANIZATION

No system has to have to have an intended purpose in order to function, but observers
might interpret a system as fulfilling a function independently. Biological organisms do
not have a purpose a priori, they exist only to reproduce and start over; if they are lucky
they find an ecological niche. Trees and plants may spring up and prevent the erosion
of sand in a beach or desert. They were not planted on purpose (though this would be
a possibility) but they nevertheless fulfil the function of preventing erosion. When a
functional quality is emergent rather than intended, third parties may still make use of
the outcomes, and even interpret them with intent1.

1This is the crux of the confusion between Darwinian evolution and so-called intelligent design.

228

13.2. INFORMATIVE AND PROCEDURAL FLOWS 229

The concept of intent is subtle. Following the first 2003 edition of this volume, it
became clear to me that the whole issue of intent was missing from the story of systems,
and needed a description of its own. In computer programming, one could say that
programs and algorithms represent intentional policies for behaviour, but only at a very
details causative level. Intent spans more layers than flowchart algorithms. The outcome
of that observation was the birth of Promise Theory[Bur05, BB14], which proposes to
reformulate all aspects of interactions between system parts. In the spirit of overview, in
this volume, we shall not describe it here. Rather, the application of Promise Theory to
systems is covered in detail in volume 2.

A collection of promises made about the behaviour of a system is called a policy.
Policy is thus used in describing the management of systems to mean a specification of
a goal, together with decisions limiting the behaviour of processes within. Policy has
potentially several kinds of goal:

• To ensure an outcome.

• To prescribe a constraint.

• To maximize production of a benefit.

• To minimize the extent of a problem.

• To identify and distinguish input (accountability).

These are ad hoc decisions about a system: they cannot be derived. Policy exists at the
high level and the low level. High level policy might include ethical considerations and
other human issues. Low level policy constrains the details of work processes, e.g. in
the placement of regulating valves (administrative overseer) for control, convenience
measures, security measures, consistency, and the overall flow of information.

13.2 INFORMATIVE AND PROCEDURAL FLOWS

Dynamical systems generate and manipulate information. They require input and they
generate output. The information flows around the system as the system carries out
its function, and the final result is usually a synthesis of products which has been
accumulated and assembled from different parts of the cooperating system.

It is important to distinguish two types of flow, or development within systems:

230 CHAPTER 13. SYSTEM ARCHITECTURES

Definition 52 (Algorithmic flow). This is a causative map of the way the actions taken
by the system interact, and how control flows from promise to promise, or from outcome
to outcome, within the processes of the system. The instructions or promises within a
system are often laid out from start to finish, in a causal list, or embedded in a control
loop. This represents a flow of activity and authority in the system.

An example of this is a computer program.

Example 139 (Functional structure). A computer program has a functional structure,
with each function composed of a linear sequence of instructions. Some of these instruc-
tions require the evaluation of subroutines or subordinate functions. A university is a
system which accepts students and churns them through a learning process, emitting
them at the other end hopefully invigorated with new ideas and abilities. There is a
definite flow within this system, from lecture to lecture, with Event driven systems, on
the other hand, respond to specific happenings. A fire service is an example of an event
driven system.

Another kind of flow is that taken by the resources that are manipulated by the
processes.

Definition 53 (Resource flow). The produce of a system, or the work it actually carries
out, also has a rate of change. This is the rate of resource and information flow.

The flow of information does not necessarily mirror the flow of algorithms and instruc-
tions which produces it.

Example 140 (Command structure). The command structure of an army might involve
a flow of decision making by radio to and from a command centre, during a military op-
eration. The movement of the troops (i.e. the resources) is not related to this information
flow.

Example 141 (Support desk). In a user-support desk or help desk, a flow of control
information passes between the user and those helping the user. The actors which help
the user manipulate resources in order to solve the user’s problem. These two information
flows are different.

The distinction between algorithmic and resource flow is important to the design of
a system, because one should not be tempted to organize these two flows by the same
standards. Both flows are important to the overall function.

13.3. STRUCTURED SYSTEMS AND AD HOC SYSTEMS 231

Passive Active Human

Data-structure Program Site/enterprise
Entity Process Department
Database Subprocess Work group
Record Thread Project

Table 13.1: Object/entity names in human-computer systems

13.3 STRUCTURED SYSTEMS AND ad hoc SYSTEMS

In most cases, data and processes are arranged in components, objects or entities that
allow specialization and collaboration. These cooperate in the execution of the system,
by communicating via channels of communications. These might be ‘word of mouth’,
written on paper or electronic; the means of communication is unimportant.

Consider the names in table 13.1. These names represent logically distinct elements
within different kinds of system. The units are often arranged in a hierarchical fashion,
e.g. a site contains several departments, which in turn contains several groups, composed
of individuals; a database contains many records which, in turn, consist of many sub-
records.

The structure of systems that perform a stable function is usually fixed, for the
duration of that function. However, this limits their ability to adapt to slight changes in
their environments. Change can therefore be allowed to take place in a deterministic
way by having a continual reevaluation of the system at regular intervals. An alternative
procedure is to allow systems to perform randomly.

An ad hoc system has no predictable structure over long intervals of time. We can
define it as follows:

Definition 54 (Ad hoc system). A system is said to be ad hoc if its structure is periodically
redetermined by random variables.

Example 142 (MANET). Mobile ad hoc networks are networks for radio communication
that are formed by randomly moving mobile devices with transceivers. These devices
link up in an opportunistic manner to form a relaying network. Messages can be routed
and relayed through such networks if a sufficient number of active devices is in range of
one another.

It is tempting to associate ad hoc systems with the concept of a random graph;
however, an ad hoc system need not be a random graph — it could be based on a

232 CHAPTER 13. SYSTEM ARCHITECTURES

predetermined structural plan, but with only a finite probability of being connected at
any given moment.

13.4 DEPENDENCE ON EXTERNAL AGENTS

To discuss policy and intent, we need to describe agency, or simply agents. All compo-
nents may be considered agents in their own right, which interact and behave according
to the promises they make. This is the essence of Promise Theory (see volume 2). All
systems of components depend on other components to keep their collective promises:
that is implicit in the definition of what we mean by a system. This dependence might
be a strong dependence, with dramatic consequences if a part fails, or a merely weak
influence.

Some factors in a system enable the system to function, while others merely enhance
or amplify its abilities. In the next chapter, we shall consider how to rationalize and
analyze the effects of dependencies; for now, we introduce only the concepts.

Definition 55 (Strong dependence). This is a dependence on another part of the system,
in which the removal of the dependency (the tie between the dependent and the dependee)
leaves the dependent (that which which depends) unable to function.

Strong dependence implies strong coupling, and non-linear behaviour, and so-called
complex behaviours.

Definition 56 (Weak dependence). This is a dependence in which the removal of a
dependency does not prevent the functioning of the dependent, but merely alters its
possible behaviour.

Weak dependence implies weak coupling, and approximately linear behaviour, with
decoupling of system scales.

Example 143 (Fuel dependence). An aircraft depends strongly on its fuel; without fuel
it cannot function. The same aircraft depends weakly on the weather; this can affect its
performance, but does not prevent it from functioning.

A computer system depends strongly on its hardware and operating system; without
this it cannot function. The same computer depends only weakly on its third party
software.

Example 144 (Metropolitan scaling). It is known from the study of cities (Metropolitan
areas) that the scaling of economic output and certain measures, like the lengths of roads,

13.4. DEPENDENCE ON EXTERNAL AGENTS 233

etc, do not depend strongly on who or what happens in a city. Cities scale in a ‘universal’
manner, which is typical of weak coupling[Bur16a].

Example 145 (River scaling). River systems satisfy a universal empirical rule concern-
ing the distance between riffles and pools (the riffle-pool sequence), which are found to
be separated by 5-7 times the width of the river. In this form of scale-free universality, a
dimensionless ratio of distance/width ∼ 5 is characteristic of all rivers, in spite of the
ground type or rock type, etc.

A system must be analyzed in terms of its dependencies to understand its behaviour
at that scale. At scales much larger than this, weakly coupled systems may not reflect the
low level dependencies.

Dependence on other parts of a system has many implications for a system, including
its efficiency and its ultimate limitations. As implied above, a critical dependence on
some component can affect the ability of the system to perform its function. If such a
crucial part becomes damaged or unavailable, then the whole system can fail to function:
the system is then said to have a single point of failure. Note this phrase does not
necessarily mean that there is only one of them, but that one is enough to cause complete
failure. In other words, the failure of the system at a single point is enough to halt it
completely. This is clearly a precarious situation to be in, and is usually a sign of poor
design. A strategy for avoiding such problems in system design is redundancy, or the use
of backup systems.

Definition 57 (Redundancy). The duplication of resources in such a way that there are
no common dependencies between duplicates, i.e. so that the failure of one does not lead
to the failure of the others.

Here is an example of lack of redundancy.

Example 146 (Hubs). A clustered structure of computers centred around a single server
forms a hub-centric structure. If the computer at the centre of the hub should fail, all of
the dependent computers will cease to function properly. There is no backup.

Example 147 (Utility infrastructure). Developed societies are almost completely depen-
dent on electricity for their functioning. If a bad storm, or flood were to take out power
lines to a major community, it would cease to function. This is the reason why military
operations usually target an enemy’s critical infra-structure first.

Redundancy is an important strategy, but too much redundancy can leasy to ineffi-
ciency.

234 CHAPTER 13. SYSTEM ARCHITECTURES

Example 148 (Unstructured communication). Systems depend on the flow of information
through channels of communication. Unstructured communication often results in too
much communication (repetition and little progress). Regulation of dependencies is a
strategy for minimizing unnecessary uncertainty.

An alternative to redundancy is rapid repair or maintenance.

Example 149 (Shannon error correction). If we can repair a system faster than users
sample its services, then that system looks a lot like a Shannon error correction channel.
Rather than failing over to a redundant component, a failed component can be repaired
quickly to make the system available again, before anyone notices. If repair is cheap
and fast, this may be preferably to having multiple redundant resources that sit idle
(underutilized).

13.5 SYSTEM DESIGN STRATEGY

There are many ways to attempt the design of a system. One looks for a strategy for
breaking a complex task down into manageable pieces in order to execute it. Experienced
practitioners rely on their experience to suggest solutions, but sometimes intuition can
fail and a more rational enquiry is needed to make a decision. We shall deal with the
requirements for rational decision-making in the remainder of the book. Some common
alternatives are described here.

Note that the graphical view of systems expounded in this book implies no particular
need for hierarchy. There is a long standing tendency of imposing hierarchies on systems,
even where they might be detrimental to functioning, because hierarchies are ingrained
into most societal structures. One of the hardest lessons to learn in system analysis is
that decision making does not necessarily imply a directed branching tree-like structure:
it can also arise by competition, by voting, by ad hoc timing or by random events. Our
main concern is whether systems are appropriately stable in their decision making.

MODULAR DESIGN AND SCALE ASSUMPTIONS

Different authors use this expression in different ways. Modular design is, first and
foremost, a strategy of breaking a system up into smaller parts, in order to promote
comprehensibility, adaptability and extensibility. Is a single, closed function a module?
The answer is clearly yes, but one normally reserves this expression for larger entities
than this.

Modularity is a form of reductionism[Bur15]. It is important to remember that the
correct functioning of all modules in a system does not guarantee the correct functioning
of the whole. At each scale of modularity, where components are connected together and

13.5. SYSTEM DESIGN STRATEGY 235

interact, there is new information that is not present in the components themselves. This
is crucial to the functionality, or promises made by the system as a whole.

Example 150 (Software testing). In the testing of systems (e.g. software unit testing, the
checklist validation of factory processes, etc), a fully compliant checklist of all promises
does not guarantee a properly working system. A television can be made up of perfectly
working components, but fail to work because a connection is missing or because it is
not configured to receive the appropriate channels.

What is modular at one scale may seem integrated at a larger scale. in any system,
modularity is a perception rather than a reality. It makes most sense to speak of modules
when they are weakly coupled.

Example 151 (Kit car). At the scale of a person, a car appear as a collection of
components (wheels, seats, engine, etc). At the scale of a region or country, cars appear
as a formless gas of ‘traffic’ whose behaviour is not at all dependent on any modules
within any car.

TOP DOWN VERSUS BOTTOM UP

Two design strategies for building systems have emerged, and have developed with
increasing refinements and compromises between the two viewpoints. Although it is too
much to ask for a concensus of naming, broadly speaking, these are represented by the
following:

• Top down: The name ‘top down’ is motivated by the traditional way of drawing
hierarchical structure, with high level (low detail) at the top, and increasing low-
level detail at the bottom. A top down analysis is goal driven: one proceeds by
describing the goals of the system, and by systematically breaking these up into
components, by a process of functional decomposition or normalization.

• Bottom up: In a ‘bottom up’ design, one begins by building a ‘library’ of the
components that are probably required in order to build the system. This approach
is thus driven by specialization. One then tries to assemble the components into
larger structures, like building blocks, and fit them to the solution of the problem.
This approach is useful for building a solution from ‘off the shelf’, existing tools.

The difference between these two strategies is often one of pragmatism. A top down
design is usually only possible if one is starting with a bank slate. A ‘bottom up’ design
is a design based on existing constraints, namely the components or resources that are
to hand. An advantage of building from the bottom up is that one solves each problem
only once. In a top-down strategy one could conceivably encounter the same problem in

236 CHAPTER 13. SYSTEM ARCHITECTURES

different branches of the structure, and attempt to solve these instances independently.
This could lead to inconsistent behaviour. The process of ‘normalization’ (see chapter
14) of a system is about eliminating such inconsistencies.

Example 152 (Top down 1). (Computer system - ‘top down’) In a the design of a
new computer system, one examines the problem to be solved for its users (banking
system,accounts), then one finds software packages which solve these problems, then one
chooses a platform on which to run the software (Windows, Macintosh, Unix), and finally
one buys the and deploys the hardware that will run those systems.

(Computer system - ‘bottom up’) First one buys reliable hardware, often with op-
erating system already installed, and installs it for all the users; then one looks for a
software package that will run on that system and installs that. Finally, the users are
taught to use the system.

Example 153 (Top down 1). (Enterprise - ‘top down’) In the organization of a mainte-
nance crew, one looks at the problems which exist and breaks these down into a number
of independent tasks (plumbing,electrical,ventilation). Each of these tasks is broken
down into independent tasks (diagnosis,repair) and finally individuals are assigned to
these tasks.

(Enterprise - ‘bottom up’) The enterprise bosses look at everyone they have working
for them and catalogues their skills. These are the basic components of the organization.
They are then grouped into teams which can cooperate to solve problems like diagnosis
and repair. Finally these teams are assigned tasks from the list of plumbing, electrical
work and ventilation.

In system administration, especially configuration management, these two strategies
are both widely used in different ways. One may either implement primitive tools (bottom
up) that are designed to automatically satisfy the constraints of a system, or one can use
trial and error to find a top down approach that satisfies the contraints.

FUNCTIONAL DESIGN AND OBJECT DESIGN

Similar to the ideas of top down and bottom up design, are the design strategies widely
used for building computer software, based on functional and object decomposition.
Computer software is simply a system of algorithms and data structures, which operate
on the resources of a computer. The principles of software design are the same as those
of any system design.

A functional design is an algorithmic (top down) design, in which the goals of the
system motivate the architecture of the components within the system. The system is
geared around the evaluation of its function, i.e. performing its task. This approach

13.5. SYSTEM DESIGN STRATEGY 237

is illustrated in figs 13.1, 13.2 and 11.1. The system state is usually centralized in a
monolithic data structure, whereas operators are distributed throughout the different
functional entities within the system.

system

softwarehardware

disk CPU web

services

database

computer

wordproc spreadsh.

Figure 13.1: A functional structure diagram for a computer system, somewhat simplified, shows
how each level of the computer system depends on other parts.

system
computer

manage

install

snmpsoftware hardware services software hardware

networkconfigure

Figure 13.2: A functional structure diagram for the meta-system which manages (administers) a
computer system. The diagram, somewhat simplified, shows how each task level of the system
depends on sub-tasks. This diagram is easily drawn and easily used to over-simplify the issues in
system management. For instance, it gives the impression that management is a one-off process
and moves from left to right in the diagram whereas, in fact, it is a dynamical process in which all
of the parts are called upon repeatedly.

In a object oriented design (bottom up), one begins by isolating logically independent
objects or tasks within the whole system, i.e. tasks which are able to carry out a specific
function without outside help (see fig 13.3). One then constructs the system around
these objects by sending messages between them. Any details which only apply to

238 CHAPTER 13. SYSTEM ARCHITECTURES

the particular object are contained with in it, i.e. hidden from public view. Whereas a
functional model reflects a flow of activity and information between the levels of the
boxes, an object model requires a separate plan for action, at each level of its operation.
Private algorithms are usually referred to as the methods of the object. An object model
requires at least one public ‘method’, or control function, which binds the objects together.
The state of an object is private to that object, and all of the operators which change
that state are private to the object. In order to function in concert, one often requires the
guidance of a simple functional system. The total state is decentralized, and is the sum
of the private states of each of the objects.

It is sometimes said that ‘objects’ communicate by sending messages (like a peer to
peer network). While this is the idealized viewpoint taken in pure object oriented design,
it is often an exaggeration of the truth. In practice, there is some guiding functional
super-structure which manages the objects; seldom are they able to work independently.
We can imagine this as a principle.

Principle 6 (Separation of management and work structures). A higher level, weakly
coupled management framework may be helpful to bind low level operations together,
and guide them towards the larger goal of policy, both in human and machine parts
of any system. The management framework is formally separable from the low level
operations only if weakly coupled.

service
network

?

computer

switch

backup

Figure 13.3: In a object design, one bases the structure around the objects which need to be
visible at the functional level of the system. Any dependencies which belong only to the object
are concealed within the object concerned.

Each object has a private notion of state, and its own internal methods for changing
that state. The object can communicate with the outside world, through authorized

13.5. SYSTEM DESIGN STRATEGY 239

channels, but is otherwise closed. From a security or privacy perspective, the object
model is based on the Clark-Wilson security model, or role-based security.

Object strategy is conventionally mixed together with the idea of classification also.
Classification has to do with object types or name conventions. For example, if one
defines a object which is a bank, then there might be several instances of a bank system
in use, at different locations. If all of those instances share the same design, then they are
then all said to be members of a class of banking systems.

In a rough sense, a pure, functional decomposition is rather like the dreams of the
communist states: in which every part of the system is steered from above by the orders
propagating down the hierarchy, and in which every part contributes in its own unique
way to the larger goal of executing the function of the system. An pure object model, on
the other hand, is somewhat like a system of decentralized control, in which different
objects work independently, but cooperate in order to achieve larger goals. These are two
different strategies for building systems. The relative efficiencies of the two strategies
are hotly disputed, but there are no unilateral conclusions. At best we can say that the
ability to control requires the system to be well behaved, or sufficiently stable. Then,
‘control’ implies change by external influence.

Principle 7 (Control). The perception of control may be illusory. Objects must either
compete freely with one another, or be guided by a super-structure in order to be

‘controlled’, i.e. to comply with intent. This does not necessarily require centralization or
hierarchy, only persuasive interaction.

The meaning of control will be discussed at length in volume 2.

The advantage of functional decomposition is that it has a structure which directly
reflects the task it is designed to perform. It is therefore easy to understand in a causal
sense. The advantage of the object model is a more rigorous separation of logically
independent tasks and resources, which makes the reuse of those separate items in other
contexts easy. The lack of an obvious structure of algorithmic flow makes understanding
the causality of an object system harder, however. Current trends tend to favour the
object model because, if nothing else, it provides a tidy way of house-keeping the parts
of the system and their dependencies.

In practice, it is rare to find either of these strategies in a pure form. Both strategies
need each other in order to succeed: an object model has no implied algorithmic flow, so
it needs a functional model along side in order to guide the flow of production. Similarly,
any function within a functional design is a rudimentary object, and benefits from a
disciplined logical decomposition. Thus one must view these two philosophies are being
complementary.

240 CHAPTER 13. SYSTEM ARCHITECTURES

CLIENT MODEL AND PEER MODEL

Another way of looking at the centralized versus de-centralized debate, is through the
paradigm of services. In a functional decomposition, one could say that each function
requests services of its subordinate functions. Similarly, in an object decomposition, each
object contains internal services (methods), but can also opt to send messages to other
objects in order to request information, by delegation: this request is a service performed
by one object for the other.

Example 154 (Contractor). A building contractor might hire a sub-contractor to perform
part of a job, in which it lacks skills. The sub-contractor does not work ‘under’ the
main contractor in actuality; it works along side it. Thus while the conceptual flow
was initiated by one contractor, there is nothing intrinsically subordinate about the
sub-contractor.

Rather than focusing on issues that are subordinate to others, in the manner of
a hierarchy, one can also view a system from the perspective of its actors. This is
particularly appropriate to systems which are already distributed in space, either by
geographical considerations, or by network.

• Client-service model: In this viewpoint, a system is broken up in an orderly
fashion into a service providing part and a service-requiring part. This is the
traditional model of shop and customer.

• Peer model: This viewpoint is a more anarchistic viewpoint of the actors, as skilled
individuals. A peer model has no ‘policy centre’. Everyone can do something for
everyone else. No one is intrinsically a client or a service provider; anyone can
play any role. In this way, one hopes to maximize access to individual resources,
without shielding those resources from view, by layers of organization. This
model lacks a clear organization and is vulnerable to loss of focus. On the other
hand, it is highly robust to total failure.

These models tend to apply in different contexts.

Example 155 (Lack of policy). Computers that are ‘policy independent’, i.e. which
have independent policies can interact but often wish to protect themselves. There is no
automatic trust. A client-server type of service request, opens up one party (the server) to
a situation of vulnerability in which clients might actually attack. In [BB05b], the idea of
voluntary cooperation is used, in which each individual device in a network collaborates
by prior agreement, and then only from behind a ‘hands-off’ firewall system, like the
one-way drawers that are used to pass money over the counter in banks and post offices.

13.6. CAPABILITIES AND LIMITATIONS 241

Open source software development is an example of a peer model, for instance. A
peer model also applies in the larger landscape of commerce, for instance, where many
companies and individuals require each others services, and they are all equally important
to the running of the ‘total system’. This is the way that society works, as a whole. The
peer model is also very much an object viewpoint: one defines objects, based on their
particular attributes, without attempting to evaluate which objects are subordinate to
others (at least to a first approximation). All objects are equally important, but there is
cooperation between them. The peer model can be very efficient, in local groups, but it
presents new problems in scaling to large groups.

The client-service model is a more focused strategy for a single part of a larger
process. It is more restricted, but more orderly. It is more susceptible to bottlenecks
and efficiency problems, because one focuses the execution of all work at the service
provider. Many clients to a single service provider can easily overwhelm an poorly
designed service provider.

13.6 CAPABILITIES AND LIMITATIONS

Not all system designs can make or keep promises of arbitrary kinds. A completely
centralized system could not promise resilience, nor could a totally distributed system
promise total consistency, without disclaimers. In approaching system design, we have
to be ready to confront limitations that are inherent within them. Some are basic laws of
physics: we cannot exceed the speed of light in transmitting data, for example.

• Dependencies on technology (human, computer, etc).

• Dependencies on procedures and algorithms.

• Dependence on memory and storage.

• Dependence on availability.

• Dependence on consistency.

In the theory of distributed systems, in Computer Science, much effort is invested in
proving theorems about consistency of data under different conditions. Some of these
are at the stricter end of the spectrum (e.g. Paxos consensus discussion [Lam01]), while
others are loose and handwaving (e.g. to so-called ‘CAP theorem’[Bre00], which is not
a theorem at all in the mathematical sense).

Timescales are always a critical aspect of system behaviour. We can never expect a
system to keep any promise without specifying the timescale over which we expect the

242 CHAPTER 13. SYSTEM ARCHITECTURES

promise to be kept. This follows from the fact that any realization of a promise requires
a process, which necessarily involves changes and hence the passage of time.

Example 156 (Innovation). We may have innovative ideas quickly, but it takes a long
time to develop them into a result or a product. We may be able to sample data quickly
from a sensor, but it takes a long time to build up a calibrated picture of what is normal or
abnormal. We may be able to access the domain name address of a website many times
per second, but if it only changes once per month, such a process would be inefficient.

13.7 EVENT DRIVEN SYSTEMS AND FUNCTIONAL SYS-
TEMS

Systems can be characterized by whether they are designed only to respond to the requests
of clients (i.e. they are services), or whether they have a pre-programmed procedure that
evaluates some function (they are standalone programs).

• A system that exists only to service others, needs to be able to schedule work flow
to cope with demand at the behest of others.

• A system that produces, manufactures or evaluates something is freer to organize
its time and resources according to its own scheduling plan.

In large organizations and computer systems, there is often a mixture of these two types
of system and the resource requirements for the two processes can conflict.

Example 157 (Help desk). A help desk that is constantly being interrupted by telephone
calls cannot produce information, courses or solve real problems that require more
functional work.

Example 158 (Database server). A computer that is acting as a database server, and
as a numerical analysis engine must share resources between these tasks. The server
requires intensive access to disk and interrupt driven resources, whereas the numerical
calculation requires constant periods of CPU concentration to advance. These two
requirements are not strongly compatible.

There are two ways to cope with this kind of conflict:

• Separate the two parts of the system into independent units.

• Interleave the scheduling of resources in a single unit.

13.8. THE ORGANIZATION OF HUMAN RESOURCES 243

The latter strategy is more difficult for humans to accept than for computers, as humans
are slower to switch context than machines. The advantage of the second strategy for
human organization, if it is performed as a long term job rotation, is a broader experience.
Humans are, after all, learning systems and can benefit from broader insight into a
system’s operation. However, the time scale of the interleaving must be appropriate for
humans.

13.8 THE ORGANIZATION OF HUMAN RESOURCES

Organization includes many issues:

• Geographical organization,

• Psychological organization,

• Process decomposition: how the organization is split up into different activities
(whether these overlap, leading to consistency and integrity issues).

The geographical organization of human-computer systems has become less important
with the arrival of information networks and telephone systems, but there are still issues
where geography can play a role, such as the need for face to face communication. To
analyze resource organization, we need a value system or currency of organizational
structures.

1. Efficiency (cost/speed).

2. Convenience.

3. Comprehensibility.

This is a task for observational verification over time.
Humans are known to be good at decision making and creative thought, but poor

at discipline and consistency. It seems sensible to assign humans to creative work and
machines to repetitive, precision work2. The role of human beings in systems, be they
human-computer systems or other man-machine liasons, has been studied in a variety
of frameworks, using fuzzy logic, symbolic interpretation and other cognitive hooks.
The extensive literature can be navigated starting from a few bases, see [McR80, Ras83,
Rou89, End95, She96], for starters.

2It has been suggested to the author, informally, that skill based management is a waste of time for
companies. In terms of economics, one has more to lose today from the consequences of expensive
license agreements and contract clauses than from learning particular technical skills. The losses due
to incompetence are negligeable compared to the cost of expensive license agreements for a company’s
software base. Readers may calculate for themselves whether this might be true in their own enterprise.

244 CHAPTER 13. SYSTEM ARCHITECTURES

Socio-anthropological research suggests that these two human faculties require
different organizations. Decisions are made quickly by individuals, but individuals
do not always have impartial interests or complete information, thus one generally
involves several individuals in decision making. Peer review of decisions is performed
by committees. For effective committee work, where decisions need to be made quickly,
a group size of no more than six is found to be a limit beyond which ordered decision
becomes chaos. Conversely, for brainstorming and creative thought, a larger group size
is an advantage ([Dun96]).

Research into humans’ abilities to collaborate is based on the brain size to group-
size hypothesis. Human social group sizes are observed to be limited to 150 people in
organized society; this is about the number of friends and acquaintances that we can
relate to. For animals with smaller neo-cortices, the number is smaller. This suggests
to anthropologists the hypothesis that organizations that grow beyond about a hundred
individuals are likely to become unmanageable.

Another datum is of interest here. Hunter-gathering tribes of humans have evolved
to work in groups of more than about 30 before they become unwieldy and break apart,
even though they might regroup in a social context to numbers of up to a hundred and
fifty, so it is thought that busy groups of workers are limited by this order of magnitude
([Dun96]). In other words, when we are preoccupied with work, we have less aptitude
for dealing with other persons. Thus, if we take our evolutionary heritage seriously, it
makes sense to pay attention to any hints provided by our genetic heritage, and perhaps
limit the sizes of working groups and enterprises with these numbers in mind.

13.9 PRINCIPLE OF MINIMAL STRONG DEPENDENCY

If strong dependencies can lead to cascade failures, then it makes sense to try to minimize
their use in system design. The minimization of dependencies is a principle that attempts
to reduce the possibility for failure and inefficiency, including the collateral cost and
damage associated with failure. In any system there may be a conflict of interest between
tidiness of structure and efficiency of operation.

Example 159 (Hierarchy). A traditional hierarchical structure, stemming from a military
past leads to great orderliness, but is based on strong dependency of layer upon layer.

Dependency carries with it a functional inertia or resistance, due to cooperative
communication, that makes systems potentially inefficient. It also makes dependencies
into points of failure, since it increases the number of parts that have to be connected for
a functioning system.

13.10. DECISION MAKING WITHIN A SYSTEM 245

Definition 58 (Point of failure). In a graph (X,Γ), any node or edge of the graph is a
potential point of failure.

The principle of minimal dependency sometimes conflicts with the need for system
normalization (see chapter 14). The balance between order and efficiency may be
formulated as a game of strategy, in the Game Theoretical sense (see chapter 19).

13.10 DECISION MAKING WITHIN A SYSTEM

Systems have to make decisions in many contexts. Decisions affect changes of process,
strategy or even policy, based on information which is available to a part of the sys-
tem. The question of where decisions should be made is a controversial one, both in
human-centric and computer-centric systems. The decision requires both access to the
information and a knowledge of the goals, i.e. the policy of the system.

13.10.1 LAYERED SYSTEMS: MANAGERS AND WORKERS

All decisions are ultimately made by humans at some level (if only the decision to
delegate to an prescribed algorithm or formal process). Sometimes decisions are cached
or assigned to proxies to implement. Traditionally, system decision making has been
a task assigned to ‘managers’ or ‘commanding officers’. This stems from two reasons:
first, autonomous machine decision has not always been technologically possible, so
it has fallen to humans to guide every detail as a matter of history; second, is the
prejudice that managers or commanders have superior intelligence to lower level workers
or components3 . Consider these strategies:

• Move decision-making as close as possible to the part of the system which is
affected by the decision. Input from higher levels is applied by globally available
policy constraints, to avoid the need for directed message passing, since message
passing would consume resources.

• High level decisions act as constraints on low level decision making. Authority to
act is delegated as far as possible to the part of the system which is affected.

3This latter assumption, has its roots in history, where the upper classes placed themselves at the helm,
and were usually better educated than the working classes who carried out their orders. In our present
technological society, the association between education and position has been dismembered and replaced
by an association of personalities and interests with position. This tends to invalidate the assumption that
high level means more qualified to decide on every issue. What emerges, in a skill based system, is a
layered approach to decision making.

246 CHAPTER 13. SYSTEM ARCHITECTURES

• By definition, high level processes depend on low level ones. Thus high level
processes need to search for strategies that are implementable using the low level
components.

Too much policy constraint and monitoring from higher levels stifles the freedom of the
lower levels to perform their function. Too much communication back and forth leads to
an inefficiency.

Example 160 (Orchestra). A symphony orchestra is a system executed by humans,
following mechanical instructions, with a human interpretation. Here the players are
technically specialized in their individual instruments, whereas the conductor’s job is to
look at the broader picture. The conductor does not have detailed skills in the individual
instruments, nor does he have the resources to follow every detail of each instrument’s
part, but he has a unique perspective on the broader picture, which is not available to
the individual players, because they are shielded from the full sound by their neighbours.
The conductor’s role is therefore to support the individual players, and orchestrate their
collaboration. Decisions about how to play the instruments and interpret the music are
made by the players, with high-level hints from the leadership.

The next example takes a more questionable approach to its task:

Example 161 (Monitoring security). A security monitoring system is a usually collection
of cameras and alarms, linked to a control centre, which is monitored by a human. The
human can respond to alarms and data from the camera, by locking doors, and by
going out to investigate. This reliance on a human manager introduces a communication
channel and a dependency for each alarm. If one of these fails, the system could be
delayed or fail to function.

13.10.2 EFFICIENCY

Decision making is an example of dependency management. Systems are dependent on
decisions being made, and thus the decision making process is an area which needs to be
crafted carefully.

From the viewpoint of efficiency, a brief inspection of the figures 6.17 or 6.19 is clear
that autonomous decision making, in the individual parts, is the optimal, because it avoids
communication and thus introduces no further dependency, or delay. If information has
to be passed up or down through the system in order to be analyzed, then significant
overhead can be incurred. In human-centric systems, however, it is a matter of policy
that decisions are made by ‘management’. Management can have a bird’s-eye view that
lower level agents cannot.

13.11. PREDICTION, VERIFICATION AND THEIR LIMITATIONS 247

Many companies in the technology sector have reorganized themselves from a hier-
archical model to an object model, because object models are built around specialization,
rather than control (see [TM95]).

Specialized knowledge about the system is found within specialized components at
a low level, but the command decisions are usually made from the top. How does the
information get from top to bottom to top again? i.e. how does decision making circulate
around the system?

A global decision is the most resource consuming kind of decision, usually only
required in cases of global policy review.

1. Data collection from all levels.

2. Data interpretation by all levels.

3. Re-examination of goals.

4. Strategy options.

5. Policy adjustment, system changes.

13.11 PREDICTION, VERIFICATION AND THEIR LIMITA-
TIONS

Maximizing predictability is a key aim of system design. Similarly, one would like
to verify that a system design is in accordance with expectation and policy. The idea
that systems have well defined states with deterministic behaviour is common in many
branches of computer science and has a limited validity. Only simple systems are
deterministic. In complex systems, particularly those immersed in an environment,
information is being injected into the system from an unpredictable source all the time.
This means that absolute determinism is unrealistic. Verifiability is thus not only useful
when designing a system, but during its operation, in order to evaluate its behaviour.

There are several levels of verification. To verify correctness in a system that
generates non-ordered behaviour, one can use a checksum or hash function to map results
to a single scalar value that can easily be compared.

Example 162 (Crypto hashes). MD5 and SHA checksums are used to verify the correct-
ness data transmitted through routed network systems, compared to original control-
values, after being reformatted and encapsulated many times to ensure correct transmis-
sion.

To compare more structured operations, in which dependent ordering is involved, we
use the notion of language and grammar.

248 CHAPTER 13. SYSTEM ARCHITECTURES

Example 163 (OSI model). OSI model network packets that have multi-layer encap-
sulation have a simple grammatical structure. Each layer of the TCP/IP system has a
header, followed by a payload that include the previous layer. The IEEE 802 data-link
layer protocols, such as Ethernet, have both a header and a trailer. These encapsulations
have a simple grammatical structure that is verified by the unpacking process.

Example 164 (BGP configuration). The configuration rules of a routing policy protocol,
such as BGP, form a structured language of relationships with dependencies. This forms
a recursively enumerable graph (for instance, see [GW02, QN03]).

In chapter 5, we reviewed grammars as a way of describing structural complexity
in strings of operations. If the syntax of a system, i.e. the list of all legal operation
strings, is described by a known grammar then its correctness can easily be verified by
an automated procedure or automaton that attempts to parse it. Grammar works as a
sophisticated operational checklist for system correctness. Errors in system functioning
can easily be identified by comparing the actual behaviour of the system to the legal
strings of the language. Correctness can then be evaluated as true or false.

This is the idea behind software engineering tools such as the Unified Modelling
Language (UML), which attempts to apply the methods of algorithmic rigour to the
complexities of human-computer system interaction4. The problem with grammatical
structure is that it is only a guide to structure in many systems. The rule based part of a
system is often at a low level. The part that resist such formalization is the high level
behaviour. An obvious example of this is in biology: at a low level, simple rules of
chemistry tell us how molecules fit together, but as we put molecules together to form
cells, and cells together to form tissue, and tissue to form organisms, the idea of simple
structural rules becomes absurd.

13.12 GRAPHICAL METHODS

Graph theory is a mode of structural expression that is closely related to grammatical
methods. It can be used to describe and discuss various aspects of architectural and
structural efficiency. For example:

• Connectivity and robustness.

• Optimal constructions

4In the opinion of the author, UML has been rather unsuccessful in this task. Although it offers a
formal framework, it provides no way of dealing with the scales of complexity that are characteristic of
actual systems of substance.

13.12. GRAPHICAL METHODS 249

– Minimum weight spanning trees.

– Maximum weight branchings.

• Shortest path problems.

These topics find a natural language of expression in graph theory, and there are plenty
of theorems and results that can be used to assist in the design and understanding of
systems. For an excellent introduction to the graph theory of these issues see [Bal97].

Applications and Further Study 13.

• Combining the stuff of the previous chapters into a plan for connecting compo-
nents.

• Collaboration and partitioning.

• Understanding hierarchy versus flat web-like structures.

CHAPTER 14

SYSTEM NORMALIZATION

Normalization of a system is a process by which one verifies the uniformity or compliance
of its goals and promises with respect to guiding principles (see [Dat99]). Normalization
is a form of system symmetrization. By making systems from similar normalized units,
one hopes to enhance predictability and simplify expectation.

Normalization principles are meant to avoid certain problems of design and operation
by reducing complexity, and limit the semantics of system operation as far as possible.
This has consequences for maintenance and long term consistency. For instance, systems
should not contain elements which actively oppose one another in the performance of a
task; such a system would be wasteful of resources, and possibly even harmful.

Data structures form the foundations of any system. The purpose of a data-structure
is to catalogue and organize variables, i.e. the changing configurations and records which
form the substance of a system. These are then arranged in a pattern which which can be
navigated in a manner most conducive to the efficient functioning of the system.

In any system, the law of causality applies. For every effect there must be one or
more causes. Determining the causes of an effect becomes increasingly difficult with the
increasing complexity of the system. One says that the effect is dependent on the cause.

14.1 DEPENDENCY AND THE SCALING OF AGENCY

In a dynamical process, it is not only the information that has relational patterns, but also
the functional components, or ‘subroutines’ of the total process. In either case, guidelines
exist for breaking up larger data-structures and processes into smaller, optimal types
of parts, the purpose of which is to isolate ‘repeatedly used information’ for optimal
re-use and maintenance. In this way, one avoids unnecessary repetition which can lead to

250

14.1. DEPENDENCY AND THE SCALING OF AGENCY 251

inconsistency and dependency conflicts. Seeking the optimal decomposition into layers
is the process referred to as normalization, and is commonly discussed in relational
databases (see, for instance, [Dat99]).

Example 165 (Book as data structure). This book is an example of a passive data
structure that is not fully normalized. Complete normalization would lead to an obnoxious
use of sub-sections and references of the form “see section XX” to avoid repetition and
multiple dependency. A fully normalized data structure does not make for easy reading,
but it does allow great precision and economy of representation, with potentially no
inconsistency.

teaching research

lectures problems

teaching research

lectures problems

faculty

physics chemistry biology

lab

Figure 14.1: An excerpt of a functional structure diagram for a university faculty. This shows
that, within the different departmental groups, there is a common body of functionality. This
repetition suggests that one might rationalize the system by separating this aspect of the groups
from the departmental groups’ area of responsibility. This process of rationalizing a structure
diagram is called normalization.

A functional dependency is expressed by the mapping of several parameters ki,
(usually called keys in database theory), into a single object O of some information
space:

O = f(k1, k2, . . . , kn), (14.1)

i.e. we have a relationship between the result f and the combination of keys or parameters

252 CHAPTER 14. SYSTEM NORMALIZATION

Table 14.1: Comparison of numerical and associative values, through a functional dependency
Numerical Abstract (associative) keys
y = f(k1, k2, k3) lecture = f (teacher,time,subject)
12 = f(14, 3, 6) addition = f (Mark,Tuesday,Algebra)

which produce that result. We say that f depends on k1, k2, . . ., since each combination
can yield a different result for f . The function f , whatever it is, defines a relation. For
example, see table 14.1. In continuous functions, parameters can vary along simple lines
of numbers, with infinite variety, e.g. a position or a time (see chapter 7). In a discrete
structure, such as a database, the parameters are discrete lists, or sets (see chapter 5).

Definition 59 (Cascade failure). The failure of a strong dependency leads to a succession
of determined failures in all agents that rely on that dependency.

Dependencies lead to cascade failures, so it makes sense to try to minimize them, or
bolster them with redundancy.

Principle 8 (Weakening dependency (autonomy)). The presence of strong dependen-
cies exposes a system to cascase failure. System designers may weaken dependency
relationships to avoid these failure modes by:

• Always having semantic alternatives available for failover redundancy.

• Dynamically repairing dependencies that do not keep their promised function, on
a timescale that is faster than the dependency is sampled

Alleviation of dependency is a semantic and a dynamic problem.

14.2 THE DATABASE SCHEMA MODEL

The typing of objects is the beginning of addressing the idea of semantics, or interpreta-
tion of signifance, formally. A relational database (or diagram) is a functional mapping
from a set of parameters (lookup keys), to data objects (usually tables or vectors) of the
form:

Table = ~D(k). (14.2)

The vector arrow, denotes the fact that the value returned by the association is assumed
to be a table or vector, in the general case, i.e. a bundle of values that are related in some
way.

14.2. THE DATABASE SCHEMA MODEL 253

Example 166 (Relational database). Many systems have the form of a rudimentary
relational database. For example, a building can be thought of as a set of rooms
associated with room-numbers. A table of information for each room number (key) might
consist of an inventory of the room, who sits there and so on. A database of computers,
with a primary key which is the serial number of the computer, might contain tables of
information describing the location, operating system type, name, address and so on. In
this latter example, it might make sense to have a sub-database (a set of tables within a
set of tables), documenting information about each type of operating system. The key
would be the operating system name, and the sub-table might contain the version number,
the manufacturer, their service telephone number and so on.

k = ?

data about kD(k) = =

k
a

d

a

t

Figure 14.2: Notations for a functional mapping from k to a table, represented as a table with a
key and as a vector with subscript.

If we look at this from the viewpoint of a database, then we envisage the system as a
set of entities that are related to one another by functional dependencies. To decompose
a system, we ask:

• What are the entities?

These include computers, services, humans, departments, job positions, etc.

• What are the primary keys that label and classify data in system administration?

These include things like host names, group names, project names, departments,
etc.

• What are the data and other attributes?

These are specific instances of computers, disks, data, persons and other resources
etc.

• Is the system database structure hierarchical?

We often impose a hierarchical structure on systems, out of fear for loss of control.
It is a common myth that the hierarchy is the only reliable model of control.

254 CHAPTER 14. SYSTEM NORMALIZATION

14.3 NORMALIZED FORMS

Database normalization seeks to ensure: consistency of data, no hidden dependencies,
and the avoidance of internal conflict. These are desirable properties for any system, and
we shall see how the guidelines can be used to learn something about the organization of
general systems, by mapping general systems onto relational databases.

A database is a set of tables (also called vectors), organized into a list, so that each
distinct element is labelled by a unique key, or combination of keys. The keys are the
‘coordinates’ of the objects in the database. For example, a single key database is simply
a list of tables:

Database = {T (k)} = {T (1), T (2), . . . T (n)} (14.3)

=

{(
...

)
1

,

(
...

)
2

, . . .

(
...

)
n

}
. (14.4)

The point of the normal form is to extract structurally similar components, and
repeating patterns, and place them in separate abstractions with their own labels. This
means that the association is one to one, and that data or entities are not repeated
unnecessarily. There are both practical and aesthetic reasons for this. A practical reason
is that, one should not duplicate information or effort in competing locations, since this
would lead to contention, competition and thus inconsistency. The aesthetic reason is the
same as that one uses in programming: repeatedly useful sub-routines or data are best
separated and called up by reference to a new abstract entity, rather than copying the
same code or information in different locations. This makes maintenance easier and it
makes explicit the logical structure of the task.

FIRST NORMAL FORM

The first normal form is really a definition about the type of objects one chooses to call a
database. It restricts tables to being simple vectors of a fixed size and shape. The purpose
of this definition is to ensure that all of the objects in the database are comparable. i.e. in
order to be able to compare any two tables in a database, one must be able to compare
their contents meaningfully. This is only possible if the tables are constructed in a similar
fashion.

For example, the simplest case a that each vector or table-instance consists only of
scalar values:

T (k) =

 s1(k)

s2(k)

s3(k)

 =

 Algebra

Tuesday

Mark

k

(14.5)

14.3. NORMALIZED FORMS 255

Sub-vectors (sub-tables) are allowed as long as they have a fixed, predictable size: for
instance, the following is acceptable because it can easily be rewritten as a larger vector
of scalars:

T (k) =

 s(k)

v(k)[6]

v(k)[2]

 . (14.6)

However, one could not have the following objects in the same database, because they
are not comparable objects:

 s(k)

v(k)[6]

v(k)[2]

 6=
 s(k)

v(k)[5]

v(k)[9]

 (14.7)

The comparison of these objects is meaningless.

What does this have to do with systems in general? We understand that consistency
of form is important for stacking data in rows, or for stacking boxes in a warehouse, but
what does this mean for system administration? The main thing it tells us is that objects
which have a similar structure can be handled by the same system, but objects which are
structurally dissimilar should be dealt with by separate systems.

Example 167 (Computer diversity). In spite of the fact that computers are produced
by very different manufacturers and use a variety of software, the information about
computers within an enterprise is structurally similar: each computer has a serial number,
a name, a location and an operating system. The means that a system which deals with
these aspects of computers can be handled by a single system. If we also go deeper and
consider the details of different software (operating system, for example), we find that
Windows and Unix are structurally dissimilar in a number of ways. The normalization
rule tells us that it is therefore unnatural to try to combine these into a single system (see
fig 14.3).

SECOND NORMAL FORM

The second normal form says that, given any 1NF association ~T (k), which has a common
repeating pattern, one should extract that pattern and parameterize it with a new label
(or key). This is the introduction of ‘database subroutines’ in the data-structure. For

256 CHAPTER 14. SYSTEM NORMALIZATION

k

name

software

details

details

windows

unix

k’

k’’

computer

main table sub−tables

Figure 14.3: How normalization by the first normal form suggests that a system should be
organized. The common parts belong in a single system of tables, while the structurally dissimilar
items are separated into independent sub-systems.

example, suppose one has the set of the tables:

{
~T (k)

}
=

 s1(

1

1

) ,

 s2(
1

1

) ,

 s3(
1

1

) , · · ·

 s4(
1

0

) ,

 s5(
1

0

) ,

 s6(
1

0

) , · · ·

 . (14.8)

Here we see a repeating pattern. The vectors(
1

1

)
,

(
1

0

)
(14.9)

are common to several of the elements. In geometry this is called an invariant sub-space.
The second normal form demands that we recognize the importance of this structure, and
parameterize it as a vector v[ks] with a new sub-key ks:

~v[1] =

(
1

1

)
, ~v[2] =

(
1

0

)
. (14.10)

The normal form thus transforms elements

~T (k) =→
{
~T (k;~ks), ~v(ks)

}
 sk

s′k
s′′k

→ {(
sk

~v[ks]

)
,

(
vks
v′ks

)}
. (14.11)

14.3. NORMALIZED FORMS 257

In the example above, we note that the pattern is simple, and ks is varying a third as fast
as k. This means that the keys are simply related. One could therefore argue that there is
really only one key. We could, in principle, repeat this procedure again for sub-tables in
sub-tables, and so on, until all of the parameterizations were separated. This is just like
the problem of recursively breaking up functions into sub-functions in programming.

The implication of this rule for general systems, is that where-ever we see repeated
sub-structures in formally separate systems that are associated with one another, these
should be be removed from the separate systems and be replaced by a single, independent
instance which can serve both of the systems instead.

Example 168 (Duplication of effort). The science, engineering and arts faculties of a
university all have separate student registration, printing and accounting departments.
The task of registering students is the same in all three faculties; the same is true of the
financial accounting and printing services. The second normal form therefore suggests
that these functions should be removed from the three faculties and be replaced by three
independent services: a common registration department, accounting department and
printer.

Example 169 (Functional discrimination). The science and engineering faculties of the
same university all have laboratory engineers who maintain and manage the laboratories.
Although these engineers have analogous functions in their respective faculties, their
tasks are quite dissimilar, so the normalization rule does not apply here. It would not
make sense to group dissimilar laboratory engineers into a common service, because
they do not have enough in common.

THIRD NORMAL FORM

The third normal form is about parameterizing a structure in a non-redundant way. In
geometry, it helps to avoid ambiguity and inefficiency, when traversing vector spaces,
by marking out labels using linearly independent or orthogonal coordinates. Similarly,
the third normal form is about securing this kind of independence in discrete, tabular
structures.

Inter-dependence of the elements within a vector can occur in two ways. The first is a
simple linear dependence, in which two of the scalar values contain common information,
or depend on a common value. The second is to avoid making convoluted structures
which can feed information back through a chain of relationships, which lead to a cyclic
dependency. Consider the table

~T (k) =

 g1(k)

g2(k)

g3(k)

 . (14.12)

258 CHAPTER 14. SYSTEM NORMALIZATION

The third normal form seeks to avoid transitive dependence, i.e. a relation of two non-key
elements through a third party.

g1(k) = g2(g3(k)) (14.13)

Here, two elements g1 and g2 are not related directly — they do not contain common
information directly, but rather they are both functions, derived from a common item of
data, thus they are related because one of them depends recursively. This is a non-linear
relation.

Another way of putting this is that one attempts to eliminate items of data in any
type of object which do not depend on the key directly and explicitly. The presence of a
‘behind the scenes’ relationship, represents an unnecessary symmetry, or a hidden/covert
channel from one part of the system to another.

There are other normal forms for even more complex structures, and these can be
applied in kind to the simplification of a relational system, but the main points are covered
in these three cases.

Example 170 (Password database). In a combined Windows and Unix environment, user
data are collected both in the SAM database and in the Unix files /etc/passwd. The
same data are registered on each and every machine. The user registration data thus
form a distributed database, and consist of two different types of data records (tables),
containing similar information. One way to normalize this database would be to use an
LDAP directory service for both.

Example 171 (Datacentre racks). Datacentres and factory processes often try to make
infrastructure uniform or ‘normalized’ to bring a predictable symmetry to machinery.
Computer racks are organized in regular arrays, with the same numbers and types of
hardware in each. Factory machinery is duplicated identically, and desk space is generic
facilitating a redundancy to increase the flexibility of the infrastructure to reorganization.

DENORMALIZED DATA

The insistence of normalization of structure, in data and modular design, leads to an
essential fragility in systems, which can become problematic at large scale. If we
require no deviations from regularity, this becomes a critical dependency. It imposes
the responsibility of correctness onto data, which are static, rather than onto software or
humans which can adapt. Normalized data are effectively a rigid protocol. This, in turn,
makes data corruption, error and other forms of interference into critical dependencies,
leading to the possibility of frequent and avoidable failures.

Perhaps for this reason, the popularity of entity relation modelling has waned in mod-
ern software systems, and has been replaced by schemaless approaches to data structure,

14.4. PROMISE THEORY, SEMANTIC SPACETIME, AND UNIFORMITY 259

in many applications. Schemaless key value pairs promise semantic completeness on an
ad hoc basis.

Example 172 (NoSQL databases). NoSQL databases, and interface schemas (so called
APIs or Application Programmer Interfaces) allow designers to create data structures
with partial occupancy. Data may or may not be regular in form. What matters is that
key-value pairs have unique names so that the semantics of data may be determined
from the key, rather than from assumptions about the schema. This is one strategy in
making systems of data dependency fault tolerant. New data formats like JSON and
YAML have made this ad hoc approach to data semantics easy to adopt, through standard
interchange formats, that contrast with more rigid schema formats like XML, and YANG.

14.4 PROMISE THEORY, SEMANTIC SPACETIME, AND UNI-
FORMITY

The description of data and structural normalization have been addressed by a model
called semantic spacetime, using the language of promise theory[Bur14, Bur15, Bur16b],
in which agents collectively form a ‘space’. In this approach, one can discuss and evaluate
the value of different representations, without requiring normalization by convention. The
normalization of agents depends on scale, because some agents may be inside clusters
that act as ‘superagents’. This model has been used as a unifying approach not only
to describe human-computer systems, but also knowledge representations (see chapter
17). The topic is too extensive to describe here. Readers are referred to the references
above. The semantic spacetime model offers a formulation of database schemas and
other semantic structures in a simple graph theoretic form, eliminating the need for a
specialized theory.

Applications and Further Study 14.

• Rationalizing the entities and players in a system for planning and design. Rational
decision criteria for segregating processes and information conduits.

CHAPTER 15

SYSTEM INTEGRITY

Integrity is about the preservation of a system’s policy, its resources, and its ability to
function consistently. Integrity can be dealt with easily in the context of promises. A
system that makes clear promises can be checked for compliance over time, and an
absence of change in its compliance may be taken as a measure of its integrity. System
integrity can also be couched in terms of the communication of those assets from place
to place, or from time to time, using information theory; however, transfer of information
is not always reliable, and promises are not always kept.

The theory of communication, and its generalization ‘information theory’, seek to
answer questions such as how rapidly or reliably the information from the source can
be transmitted over a channel. Insofar as we can define the code by which the work
in a human-computer system can be transmitted, we can use the tools of information
theory to describe the possibility of flow or corruption of those assets. Shannon’s work is
significant, because it addresses fundamental limits on the ability to resolve and preserve
information. He addressed the problem of coding of symbolic information, in such as
way as to maximize the rate and fidelity of transmission, given that the representation
might change. He also achieved considerable success with his technique of random
coding, in which he showed that a random, rather than a sequential, encoding of data can,
with high probability, give essentially optimal performance.

15.1 SYSTEM CONVERGENCE TO A DESIRED STATE

The process of communication is essential in any information system. We find the
promises of outcome in a variety of forms:

• Between computer programs and their data,

260

15.1. SYSTEM CONVERGENCE TO A DESIRED STATE 261

• Between computers and devices,

• Between collaborating humans (in teams),

• Between clients and servers,

• Between computer users and computer systems,

• Between policy decision makers and policy enforcers,

• Between computers and the environment (spilled coffee).

The intent of these communications is constantly being intruded upon by a environmental
noise. Errors in this communication process occur in two ways:

• Information is distorted, symbols are changed, inserted or omitted, by faulty
communication, or by external interference,

• Information in interpreted incorrectly; symbols are incorrectly identified, due to
imprecision or external interference.

For example, suppose one begins with the simplest case of a standalone computer, with
no users, executing a program in isolation. The computer is not communicating with
any external agents, but internally there is a fetch-execute cycle, causing data to be read
from and written to memory, with a CPU performing manipulations along the way. The
transmission of data, to and from the memory, is subject to errors, which are caused by
electrical spikes, cosmic rays, thermal noise and all kinds of other effects. These errors
are normally corrected by error-correction mechanisms, originating from Shannon’s
work. The computer program itself, manipulates the data in the memory and rewrites it
to the memory with a new coding.

From this point of view, one may think of the memory of the computer itself as
being both transmitter and a receiver, and passing through the ‘CPU plus computer
program’ communication channel. This communication channel does not transmit the
data unaltered; rather, it transforms the data according to specific rules, laid down in the
computer program (see fig. 15.1). In other words, the very operation of a computer fits
the paradigm of communication over a coded channel. The fact that the channel is also
noisy, is a result of the physical environment. Computer operation, at this level, is largely
immune to environmental noise, because it employs error correction methods. At higher
levels, there are no standardized error correction mechanisms in common usage.

Suppose now that an administrator sends a configuration message to a host, or even
to a single computer program. Such a message takes place by some agreed form of
coding: a protocol of some kind, e.g. a user interface, or a message format. Such a
configuration message might be distorted by errors in communication, by software errors,

262 CHAPTER 15. SYSTEM INTEGRITY

by random typing errors. The system itself might change, during the implementation
of the instructions, due to the actions of unknown parties, working covertly. These
are all issues which contribute uncertainty into to the configuration process and, unless
corrected, lead to a ‘sickness’ of the system, i.e. a deviation from its intended function.

15.2 THE SHANNON ERROR CHANNEL INTERPRETATION

The idea of convergence is introduced in section 10.4, to describe the behaviour of such
error-correction. It suggests a process of continual regulation, in order to correct devia-
tions from system policy. In other words, it does not simply ensure that a configuration
message is transmitted correctly once, it views the entire time-development of the system
as the on-going transmission of the message, and seeks to correct it at every stage. This
is also our definition of a reliable system (see section 4.11).

computer

message

rule

noise

users

Figure 15.1: An instruction loop, showing the development of a computer system in time,
according to a set of rules. The efficacy of the rules may be distorted by users from local and
remote domains, who change the conditions under which the message was applicable. This
change may be viewed as an intentional change, or as a stochastic error.

At each level of computer operation, one finds messages being communicated
between different entities. System administration is a meta-program, executed by a
mixture of humans and machines, which concerns the evolution and maintenance of
distributed computer systems. It involves:

• Configuring systems within policy guidelines,

• Keeping machines running within policy guidelines,

• Keeping user activity within policy guidelines.

15.2. THE SHANNON ERROR CHANNEL INTERPRETATION 263

System administration requires computer-computer interaction, human-computer
interaction, and human-human interaction (fig. 15.2). Each of these communication
channels is subject to error, or misinterpretation.

computer

users

computer

Figure 15.2: The human-computer interaction is also a form of communication. Collaboration
between system administrators, or users is the least reliable form of communication, since one
can not be sure that the two parties even use the same symbolic alphabets. Thus, there is the
danger not only of noise, but also of misunderstanding, i.e. perversion of meaning.

• Instruction: system administration is about developing a policy (instruction man-
ual for machine and humans) for use of the system, including the choice of
programs which are executed by the system. A complete policy can therefore
be identified with the sum of all programs and ad hoc rules which lead to any
planned change of the system. This includes normal usage of the system.

• Propagation: as the system evolves in time, according to policy (or deviating), it
propagates information from the past into the future, modifying the system. If the
system is stable, this iterative mapping will not lead to any divergent behaviour; if
it is unstable, then even a small error might cause a runaway breakdown of the
system.

• Collaboration: programs and humans exchange information in the course of this
loop of instruction and propagation. If collaboration is interrupted, or errors
occur, then the enactment of policy-correct behaviour is spoiled, with possibly

264 CHAPTER 15. SYSTEM INTEGRITY

Noise

Sender ReceiverI(nput) ? O(utput)

Figure 15.3: The transmission of information over a channel takes place from a sender (channel
input) to a receiver (channel output). Along the way, the signal might become distorted by noise.

dangerous consequences for the system. Humans also frequently misunderstand
one another’s commands.

• Automation: automatic processes which monitor systems, even perform routine
maintenance, are not immune to errors, because they depend, for input, on data
which are influenced by the external environment.

• Repair: if some influence causes an error, then the error must be corrected in order
to uphold policy, else the correct propagation of policy over time is corrupted. The
same thing applies to human policy and purely automated policy. This process
of maintenance, reparation, or regulation is central to the stability of information
systems.

To summarize, one may view system administration as communication over a com-
munications channel at several levels.

• Input: policy, instruction.

• Noise: stochastic user activity, illegal behaviour, random error, systematic error.

• Output: the system as we see it.

Having made this identification, the question becomes: does this help us to build computer
systems which behave in a stable and predictable fashion?

15.3 EXTERIOR INFLUENCE AND STRATEGIC INSTRUC-
TION

The transmission of configuration information requires a language which, in turn, requires
an abstract alphabet or set of codes to encode it. This ‘alphabet’ might be one of strings
or of shortest length symbols. The information content will tell us how compressible the
actual transmitted configuration is and therefore how concisely we can express system
policy.

15.3. EXTERIOR INFLUENCE AND STRATEGIC INSTRUCTION 265

Each word of symbol in the language must represent a basic operation of the system
like “create file” or “insert string” etc. These operations can be represented as single
letter codes, with accompanying data (like opcodes in machine language), or they could
be packed into lengthy XML wrappers to name two extremes.

Example 173 (Permissions). Suppose the operation to change the permissions of a Unix
file (chmod) is coded in a data stream by the letter “A”, and the operation to change the
owner of a file (chown) is “B”. The operations need both data parameters and operands.
A configuration policy can be written in any language that the system understands, e.g.

Human symbol Compressed code

chmod A
chown B
700 a
770 b
755 c
644 d
600 e
555 f

So, if we number files according to their filesystem entries (e.g. index node number),
the command to set permissions on file 12 would be A d (12) or A (12) d, where (12)

represents a suitable shortest representation of a number 12. This set of symbols will
suffice for a limited number of operations.

The amount of information that has to be specified in order to express a configuration
depends on the expert knowledge of the system receiving the instruction. There are two
approaches to this:

• If we build expert operators that know how to do their jobs and only require a
simple signal to activate them, then configuration policy can be written in a very
short and compact form, e.g. as in the single letter codes above. This reflects the
fact that the detailed procedures are coded into operators and therefore do not need
to be reiterated in every configuration message. (This strategy allows maximal
compression and optimal normalization of information, since there is only one
copy of the expertise in the operators. Thus a single symbol can represent an
expert operation.)

• If the operations contain no internal expertise, then each precise sequence of
primitive operations must be expressed in the policy message. This, in principle,
involves a precise specification with redundant information.

266 CHAPTER 15. SYSTEM INTEGRITY

Example 174 (Specialized operator). A compressed message to an expert operator
providing maintenance might take the form

CheckAndRepair(routine_1)

An extensive form of the instruction could take the form

Locate panel screws

Rotate screws anti-clockwise

Remove screws

Lift lid

Locate memory slot 12

Insert new memory into slot 12

In the latter form, the detailed procedure is described in the message; in the form case
the procedure is coded into the operators themselves, and only a short message needs to
be passed on to start the operators executing their policy instruction.

An example of the former is found in refs. [Bur95, CD01] and examples of the latter
include the Simple Network Management Protocol (SNMP), Arusha ([HP01]), etc.

Example 175 (CFEngine operators). The human representation symbol alphabet used
by CFEngine, which describes information in a plain text file, consists of all of the
printable ASCII symbols; the set of symbols required to implement a policy decision
about file permissions is the set of all rules (one for each item), which for Unix might
look like this:

files:

symbol 1

file1 mode=0644 owner=mark group=users action=fix

symbol 2

directory1 mode=a+rX owner=root recurse=true action=fix

In this case, each entire rule can be a single symbol of the higher level policy alphabet,
and when it is coded in this fashion, since the number of variations is finite. This short
symbolic coding of policy, is robust to accidental or random error, and is easy to reapply
(retransmit), should external factors alter its result.

The symbol objects that represent new effective entities of the system. They form new
and higher alphabets of preferably non-overlapping objects. To perform configuration

15.3. EXTERIOR INFLUENCE AND STRATEGIC INSTRUCTION 267

management, we need to reiterate this configuration message over time, correcting for
any random error. We now examine how to characterize the error in a stream of these
symbols.

GENERATIVE CONFIGURATION

Conventional wisdom suggests that, when an instruction for building configuration state
is specified, the order of operations is important to the outcome of the configuration
(see arguments in [Tra02], for instance). However, an alternative prescription is for
configuration is based on the idea of expert operators and convergence (see section
5.8). We refer to these two alternative forms of instruction as extensive and strategic
respectively, and keep the property of convergence towards an ideal state separate, since
it can in principle be implemented by either approach.

• Extensive configuration instruction

In the extensive approach, each individual decision in the configuration state
is represented as part of a tree with exponential complexity. If the number of
symbols is N and the alphabet size is m, then the amount of information that
must be maintained is of the order mN .

• Strategic configuration instruction

In a strategic approach, the decision trees are built into the properties of the
operators that carry out the maintenance (see [Bur04, CD01, CS03]). Here the
complexity of the configuration is at most of order N2, and the information
represented is no larger than N . The ordering of these operators is not essential,
provided the configuration message is repeated over and over again as regular
maintenance, since the operators measure their activities relative to both desired
policy and current environment. If any operation depends on another having
preceded it, it simply waits until the necessary conditions exist for it to proceed.
in order for this to work, the operations must be quite primitive.

ORDERING OF PREREQUISITE DEPENDENCIES

There is a connection between the ordering of operations and the uniqueness of the task
completed by a schedule (see section 9.8, for instance). The information required to
perform a schedule depends on whether task precedence matters (i.e. whether the graph
is directed or not). This, in turn, depends on whether the task alphabet commutes or not:

Definition 60 (Commuting operations). If two system operation codes commute then

[Ô1, Ô2] ≡ Ô1Ô2 − Ô2Ô1 = 0. (15.1)

268 CHAPTER 15. SYSTEM INTEGRITY

If operators commute, it implies that the order of their execution does not matter to
the system. This requires special properties and is seldom true in every instance, since
ordering reflects the structure that distinguishes a system from a random assembly
of components. However, there is a possible solution to this using the concept of
orthogonality.

Contrary to many expectations, most simple configuration tasks can be performed
convergently, by randomly or cyclically scheduling non-ordered, commuting operations.
This can be done by making operation orthogonal (see [Bur04, CS03]).

Definition 61 (Orthogonal operators). An operation is said to be orthogonal to all
other operations, if it is inequivalent to any combination of other operations, i.e. any
representation of the operation is linearly independent of all others:

Ôi 6=
∑
j 6=i

cj Ôj , (15.2)

for some constants cj . Orthogonal operations are automatically commutative and
ordering does not matter.a

aThis definition, as given, describes strictly linear independence. Orthogonality implies that an inner
product of representative basis vectors would vanish. It is possible to find a representation in which
this is the case, but we shall not go into it here. See ref. [Bur04] for a discussion of an explicit matrix
representation.

Consider how configurations are built up. Let the state |0〉 denote the base-state of
a host after installation. This is a reference state to which any host may be returned
by re-installation. From this state, one may build up an arbitrary new state |a, b, c, . . .〉
through the action of sequences of the configuration operations. The set a, b, c may be
regarded as the system policy specification. Once a desirable state has been reached,
one may renormalize these definitions to allow |0〉 to be the new base-state. Using
this representation, one can now define the meaning of convergence in terms of these
operations.

Definition 62 (Convergent and idempotent operators). Let |s〉 be an arbitrary state of
the system. An operator Ô is idempotent if Ô2 = Ô, i.e. its potency to operate is always
the same. A convergent operator Ĉα has the more general property

(Ĉα)n|s〉 = |0〉

Ĉα|0〉 = |0〉, (15.3)

for some integer n > 1, i.e. the n-th power of the operation is null-potent, and the base
state is a fixed point of the operator.

15.3. EXTERIOR INFLUENCE AND STRATEGIC INSTRUCTION 269

In other words, a convergent operator has the property that its repeated application will
eventually lead to the base state, and no further activity will be registered thereafter.

The use of orthogonal, convergent operations implies that only one type of prerequi-
site dependency can occur. For example, let ĈC mean ‘create object’ and let ĈA mean
‘set object attribute’. The following operations do not commute, because the setting of an
attribute on an object requires the object to exist. On an arbitrary state |s〉, we have

[ĈC, ĈA]|s〉 6= 0. (15.4)

Thus the ordering does indeed matter for the first iteration of the configuration tool.
This error will, however, be automatically corrected on the next iteration, owing to the
property of convergence. To see that the ordering will be resolved, one simply squares
any ordering of the above operations.

Theorem 4. The square of a create-modify pair is order independent.

([ĈC, ĈA])2|s〉 = 0. (15.5)

This result is true because the square of these two operators will automatically result in
one term with the correct ordering. Orderings of the operators in the incorrect order are
ignored due to the convergent semantics.

To prove this, suppose that the correct ordering (create then set attribute) leads to the
desired state |0〉:

ĈAĈC|s〉 = |0〉; (15.6)

performing the incorrect ordering twice yields the following sequence:

ĈC ĈAĈC︸ ︷︷ ︸ ĈA|s〉 = |0〉. (15.7)

The action of ĈA has no effect, since the object does not exist. The under-brace is the
correct sequence, leading to the correct state, and the final ĈC acting on the final state
has no effect, because the system has already converged.

The same property is true of sequences of any length, as shown in ref. [CD01]; in
that case, convergence of n operations is assured by a number of iterations less than or
equal to n.

Theorem 5. A sequence of n self-ordering operations is convergent in n iterations, i.e.
is of order n2 in the primitive processes.

270 CHAPTER 15. SYSTEM INTEGRITY

The proof may be found by extending the example above, by induction (see [CD01]).

The important thing about this construction is its predictability. We might not know
the exact path required to bring a system into a policy conformant state; indeed, a given
specification might meet obstacles and fail to work. However, any policy expressed
entirely in terms of convergent, commuting operators is guaranteed to do something,
indeed it will always have the same result1. Commutation becomes not only a desirable
property, but an essential one in ensuring predictability. An extensive approach is not
guaranteed to be implementable or stable once implemented, but a convergent strategic
approach is (see [Bur04, CD01, CS03] for a proof).

One of Shannon’s conclusions was that, if one splits up a signal into a coding scheme
which is randomized in ordering, then many this is a good defence against random
noise, because any systematic error will be reduced to maximum entropy random error,
rather than concentrated in one area of greater damage. The advantage of commuting
operations is that they do not have to rely on a particular sequence being fulfilled in order
to produce a result. A string of commuting operators can thus often be compressed in
communication, because the intelligence lies in the operator rather than in the sequence
of codes: a short code for a complex task, rather than a detailing of the internals of the
task.

15.4 STOCHASTIC SEMI-GROUPS AND MARTINGALES

The discussion of convergent operations has an analogue in the mathematics of semi-
groups, or transformations that make transitions in only one parameter direction. If there
are n states {q}, then a transition T (t; q, q′) from a state q to a state q′, at time t, is an
n× n matrix that acts on a state vector ~q(t).

Definition 63 (Semi-group of transformations). The set of transformations T̂ ∈
{T (t; q, q′)} is said to form a semi-group (for t ≥ 0) if:

1. T̂0 = I is the identity transformation that leaves a state vector invariant: T̂0~q =

~q.

2. T̂t satisfies the Chapman-Kolmogorov equation:

T̂s+t = T̂s T̂t, s, t ≥ 0. (15.8)

1This does not mean that every possible state is necessarily reachable by convergent, commuting
operators, but we are suggesting that any states not reachable by this approach represent inappropriate
policies.

15.5. CHARACTERIZING PROBABLE OR AVERAGE ERROR 271

A stochastic semi-group is a group of stochastic (probabilistic) transitions (see [GS01]).
These groups are clearly of central interest to configuration management. For a discussion
‘couched’ in these terms see [CS03].

Another probabilistically convergent process is a martingale. The study of martin-
gales is the study of sequences that converge in the sense of their total value. The term
martingale comes from gambling.

Suppose a gambler has a fortune. She wagers 1 Euro on an evens bet. If she loses,
she wagers 2 Euros on the next play, and 2n on the nth play. Each amount is calculated
to cover her previous losses. This strategy is called a martingale.

Definition 64 (Martingale). A sequence Sn with n ≥ 1, is a martingale with respect to
another (reference) sequence tn, n ≥ 1 if, for all n ≥ 1:

1. 〈|Sn|〉 <∞,

2. 〈Sn+1|t1, t2, . . . , tn〉 = Sn.

Note that, we define a reference sequence that is usually the progression of time (ticks of
a clock), but any synchronizing pulse sequence would do.

Martingales always converge, in the following sense. If Sn is a martingale with 〈Sn〉 <
M < ∞, for some M,n, then there exists a random variable S such that Sn → S, as
n → ∞. This is a form of statistical convergence, as discussed in section 10.9. The
convergence time of a martingale is a topic of particular interest, that is beyond the
current text.

15.5 CHARACTERIZING PROBABLE OR AVERAGE ERROR

The measures of entropy introduced in chapter 9 provide a precise characterization
of how much uncertainty there is in the processes of propagating any message over
any channel. We now have a configuration alphabet that needs to be propagated into
the future, or reproduced for repair or backup purposes. We apply the measures of
informational uncertainty from chapter 15 to measure the amount of information that
must be transmitted.

Example 176 (DNA alphabet). You decide that, in addition to backing up your user data,
you should also backup your users by copying their DNA. This is rather straightforward,
since DNA is written with only a four symbol alphabet and can be performed by almost
any cell. On observing the result of cell division, you find the following data for the
probability of successful copying. There seems to be a problem with the fidelity of the
copying:

272 CHAPTER 15. SYSTEM INTEGRITY

Trans/Recv A C T G Marginal
A 1

8
1
16

1
32

1
32

1
4

C 1
16

1
8

1
32

1
32

1
4

T 1
16

1
16

1
16

1
16

1
4

G 1
4

0 0 0 1
4

Marginal 1
2

1
4

1
8

1
8

Note that we also calculate the marginal distributions here. The marginal distributions
are found by summing the rows or columns. The dual distribution is thus

p(T,R) =

1
8

1
16

1
32

1
32

1
16

1
8

1
32

1
32

1
16

1
16

1
16

1
16

1
4

0 0 0

 (15.9)

Had the communication been perfect, this would have been:

p(T,R)perfect =

1
4

0 0 0

0 1
4

0 0

0 0 1
4

0

0 0 0 1
4

 (15.10)

As it is, however, this diagonal perfection is smeared out in both directions. We note that
there is a persistent error in the channel that causes a “G” to be received as an “A”.

From the marginal distributions, we have

H(R) = −1

2
log2

1

2
− 1

4
log2

1

4
− 1

8
log2

1

8
− 1

8
log2

1

8

=
1

2
+

1

2
+

3

8
+

3

8

=
7

4
bits. (15.11)

H(T) = 2 bits. (15.12)

The conditional distributions are

H(R|T) =

4∑
i=1

p(T = i)H(R|T = i)

=
1
4
H
(

1
8
, 1

16
, 1

32
, 1

32

)
1
4

+
1
4
H
(

1
8
, 1

16
, 1

32
, 1

32

)
1
4

+
1
4
H
(

1
16
, 1

16
, 1

16
, 1

16

)
1
4

+
1
4
H
(

1
4
, 0, 0, 0

)
1
4

=
11

8
bits. (15.13)

15.6. CORRECTING ERRORS OF PROPAGATION 273

H(T |R) =
13

8
bits. (15.14)

H(R, T) =
27

8
bits. (15.15)

The interpretation of the numbers is as follows. H(T) is the uncertainty per symbol in
our ability to describe the message that is transmitted made available for copying, as
what the next symbol is likely to be. H(R) is the uncertainty per symbol in our ability
to describe the message that is received, i.e. to predict the occurrence of each symbol
in a stream. H(R|T) is the uncertainty per symbol in the received message’s integrity,
given that the transmitted message is known. This is the main quantity of interest to us: it
characterizes the likely integrity of the copy, given that the original is completely known.

To get some idea of how high this uncertainty is, there are log2 4 bits per symbol
i.e. 2 bits per symbol {A,C,G, T}. Thus, the uncertainty in the original transmitted
message H(T) is maximal; no one symbol occurs more frequently than any other, so we
cannot say anything about the original copy to compress it or to simplify it. We have to
know the exact message in order to copy it.

The uncertainty in the received message is actually less than this. Why? Because the
copying is imperfect and it biases the message in a systematic error (see p(R, T)). The
uncertainty in the copy, given that the original is known exactly H(R|T) is about half
a symbol per symbol! This is a very high probability of error, far from appropriate for
backing up our users2.

15.6 CORRECTING ERRORS OF PROPAGATION

One of Shannon’s accomplishments was to prove that any communications channel has a
limited capacity, and that it is possible to find a coding scheme which achieves reliable
transmission of symbols with an efficiency which is arbitrarily close to that channel
capacity. This is known as Shannon’s theorem. Shannon imagined a generic model for
transmission over a noisy channel, shown in fig. 15.4. This model can also be applied to
the transmission of policy, or system integrity.

Errors creep into the transmission of rules and actions, even with digital channels.
One of the reasons for introducing graphical user interfaces to computers, for instance,
was to reduce the possibility of error, by condensing difficult operations into a few simple
symbols for inexperienced users. In spite of the effort, users still hit the wrong icon,
or menu item, and the simplifications which are assumed do not always apply, because
external conditions invalidate the assumptions that were made in selecting the symbols.

2It has come to the author’s attention that not all reader possess a sense of humour. For the record, it
should be pointed out that backing up users is not an ethical procedure. Please do not try this at home.

274 CHAPTER 15. SYSTEM INTEGRITY

Noise

Sender ReceiverI(nput) ? O(utput)

Corrective data

Monitor

Figure 15.4: Shannon’s view of the correction of data on a coded channel, can also be applied to
the correction of policy propagation, or system ‘health’. It makes clear the need for a correctional
system.

Shannon’s theorem, however, tells us that a suitable coding scheme (protocol) can
assure the transmission of a system policy within arbitrary accuracy. Windowing systems
use error correction protocols, such as ‘Are you sure?’ dialogue boxes, in order to catch
random errors — not usually because they believe that users will change their minds very
often.

The signal we wish to propagate is this:

Ideal signal = p(usage|policy) (15.16)

Policy can be communicated by declaration (see, for instance, [Bur95, DDLS00]), or
by simulated dialogue ([Lib90, Cou00]). The latter is becoming more common, with
technologies like SNMP ([OBC99]) and XML based grid services ([XR]). In either case,
its transmission or implementation through fallible humans and technologies is subject
to the incursion of ‘noise’.

The issue now, at this high level, is more subtle than for simple bits however. Do we
really want to achieve such a level of precision as to lead to no errors at all? As long as
humans are part of the equation, there is the question of user-comfort and human welfare.

Thus, in order to apply error correction to larger social and ecological systems, we
must choose the symbols rather carefully. Unlike Shannon, we must pay attention to
the semantic content of symbols when formulating policies which one wishes to have
enforced (see, for instance, [Zad73]).

Proactive error correction is one way of dealing with this issue: by requiring confirma-
tion of a policy breach, one can avoid spurious over-reactions to acceptable transgressions.
For example, the double keys used in nuclear missile launches, or the double signals
used in co-stimulation of the immune response, are simple security features which pre-
vent potentially damaging responses to innocent errors. Hamming codes and checksum
confirmation are other examples of this type of protocol coding.

15.7. GAUSSIAN CONTINUUM APPROXIMATION FORMULA 275

15.7 GAUSSIAN CONTINUUM APPROXIMATION FORMULA

It is not always convenient or appropriate to provide a complete description of transmis-
sion joint probabilities in the form of a matrix. If the number of symbols is effectively
infinite, i.e. of the signal varies as an arbitrary real number, rather than as a digital signal,
then the characterization of probable error must be performed in terms of functions or
distributions rather than matrices. If we believe that a transmission channel is basically
reliable, but with a quantifiable source of random error, then it is useful to use a simple
continuum approximation model for the expected error. The expression for the capacity
of a channel with Gaussian noise is one of the classic results in information theory, and
has many applications. Consider the probability distribution

p(q) =
1√

2πσ2
exp

(
− q2

2σ2

)
. (15.17)

We have:

− ln p(q) = ln
√

2πσ2 +
q2

2σ2
, (15.18)

and thus entropy

H(q) = −
∫
p(q) ln p(q)dq

= ln(
√

2πσ2)

∫
p(q)dq +

∫
p(q)

q2

2σ2
dq,

= ln(
√

2πσ2) +
σ2

2σ2

=
1

2
ln(2πeσ2). (15.19)

Now consider a time series q(t) to be a series of real numbers measured at arbitrary
times, and let us consider the total system to be a mixture of an average signal 〈q(t)〉s
and a noise term δq(t); i.e.

q(t) = 〈q(t)〉s + δq(t). (15.20)

and 〈δq〉 = 0. We shall assume Gaussian noise so that eqn. (15.17) applies, and
obtain the classic result due to Shannon ([SW49, CT91]). The information that can be
transmitted by this continuous channel is infinite, in principle, since we can transmit any
real number at any time with no error. However, this is not a realizable situation, since
there is a physical limit to the information that can be inserted electrically or optically
into a physical channel. It is thus normal to calculate the mutual information that can be
transmitted given that there is an upper bound on the average signal power P = S +N ,

276 CHAPTER 15. SYSTEM INTEGRITY

where S is the signal power and N = σ2 is the noise power. The power varies like the
signal squared, so we apply the constraint:

1

∆T

∫ ∆T

0

q2(t)dt ≤ P. (15.21)

If we exceed the maximum power, the channel could melt or be destroyed.
The channel capacity is defined to be the maximum value of the mutual information

in the average signal, given this power constraint:

C(1) = max
p(q)

H(〈q〉; q). (15.22)

This tells us how many digits per sample we are certain are being transmitted, since it is
the fractional number of digits of information required to distinguish the average string
that was transmitted over the communications channel. In this case we feed the locally
averaged signal 〈q〉 (the smooth part of the noisy signal that we are responsible for), and
we extract the full noisy signal q at the output.

H(〈q〉; q) = H(q)−H(q|〈q〉)

= H(q)−H(〈q〉+ δq|〈q〉)

= H(q)−H(δq|〈q〉)

= H(q)−H(δq). (15.23)

The last line follows from the independence of 〈q〉 and δq. Now, for the Gaussian channel,
we have

H(δq) =
1

2
ln(2πeσ2) =

1

2
ln(2πeN). (15.24)

Thus

H(〈q〉; q) = H(q)−H(δq),

≤ 1

2
ln(2πe(S +N))− 1

2
ln(2πeN).

=
1

2
ln

(
1 +

S

N

)
. (15.25)

To reconstruct the signal we must sample it at twice its maximum frequency, by the
Shannon-Nyquist sampling theorem; thus the channel capacity of a channel of parallel
bands of width B cycles per second is,

C(B) =

2B∑
n=1

C(1)

C(B) = B log2

(
1 +

PS
PN

)
(15.26)

where PS and PN are the total power in all the band frequencies.

15.7. GAUSSIAN CONTINUUM APPROXIMATION FORMULA 277

Example 177 (ISP Bandwidth). An Bangalore Internet Service Provider has a critical
copper Internet cable with bandwidth 2GHz to share amongst customers. This cable is
carried on pylons through the city. Calculate the reduction in usable channel capacity C
due to thermal noise (power proportional to kT), if the temperature changes from 15
degrees Celsius to 35 degrees Celsius, given that the signal to noise ratio is 50dB at 15
degrees Celsius.

The signal to noise ratio is defined by

10 log10

(
PS
PN

)
= 50, (15.27)

hence

PS
PN

∣∣∣∣∣
T=(273+15)

= 105. (15.28)

Given that the noise power is proportional to absolute temperature, at 35 degrees Celsius
the signal to noise ratio is thus

PS
PN

∣∣∣∣∣
T=(273+35)

= 105 × 273 + 15

273 + 35
. (15.29)

The capacity of the cable is thus

C(T = 15) = 2× 109 log
(
1 + 105) (15.30)

C(T = 35) = 2× 109 log

(
1 + 105 (273 + 15)

(273 + 35)

)
(15.31)

C(T = 15)− C(T = 35) = 2.9× 107 (15.32)

Thus there is a loss of channel capacity of about 30 Megabits per second.

Applications and Further Study 15.

• Relating expectation about a system to observed behaviour.

• A method of describing errors (incompatible events) that occur in system processes
and information flows.

• A method of quantifying losses.

CHAPTER 16

POLICY AND MAINTENANCE

When we speak of policy, we really mean a way of defining and constraining the
behaviour of a system to keep certain promises. A policy description must include the
configuration of a system and offer guidelines as to how it should be allowed to evolve.
Policy and configuration management are thus aspects of the same thing. We know that
random fluctuations will always lead to some changes that do not agree with policy, so
fluctuations themselves cannot be made policy conformant. This implies that we need
something to keep fluctuations from permanently altering a system.

16.1 WHAT IS MAINTENANCE?

When does a process become a maintenance process? The notion of system admin-
istration is closely allied with that of maintenance. We need some general notion of
maintenance that can be described quantitatively. Maintenance is a process that tends to
oppose fluctuation — i.e. minimize short term change and provide medium term stability.
We are not interested in managing systems that cannot achieve a basic level of stability,
since these cannot perform any reliable function.

In this chapter we shall think of maintenance as a response to a stochastic process.
There is a parallel here to Shannon’s discussion of communication theory ([SW49])
discussed in chapter 9. To overlay the language of stochastic systems onto the mainte-
nance process, we need to make a separation into what is policy conformant and what is
anomalous. The meaning of conformant and anomalous is not automatically clear, but if
fluctuations have finite variance, then it is self-consistent to associate these concepts with
slowly and rapidly varying changes, respectively, measured in relation to user-behaviour
(see [BHRS01]).

278

16.2. AVERAGE CHANGES IN CONFIGURATION 279

1/ω

∆ t

∆ t ∆ t2 ∆ t3 ∆ t4 ∆ t5 ∆ t60

q(t)

Figure 16.1: An schematic picture of the separation of scales in an open dynamical system,
which satisfies eqn. 16.1. The jagged line represents the highest resolution view of what q(t)
is doing. The solid curve is a short-interval local average value of this behaviour, and the solid
blocks (dotted line) are a much coarser local average. The order of magnitude of the system’s
approximate oscillations is ω−1.

16.2 AVERAGE CHANGES IN CONFIGURATION

The separation of slow and rapid changes to configurations can be made precise by
observing the system through a local averaging procedure. We shall refer to the schematic
diagram in fig. 16.1.

Suppose that the total configuration C = {q(~x, t)}, ∀~x, that is the sum of all objects
where ~x is the address of each high level object representation and t is time, is written as
a sum of two parts:

C(t) ≡ 〈C(t)〉+ δC(t), (16.1)

where 〈C〉 refers to a slowly-varying, local average value of C, and δC refers to a
rapid fluctuating, stochastic remainder. This decomposition isolates those parts of the
environment that lead to a stable (smooth) average configuration and which parts tend
to be rough and unpredictable. In systems that are manageable of interest, one expects
|δC| � |〈C〉|, else we are doomed to unpredictability.

Note also that, by definition, 〈δC〉 = 0, thus the fluctuations are evenly (though not
necessarily symmetrically) distributed about the local mean value. This means that, if
fluctuations tend in one particular direction, they will drag the mean value with them,
preserving their zero mean. If one wishes to avoid a change in the mean value, then one
must either offer dynamical resistance to this kind of monotonic drift, or respond to it
with a counter-change, which balances it on average. This concept of preserving the

280 CHAPTER 16. POLICY AND MAINTENANCE

mean behaviour provides us with a notion of maintenance.

TASKS

The concept of a task is needed to discuss a part of a system which operates autonomously
for some purpose, such as maintenance, ([Bur03]).

Definition 65 (Task). Let a task τ(t) be a system contained within a subset s of the total
system S:

τ(~x, t) = q(~x, t) : x ∈ s, (16.2)

where the restricted coordinates x ranges only over the subsystem.

Example 178 (Task). A task is an autonomous sub-part of a system, like a computer
program or sequence of external changes made by a user. If a task is closed, it does not
affect anything outside of its own resources; if it is open it can affect the state of the rest
of the system also. In a distributed environment a program on one host can affect the
state of a program on another host. The actions of a human interacting with the system
can also lead to a task.

We now have a representation of programs running on the system as well as processes
carried out by external agents (other computers and humans). One can now define
maintenance in terms of the effect of sub-systems on the total system.

Definition 66 (Maintenance Task). Let τM (~x, t) be a task in a system S with configu-
ration spanning s, and τMc(~x, t) be the complement to the subset, i.e. the remainder
of the configuration of S spanning sc; then τM (~x, t) is said to be a maintenance task if
{τM (x ∈ s, t)} is an open system and

d

dt

〈∑
x∈s

log τM (~x, t) +
∑
y∈sc

log τMc(y, t)

〉
<

d

dt

〈∑
y∈sc

log τMc(y, t)

〉
. (16.3)

In other words, the presence of a maintenance task τM reduces the total rate of change of
the average configuration state q(~x, t) in S; i.e. it counterbalances the information in the
fluctuations δq within any smoothed time interval ∆t. If the rate of maintenance is less
than the rate of fluctuation, it will lead to a window of uncertainty in the value of 〈q〉,
which can result in a real change of average state. The logarithms in these formulae make
the ordering and overall scale of the changes unimportant. This is a characterization of
the change of information in the configuration, where the spatial ordering is unimportant.

16.2. AVERAGE CHANGES IN CONFIGURATION 281

Stochastic open system Timescale

Fluctuations, system operations δq Tc ∼ Te < T

environmental changes
Cycles of persistent behaviour T ≡ 2πω−1

A coarse grain of N cycles ∆t = NT � T i.e. (N � 1)

User/policy time scale Tp � T

Long term behavioural trends Tb � Tp

Table 16.1: The separable time-scales for changes in a computer system interacting with an
environment.

Example 179 (Fluctuation). In terms of discrete information coding, a fluctuation
composed of operators

Ô1 Ô2 Ô6 Ô1 Ô3

can be countered by the string of inverse maintenance operations

Ô−1
3 Ô−1

1 Ô−1
6 Ô−1

2 Ô−1
1 .

As the string, with entropy H grows longer, the likelihood 2−H of being able to find the
precise counter-string becomes exponentially smaller, if the exact sequence is required.
If the operations commute, then there is an average chance 1/NH(c) of being able to
counter the string, since order no longer matters.

The definition of maintenance allows for gradual evolution of the idealized persistent
state (e.g. a slow variation in the average length of a queue), since the average value
can be slowly modified by persistent fluctuations. This change of the persistent state is
said to be adiabatic in statistical mechanics, meaning slow compared to the fluctuations
themselves. A summary of time scales is shown in table 16.1.

In order to describe and implement a system policy, for managing the behaviour of a
computer system, it must be possible to relate the notion of policy to rules and constraints
for time-evolution which are programmed into q(~x, t). Such rules and constraints are
coded as software in q(~x, t),or are issued verbally to users in the environment of the
system. The behaviour of the configuration state is not completely deterministic and is
therefore unpredictable. By separating slowly and rapidly varying parts, using a local
averaging procedure, we find an average part that is approximately predictable.

We note, as a commentary, that while this shows that the rate of change in the system
can be arranged to maintain a particular state over a consistent set of time-scales, it does
not specify a unique route to such a state through the state space (including space and
time scheduling) of the Human-Computer system (see [Tra02, CK96]). The existence

282 CHAPTER 16. POLICY AND MAINTENANCE

inequivalent different routes must be handled by a framework in which they can be
compared in some system of returned value. The theory of games, as presented in the
final sections of the paper, is suitable for selecting such a route. The existence of a unique
path has been addressed in [Bur04].

16.3 THE REASON FOR RANDOM FLUCTUATIONS

In the study of dynamical systems, the environment is not normally modelled as a
detailed entity owing to its complexity; rather one considers the projected image of the
environment in the main system of interest. The essence of the definition is that the
environment leads to a projected component in S which appears to be partially random
(stochastic), because the information about cause and effect is not available. This causes
S to behave as an open dynamical system.

Definition 67 (Open dynamical system). An open dynamical system is the projection
of an ensemble of interacting systems E = {S1, S2, . . . , SN}, onto S1. The time
development, D̂, of the open system, may be considered as operating over a noisy
channel, since information from the rest of the ensemble affects the total configuration of
the host connected to the ensemble C1(q1(~x, t)). The closed rule for development of all
system is intertwined:

C1(t+ dt) = (1, 0, . . . , 0)

D̂11 D̂12 · · · D̂1N

D̂21 D̂22

...
D̂N1 D̂NN

C1(t)

C2(t)
...

CN (t)

 (16.4)

This definition is an admission of unpredictability in a system that is open to outside
influence. Indeed, this unpredictability can be stated more precisely:

Lemma 1. The configuration state of an open system S is unpredictable over any
interval dt ∼ Te. (See table 16.1)

Proof. This follows trivially from eqn. (16.4). There is no equation for the evolution of
any part of the system in isolation from the others:

C1(t+ dt) 6= D̂C1(t), (16.5)

for any D̂, since C1(t+ dt) is determined by information unavailable within all of S, iff
Dij 6= 0 for i 6= j, which defines the open system.

16.4. HUGE FLUCTUATIONS 283

The only way that a system can become exactly predictable is by isolating itself and
becoming closed.

Example 180 (Closed system). The idea of closed systems can be turned around and
made into a requirement. See for instance the approach advocated in [CHIK03]. By
forcing the closure of a sub-system and placing restrictions or constraints on channels of
communication, one maximizes consistency and predictability.

16.4 HUGE FLUCTUATIONS

In section 10.10, it is remarked that there exist stable stochastic distributions that have
large fluctuations with formally infinite variance. These have been observed in network
traffic, for instance (see [LTWW94, WP98]). How do these distributions fit into the pic-
ture of maintenance described here? In short, these statistical states cannot be maintained
without infinite resources. This is not an acceptable maintenance cost.

Statistical stability is thus not enough to ensure maintainability. Fluctuations must
be finite in order for us to have a chance. There are two ways to regard this: we can say
that the fluctuations are beyond our ability to maintain and resign ourselves to that fact
that systems with such behaviour are not maintainable, or we must reinterpret policy
to incorporate this environment: stable distributions supercede maintenance—they are
already stable. Policy should be based on the appropriate definition of stability for the
system. If that includes allowing for power law fluctuations, then that is the best we can
do.

16.5 EQUIVALENT CONFIGURATIONS AND POLICY

A high level partitioning of the configuration, which evolves according to rules for time-
development at the same level, leads to the appearance of symmetries, with respect to the
dynamical evolution of a computer system. A symmetry may be identified, whenever a
change in a configuration does not affect the further evolution of the system except for
the order of its elements. The configurations of the system which are symmetrical, in
this sense, form a group.

284 CHAPTER 16. POLICY AND MAINTENANCE

Definition 68 (Group symmetry). A group G of transformations is a symmetry of the
high level configuration q(~x, t), if for some x and time t, the transformation of the
configuration domain

q(~x, t) = q(g(x), t), (16.6)

is an identity, and g ∈ G.

Thus a relabelling of process addresses is unimportant to the configuration, as is any
change in D̂t which leads to a relabelling in the future. These are just arbitrary labels,
unimportant to the functioning of the system. Since the deterministic part of the mapping
D̂t is coded in q(~x, t), this includes changes in the way the system evolves with time.

Definition 69 (Group of transformations). A group Γ of transformations

γ : Q` → Q`. (16.7)

is a symmetry of the state space Q`, if

q(~x, t) = γ(q(~x, t)), (16.8)

is an identity, and γ ∈ Γ.

Thus, if two states are equivalent by association, the system is unchanged if we substitute
one for the other.

Symmetries are hard to describe formally (they include issues such as the presence
of comments in computer code, irrelevant orderings of objects, and so on), but they have
a well-defined meaning in real systems.

Example 181 (Relabelling symmetry). Renaming every reference to a given file would
have no effect on the behaviour of the system. Another example would be to intersperse
instructions with comments, which have no systemic function. Another an important
symmetry of systems is independence of the system to changes in parts of the configuration
space R` which are unused by any of the programs running on the system.

The presence of symmetries is of mainly formal interest to a mathematical description
of systems, but their inclusion is necessary for completeness. In particular, the notion of
equivalence motivates the definition of a factor set of inequivalent configurations

P (t) ≡ C(t)

G ⊗ Γ
, (16.9)

which allows us to use one representative configuration from the set of all equivalent
configurations. In just a moment we shall claim that this quantity is intimately associated

16.6. IDENTIFICATION OF A POLICY WITH A STATE OF PROMISES KEPT 285

with the idea of policy. This factored system is now uniquely prescribed by an initial
configuration, rules for time development and the environment. It is scarcely practical to
construct this factor set, but its existence is clear in a pedantic sense.

16.6 IDENTIFICATION OF A POLICY WITH A STATE OF

PROMISES KEPT

Up to stochastic noise, the development of the open system is completely described by a
configuration of the form of eqn. (16.9), which includes the programs and data which
drive it. Conversely, the behaviour at level ` is completely determined by the specification
of a P (t). With a bottom-up argument about dynamically stable configurations, we have
therefore found a set of objects, one for each inequivalent configuration chain, that can
be deemed stable and has the potential to be unique in some sense, yet to be clarified.
This is therefore a natural object to identify with system policy ([Bur03]).

In practice, only a part of the configuration will directly impact on the evolution
of the system at any time. If a constant part of P (t) can be identified, or if P (t) is
sufficiently slowly varying, then this quantity plays the role of a stable policy for the
system. If no such stability arises, then the policy and configuration must be deemed
unstable.

How does this definition of policy fit in with conventional, heuristic notions of
policy? A heuristic definition is i) a system configuration, ii) rules for behaviour of
the system (programmed), iii) rules for human users (requested), and iv) a schedule
of operations. Of these, i) and ii) may be coded into the configuration space without
obstacle. iii) needs to be coded into the environment, however the environment is not
a reliable channel, and can only be expected to obey policy partially, thus there will
be an unpredictable component. iv) is also programmed into the computer, but there
is also a schedule of random events which belongs to the environment; this also leads
to an unpredictability. The resulting ‘error’ or tendency towards deviation from steady
behaviour must be one of two things: a slow drift ∆P = P (t)−P (t′) (systematic error)
or a rapid random error δP (t) (noise). In order to use a definition of policy such as that
above, one is therefore motivated to identify the systematic part of system change.

16.7 CONVERGENT MAINTENANCE

The notion of convergence was introduced conceptually in [Bur98a] and explicitly
in [Bur98b]. Some authors later seized upon the word homeostasis to describe this,
appealing to a biological analogy ([SF00]). It is related to the idea of the fixed point of

286 CHAPTER 16. POLICY AND MAINTENANCE

a mapping (see [Mye91] for an introduction). If q′ = U(q) is any mapping, then a fixed
point q∗ is defined by,

q∗ = U(q∗). (16.10)

This definition is too strict in a dynamical system, rather we need a limiting process that
allows for some fuzziness:

q∗ − U(q∗) < ε. (16.11)

As defined, a policy is neither a force for good nor for evil, neither for stability nor for
chaos; it is simply an average specification of equivalent system behaviours. Clearly,
only a certain class of policies has a practical value in real systems. This refers to policies
that lead to short term stability, thus allowing a stable function or purpose to be identified
with the system. A system which modifies itself more rapidly than a characteristic human
time-scale Tp, will not have a stable utility for humans.

The notion of convergence is especially useful ([Bur98b, CG99, CD01]) for regulat-
ing systems. A system which possesses a cycle that persists over a given interval of time
can be defined as having predictable behaviour over that interval.

Definition 70 (Convergent policy). A convergent policy P (t), of order n, is one whose
chain of time transitions ends in a fixed point configuration q(~x, tf), for all values x and
times ti > tf , f ≤ n. i.e.

(D̂t)
nq(~x, ti) = q(~x, tf), for some n ≥ 0, ti < tf . (16.12)

The fixed configuration on which the time development ends is sometimes said to be
‘absorbing’, since once the system has entered that state, it does not change again. In
the language of system administration, one says that the system has converged. In a
stochastic, interacting system, this finality cannot be guaranteed precisely. Within a short
time period a change away from the final state can occur at random, thus it is useful to
define the notion of average convergence.

Definition 71 (Convergent average policy). A convergent average policy P (t), of order
n, is one whose average behaviour in time ends in an average state 〈q(~x, tf)〉 between
any two times ti and tf , such that tf − ti > ∆t.〈

(D̂t)
nq(~x, ti)

〉
= 〈q(~x, tf)〉, for some n ≥ 0, ti < tf , (16.13)

where 〈. . .〉 is any local averaging procedure.

16.7. CONVERGENT MAINTENANCE 287

This condition is weaker, because it allows the final state of exhibit fluctuations that are
balanced within the time of the averaging interval.

A discrete chain interpretation of periodicity may be found in [GS01]; it is convenient
here to use the continuum approximation. Over the time interval, it can thus have the
general form:

〈q(~x, t)〉 =
〈
Q0(x) +A(t) Re exp

(
i
ω

n
t
)〉

= Q0(x), (16.14)

i.e. it has an average value and oscillations whose average effect is zero. Since Q is
positive, A < Q0/2. Notice that a process that has converged becomes memory-less, i.e.
its dependence on previous states becomes irrelevant.

A policy in which the average resource resource usage is constant over the policy
timescale Tp is a convergent average policy; e.g. a policy of deleting all old temporary
files, killing old processes and so on, or by adding new resources, so that that fraction of
used resources is constant on a average of a few cycles.

Another example of convergence would be one in which errors in a configuration
file, made by human error, were corrected by an automatic process, within a short
time interval, by regular checkups, thus preserving the average condition. This has
already become a common practice by many system administrators, so convergence is a
commonly used strategy for achieving stability.

PERSISTENCE

Implicit in the foregoing discussion of averages are two notions of stability which now
crave definition, at the level of the continuum description. These form the basis for a self-
consistent definition of convergent system policy, which show that system administration
is a soluble problem, within clear limits.

The coarse graining procedure is a redigitization of the time-line. Local averaging
procedures are used to separate structures in the time evolution of systems at different
levels. One begins by digitizing a details function of time into coarser blocks (like a
pixelized image). As one zooms out, the behaviour of a local average looks smooth and
continuous again.

288 CHAPTER 16. POLICY AND MAINTENANCE

t

q(t)

Figure 16.2: A persistent state is one in which the cycle does not vary appreciably over many
cycles. Here one sees small variations repeated many times, on a slowly varying background.

Definition 72 (Persistent state). A persistent state Ψ(~x, t) = q(~x, t) is a configuration
for which the probability of returning to a configuration Ψ(~x, t0) at a later time Ψ(~x, t0 +

∆t), for ∆t > 0 is 1. In the continuum description, persistence is reflected in the property
that the rate of change of the average state 〈Ψ〉 be much slower than the rate ω of δΨ:∣∣∣∣ 1

〈Ψ〉
d〈Ψ〉
dt

∣∣∣∣ =

∣∣∣∣ ddt log 〈Ψ〉
∣∣∣∣� ω (16.15)

i.e. the fast variation extends over several complete cycles, of frequency ω (see table
16.1), before any appreciable variation in the average is seen.

Example 182 (Job queue). A system job queue has a fluctuating queue size, whose
average length can be determined as a matter of policy, based on observed behaviour,
by choice of a scheduling. Since the arrival of jobs in the queue cannot be accurately
predicted, the average length will vary slowly, as long as jobs are expedited at only
approximately the same rate as they arrive. There is thus a short term cycle; add
job, expedite job, that increases then decreases the queue size. A persistent state is
much larger than this cycle. It means that the cycle is locally stable. If the system
is characterized by a convergent policy (incoming jobs are indeed expedited at an
appropriate rate), then any fluctuations occurring at the rate ω will be counteracted at
the same rate, leading to a persistent (slowly varying average) state. See fig. 16.2.

Thus the meaning of a convergent policy is its resulting persistence. Thus, policy
itself must be identified with that average behaviour; this is the only self-consistent,
sustainable definition, as long as there are stochastic variables in the system, due to
environmental interaction.

The development of an open system is stochastic and this indicates the need for a

16.8. THE MAINTENANCE THEOREM 289

local averaging procedure to describe it. The split one makes in eqn. (16.1), therefore
ensures that the fluctuations are zero on average, distributed about the average behaviour,
so by blurring out these fluctuations, one is left with a unique description of the average
behaviour. The normalized, coarse-grained policy may now be written:

〈P (~x, t)〉 =

∫ t+t̃/2
t−t̃/2 dt P (t) ρE(t)∫ t+t̃/2
t−t̃/2 dt ρE(t)

= 〈C(t)/(G ⊗ Γ)〉, (16.16)

In other words, we have show that the short term evolution of policy can only be
identified with a local average configuration in time; i.e. a set of locally average variables,
at an appropriate coding level for the system.

16.8 THE MAINTENANCE THEOREM

With the meaning of the local averaged mean-field established, it is now a straightforward
step to show that local averaging leads to persistence, and hence that this measure of
stability applies only to locally averaged states. We thus approach the end of the lengthy
argument of this section, which shows that policy can only be an agent for average system
state. The theorem suggests that a strategy for maintaining stability in computer systems
is to strive for convergence.

Theorem 6. In any open system S, a policy P (t) specifies a class of persistent, locally
average states 〈q(t)〉 equivalent under symmetry groups G and Γ, if and only if P (t)

exhibits average convergence.

The proof of this is found in [Bur03], and follows basically from the fluctuation rates.
From lemma 1, in an open system S, a configuration is unpredictable over a time scale
Te ∼ ω−1 (see table 16.1), hence a configuration can only be guaranteed persistent on
average. We thus need only to show that a convergent average policy 〈P (t)〉, of order
n, is persistent for a time ∆t� T , since, by definition, this implies a set of equivalent
persistent average configurations, under the available symmetries. From the definition of
the maintainable fluctuations, one has:∣∣∣∣d〈P 〉dt

∣∣∣∣ � ω
∣∣〈P 〉(t)∣∣ , (16.17)

hence ∣∣∣∣ 1

〈P 〉
d〈P 〉
dt

∣∣∣∣ � ω, (16.18)

290 CHAPTER 16. POLICY AND MAINTENANCE

and 〈P 〉 is persistent. P (t) is associated with a class of states, equivalent under a
symmetry group G, which can vary no faster than policy, since it is a part of the policy,
hence a locally average state, resulting from a non-divergent policy specification is
persistent. This completes the proof.

The maintenance theorem provides a self-consistent definition of what a stable state
is, and hence what a stable policy is, for a computer interacting with external agents
(users, clients etc). The implication is thus that system administration can be pursed as
a regulation technique (see [HL93, SS97, GK96, HZS99, DHP02]), for maintaining the
integrity of policy, provided one can find a convergent average policy. It sets limits on
what can be expected from a policy in a dynamical environment. Finally, the argument
makes no reference to the semantic content of policy; it is based purely on information
and timing.

It is interesting to note another theorem which is better known but also applicable
(and very similar) to the stochastic and semantic views of policy as a propagating
influence: it is simply a transcription of Shannon’s channel capacity theorem for a noisy
channel ([SW49]).

Theorem 7. There exists a policy P (t) which can evolve in time with arbitrarily few
errors, i.e. the system can be forced to obey policy to within arbitrary accuracy.

Shannon’s original theorem stated that “there exists a message coding which can be
transmitted with arbitrarily few errors”; i.e. by creating a policy which is so strictly
enforced as to police the activities of users in every detail, one could prevent users from
doing anything which might influence the strict, predictable development of the system.
Such a policy is possible if the average configuration of the host that it represents has
sufficiently low entropy that it can be compressed into a part of the system dedicated
to maintenance (error correction). It exists because of the finiteness of the digital
representation.

16.9 THEORY OF BACKUP AND ERROR CORRECTION

As an application of many ideas thus far in this book, we consider now a basic example of
system maintenance: a theory of system backup. This is both an issue of great practical
importance and it is an interesting analytical problem. Unfortunately, this single topic
could easily fill a half a book of this size, so we can only outline the analysis and refer to
details in [BR06].

The theory of backup is a theory of random change in systems and the effort to catch
up by making a response to each change. It is the study of trying to hit a moving target.
This situation is not unique to backup, of course; here are some analogous examples:

16.9. THEORY OF BACKUP AND ERROR CORRECTION 291

• Random change of files leads to the need for renewed backup.

• Configuration error leads to the need for renewed maintenance.

• Accumulation of garbage leads to the need for garbage collection (tidying).

• Arrival of tasks in a queue leads to need for server or human action.

There are several parts to this model, all of which address the competing random
processes in the problem. We must address:

• Change detection (digital or continuous; i.e. symbolic or probabilistic).

• Rates of change or event arrivals (clustered or independent arrivals).

• Rate of measurement (including scheduling intervals or detection ‘dead times’).

• Rate of transmission of response (capacity of communication channel).

The arrival of events can be modelled in a number of ways. The events might be faults,
intrusions, accidents, arrival of users, cleanup after departure of users etc.

In traditional statistical theory, arrival events are always assumed to follow the
pattern of a Poisson arrival process, i.e. as a stream of random, independent arrivals.
This assumption is made because it is simple and has special analytical properties. The
study of this kind of system models well the detection of particles from a radioactive
source, e.g. by a Geiger counter. These are truly independent events. Such processes are
called renewal processes (see [GS01]). However, it is known from observation that many
arrival processes are not Poisson processes: arrivals of events are often clustered or come
in ‘bursts’. The only way to determine this is to observe actual systems and collect data.

The most basic observation we can make about user behaviour is that it follows a
basic daily rhythm. Taking data from the measurements at the author’s site, shown in fig.
2.1, we see a distinct maximum in user processes around midday and a lull at around
5:00 or 6:00 in the morning. Clearly this user behaviour must be correlated with changes
in disk files, since there is a direct causation. It is a necessary but not sufficient condition
for change of disk data. We thus expect that most changes will occur during the day time,
and few changes during the night. This is all very well, but what about the fluctuation
distribution of the arrival process? There are various ways of characterizing this: by
deviation from mean or by inter-arrival time.

ARRIVAL FLUCTUATION PROCESS

Suppose we consider inter-arrival time distributions. What is the likelihood of being able
to predict the next file system change? By taking direct measurements of user disks at

292 CHAPTER 16. POLICY AND MAINTENANCE

the author’s College, one finds a highly clustered and noisy distribution of data, with
a long tail. There is clearly no theoretical maximum inter-arrival time for file changes,
but there is a practical maximum. During holiday periods, inter-arrival times are longest
because no one is using the system.

Most changes occur closely together, within seconds, between related files (we are
unable to measure multiple changes to the same file simply by scanning the current state
as a backup system does). This short time part of the spectrum dominates by several
orders of magnitude over the longer times. However, there is a non-zero probability
of measuring inter-arrival times that are minutes and hours and even days. Clearly
the breadth of scales is large, and this tells us that a simple independent Poisson type
of distribution, such as we used in queueing analysis, is unlikely to be an adequate
explanation of this total process.

In the measurements made while writing this book, a rather dirty power law type
distribution or low order was found to approximate the arrival process:

p(∆t) ∼ ∆t−α, (16.19)

where 1 < α < 21. We can note that many phenomena that are driven by social networks
are described by power laws (see, for instance, [Bar02] for a discussion of this). The fit
is not very precise, but it is adequate to sketch a functional form2.

What about the magnitude of each fluctuation? This is harder to gauge, since it
would require a memory of what has gone on during the entire history of the system, and
since most backup systems have to transfer an entire file at a time, this is not immediately
interesting (though note that the rsync program can transfer differential content, see
[TM96]).

How should we deal with these changes? There are several questions:

1. When should a detector start scanning the filesystem for change, over the daily
cycle?

2. What is the risk associated with waiting once a change is made, or having a dead
time between backup processes?

3. What is the cost associated with the backup process?

1One could try to model this process by splitting up the process into a superposition of well-defined
processes, and thus take account of causation.

2With a noisy distribution, the value of α is uncertain, so we choose it to be a normalizable distribution
α > 1 to define a probability.

16.9. THEORY OF BACKUP AND ERROR CORRECTION 293

DETECTION PROCESS

Clearly, in an ideal world one could make an immediate backup of every file as soon as it
were changed.

Example 183 (Copy on Write). This method is used in copy-on-write mirroring tech-
nologies, such as the Distributed Computing Environment filesystem DFS. But this is
expensive, both in terms of machine resources and in terms of storage. Moreover, this
choice involves a policy decision. By simply mirroring the file, we choose not to keep
multiple archive versions. Thus if a mistake is added to a file, it will immediately be
propagated to the backup also. This causes us to lose one reason for making a backup.

Thus the decision is no longer just one about efficiency, but policy. Let us ignore the
copy-on-write policy here and focus on an intermittent backup.

In order to detect changes without notification by the filesystem directly, we need a
detection process. This is a process that must scan through the system, either using its
hierarchical structure, or using its disk block structure to detect change. There are two
strategies one might use here:

• Backups parse file tree as quickly as possible (spans shortest possible time)

• Backups parse file tree slowly (spans a large interval of time, several runs do not
overlap).

In the first case, the backup process presents the shortest interruption to system resource
availability but with high load (backup can be a disk and CPU intensive process that
disrupts system performance for users). In the latter case, one presents a low load to
the system over a longer interval of time. The extreme case here would be to have a
continuous scan of the file tree, picking up modified files continuously and backup them
up as a low priority process.

In the first case, one takes a rapid sharply focused snapshot of the filesystem. In the
latter case, we take a blurred snapshot capturing more changes over a longer time. It
is not obvious which is these strategies can capture most changes over a shortest ‘risk
interval’. We would like to minimize this risk interval, i.e. the time between a file change
and its backup.

In either case, we have a process of file change arrivals overlapping with a detection
process. If both processes are random in time, these are two superposed random processes.
As we know from section 10.9, the superposition of random processes does not lead to
the same kind of random process except in a few special cases. If the detection process
is regular in time, we might suppose that detection is not a random process, but this is
not the case. In detection one must parse the file structures in some regular manner in

294 CHAPTER 16. POLICY AND MAINTENANCE

order to cover the file space evenly; one cannot predict when the actual change will be
registered during this parsing. With partially ordered events, for instance, a dependency
structure that can be represented graphically, results of experiments indicate that a random
sampling can be an efficient (see [San01]) way of parsing the task list. However, random
access makes it difficult to cover the file-tree in an even handed manner, and could
demand large disk head movements. We must always remember the physical limitations
of disk backup: it is the mechanical movement of the disk head that retards the system
performance the most, and the thus increases the performance cost. Since interleaving a
continuous scan of the disk with random access must lead to large movements at least
some of the time. This suggests that copy on write would be a most efficient way of
making an immediate copy, since it requires no additional disk head movement.

In the maintenance theorem, we avoided mentioning the form of fluctuation distribu-
tions explicitly, dealing only with rates and finiteness since computer systems are finite.
Here, observation directs us towards an approximate power law distribution.

POLICY CHOICES

The mechanisms behind the optimization of backup are rather complex and a full under-
standing of them goes beyond the scope of this book; however, suppose we have satisfied
ourselves as to the causes and have a satisfactory model of file arrivals that describes a
file time distribution of the form

P (∆t) = A ∆t−
3
2 e−γ∆t, (16.20)

where A is a constant amplitude and γ is the decay time of the distribution that truncates
the infinite power-law tail to no longer than a day (since the process is pseudo-periodic,
with daily period, there is not point in looking to times longer than this to describe a
maintenance procedure that will also periodic). We now consider what this means for the
best approach to capturing change with minimal risk of loss.

Most changes are for small ∆t < 10 seconds (see fig. 16.3), so a frequent search is
likely to reduce the risk time between change and backup more effectively than a regular
daily backup. A social network model should also be used to look at the locations of
these files, and relate it to the scanning policy used by the backup program to see whether
changes are likely to be clustered in the file tree as well as in time.

How is risk evaluated for a backup strategy? The pathways for failure are various:

• Accidental file deletion.

• Malicious file deletion.

• Disk failure.

16.9. THEORY OF BACKUP AND ERROR CORRECTION 295

0 10 20 30 40

t (secs)

0

20000

40000

60000

F
re

q
u
e
n
c
y

Figure 16.3: A sketch of the distribution of inter-arrival times for file changes. A log-log plot
has a gradient of about 3/2, hence the power law in eqn. (16.20)

• Natural disaster.

In defence against these ‘gremlins’ we have choose:

• Copy on write.

• Backup daily (over short bursts).

• Backup daily (over long times).

• Continuous search and copy.

We can set these up in opposition to one another, by creating a matrix of cases, either
knowing the relative probabilities of the loss mechanisms, or starting from the worst
case scenario. In chapter 19, a method for calculating and optimizing these strategies is
described. The risk or payoff associated with each pair of strategies can then be modelled,
for instance, by the probability that the copy is up to date and divided or subtracted by
the relative disruption cost of the backup method to system productivity. We can make
various assumptions about systems by observing their nature.

Example 184 (Backup schedule). Taking a backup at night is not obviously the best
strategy. It reduces the overhead, but if one accepts that most accidents happen while the
users are busy, then this also maximizes the chance of changes being lost due to some
catastrophe.

296 CHAPTER 16. POLICY AND MAINTENANCE

Example 185 (Snapshotting). Using a program that backs up data very quickly provides
only a momentary snapshot of one time of day. From the data here, we should can
minimize risk by choosing the backup time to be somewhere close to the maximum of the
graph of R(t).

This vagueness underlines the point that, in science, there is virtually never only
one right answer to a question. In system administration, it is about making an arbitrary
compromise.

Let us examine slightly more closely how we might evaluate these strategies in terms
of data capture rates. If a backup is to success, then its average performance must be
such that its average capture rate is equal to the average rate at which changes are made
to the file system. The cumulative change to the file system at rate R(t), over an interval
∆t is (see fig. 16.4):

C(∆t) =

∫ ∆t

0

R(t) dt. (16.21)

Note the regions of differing rates during on and off-peak times, m1 and m2, where
m1 > m2. In region m1 there is high risk of losing changes: there is m1/m2 times the
risk in region m2. The likelihood of disruption by taking backup, on the other hand is
greater in region m1, so we might try to even out this disruption by capturing at a rate
not exceeding m2/m1 of the total rate of change. The simplest solution, when these are
in balance, is thus when m1 = m2 and we have the constant rate of capture with dotted
line, in fig. 16.4.

Now, if we want to perform a quick non-disruptive backup, then this diagram tells
us to perform the backup at the positions marked by the dark blobs, since these lie at
the end of the period of maximum change. This assumes that the rate of failure leading
to need for backup is much slower than the rate at which data change on the disk, and
can therefore happen with more or less equal likelihood at any moment. By placing
the backup after the maximum rate period, we assume capture of the largest number of
changes since the last backup, while at the same time minimizing the disruption.

It is almost obvious from the diagram that, in this simplified picture, there is no
advantage to choosing any special time for a short-burst daily backup except to minimize
disruption. We do not capture any greater number of changes in this way, on average.
However, if we consider making more than one backup per day, or using a continuous
scan technique, there are advantages to picking the time more carefully and a more
detailed analysis is required (see [BR06]).

If we change any of these simplifying assumptions to make the model more realistic,
some of the details will change, but the essence will most likely remain somewhere
between continuous transfer and short burst rates.

16.9. THEORY OF BACKUP AND ERROR CORRECTION 297

Days

R(t)

C(t)

m

m

1

2

Figure 16.4: A simplified schematic plot of a daily data rate R(t) and cumulative change C(t)

of data on a user disk. The straight dotted line shows the rate of continuous detection and transfer
required to backup data change as a continuous process. Gradients m1 and m2 of the cumulative
graphs indicate the most basic approximation to data rates during peak and off-peak hours (usually
day and night). The dark blobs indicate short burst backups. See also fig. 19.5 for a related
picture.

298 CHAPTER 16. POLICY AND MAINTENANCE

Applications and Further Study 16.

• Determining whether a system design is maintainable (sustainable) or not.

• Basis for investigating generalized renewable processes.

• Foundation for the very existence of systems.

CHAPTER 17

KNOWLEDGE, LEARNING AND

TRAINING

The great tragedy of science –
the slaying of a beautiful hypothesis by an ugly fact.

– Thomas Huxley

Human-computer systems are often called knowledge-based systems, because they
rely on a ‘database’ of procedural or factual expertise to carry out their function. Knowl-
edge has to be acquired somehow, and then summarized and stored. There are two forms
of stored knowledge:

• Statistically acquired data that document experience.

• Rules or relationships matched to observation, then summarized in algebraic form.

In the first case, we observe and check and let experience be our guide; in the second
case we believe that we have understood and so summarize what the data seem to show
as a formula, in the context of a theory. Similarly, knowledge is acquired in one of two
ways:

• Supervised learning or training: we are certain of the value of information (e.g. is
a fact true or false) and all that remains is to incorporate this classification into
decision making procedures of the system.

• Unsupervised learning or just learning: we are not certain of the precise classifica-
tion of information, and have to rely on the statistical significance of information
to formulate a hypothesis.

299

300 CHAPTER 17. KNOWLEDGE, LEARNING AND TRAINING

The scientific process itself is about continually questioning and verifying our beliefs
about such knowledge until we are satisfied with their accuracy. It is unquestionably a
process of unsupervised learning: no-one knows the right answers; we have to make do
with dribs and drabs of evidence to make sense of the world.

Experts tend to overestimate their competence in making judgements, so it is impor-
tant to have impartial methods that can mitigate this overconfidence with a reality check.
Probability theory is a key tool in estimating the uncertainties in the learning process, but
even absolute probabilistic descriptions cannot always be made with sufficient accuracy
to make knowledge reliable. We therefore need to consider how sufficient knowledge is
built up and refined in a quantitative fashion1. Note that, while ordinary statistics have no
‘direction’ (the correlation of two variables implies no ordering or asymmetry between
them), the Bayesian viewpoint is directional and can therefore be used to discuss cause
and effect, or the arrow of development.

17.1 INFORMATION AND KNOWLEDGE

A system or organization’s knowledge is built up gradually from experience, by revising
facts and procedures until the process converges on some corpus of expertise that enables
it to carry out its function. Uncertainty remains throughout this process, but can be
quantified and allowances can be made for the imperfection. This chapter brings us back
to the importance of empirical observation.

Rather than giving up on a model, if we do not have sufficient data to reasonably
estimate the parameters, we can use hints and guesses to ‘bootstrap’ the investigative
procedure, and then revise estimates based on testing out the early assumptions. Bayesian
statistics are widely used as a tool for modelling learning (machine learning, human
learning, behavioural adaptation etc.). The idea is to gradually refine knowledge and
move from a situation with imperfect information to one with perfect information. When
we learn, by gathering new evidence of phenomena, it is equally important to forget
outdated knowledge, so that contradictions do not arise.

The idea of expertise and knowledge really brings us back to the philosophical
issues about science and its interpretation of the world (see section 2.3). Without getting
embroiled in this tarpit, we can refer to the problem of expertise as being a human one,
that relates to policy. The roles of humans in making such interpretations are central.

1Much is written on the subject of learning and statistical inference that goes way beyond the scope of
this book. Readers are referred to books on causal statistics, e.g. [Bre70, Pea88] or on pattern recognition,
e.g. [DHS01] for more information on this vast and subtle topic. Bayesian methods are frequently cited,
and often used to throw a veil of philosophical subtlety over the subject. Here be dragons!

17.2. KNOWLEDGE AS CLASSIFICATION 301

17.2 KNOWLEDGE AS CLASSIFICATION

In chapter 9, we defined information by the number of symbols that must be transmitted
in order to exactly reproduce an object or procedure independently of the original. The
uncertainty about the original was measured by the informational entropy. Both of these
definitions hinged on the need to classify observations into symbol classes. Even time
series seek to identify from a list of basic features. The more focused a classification,
the lower the uncertainty (entropy). We say that the acquisition of information about
something decreases out uncertainty about it, so we need to receive classified symbols to
achieve this. This tells us that classification is central to identifying data with knowledge.
There are many ways to define knowledge. For present purposes, let’s take the following.

Definition 73 (Knowledge). Knowledge is a systematic classification of facts and al-
gorithms, i.e. it is about identifying events with a correct hypothesis (class) for their
cause.

We shall now return to the idea of classification to define what we mean by learning.
Learning is closely related to the acquisition of information, but it is not identical because
information might tell us all kinds of contradictory things about a system. It is our ability
to classify those pieces of information into a consistent picture of probable cause that is
knowledge.

Pattern recognition is central to ability to classify (see [DHS01]). As with the classi-
fications of knowledge above, this falls largely into two types: deterministic matching
and probabilistic matching of patterns. Biological pattern recognition, as exercised by
the immune system, it believed to be a statistical hybrid of a symbolic (deterministic)
model of string matching ([PW97]). This is an approach that has been used to look at
integrity checking and anomaly detection (see [PFH96]).

What is impressive about the biological immune system is that it recognizes patterns
(antigens) which the body has never even seen before. It does not have to know about
a threat in order to manufacture antibody to counter it. Recognition works by jigsaw
pattern-identification of cell surface molecules out of a generic library of possibilities. A
similar mechanism in a computer would have to recognize the ‘shapes’ of unhealthy code
or behaviour[Mic, ea]. If we think of each situation as begin designated by strings of
bytes, then it might be necessary to identify patterns over many hundreds of bytes in order
to achieve identify a threat. A scaled approach is more useful. Code can be analyzed
on the small scale of a few bytes in order to find sequences of machine instructions
(analogous to dangerous DNA) which are recognizable programming blunders or methods
of attack. One could also analyze on the larger scale of linker connectivity or procedural
entities in order to find out the topology of a program.

302 CHAPTER 17. KNOWLEDGE, LEARNING AND TRAINING

Example 186 (Pattern scales). To see why a single scale of patterns is not practical we
can gauge an order of magnitude estimate as follows[PW97]. Suppose the sum of all
dangerous patterns of code is S bytes and that all the patterns have the same average
size. Next suppose that a single defensive spot-check has the ability to recognize a subset
of the patterns in some fuzzy region ∆S. i.e. a given agent recognizes more than one
pattern, but some more strongly than others and each with a certain probability. Assume
the agents are made to recognize random shapes (epitopes) that are dangerous, then a
large number of such recognition agents will completely cover the possible patterns. The
worst case is that in which the patterns are randomly occurring (a Poisson distribution).
This is the case in biology since molecular complexes cannot process complex algorithms,
they can only identify affinities. With this scenario, a single receptor or identifier would
have a probability of ∆S/S of making an identification, and there would be a probability
1−∆S/S of not making an identification, so that a dangerous item could slip through
the defenses. If we have a large number n of such pattern-detectors then the probability
that we fail to make an identification can be simply written,

Pn =

(
1− ∆S

S

)n
∼ e−n

∆S
S . (17.1)

Suppose we would like 50% of threats to be identified with n pattern fragments, then we
require

−n∆S

S
∼ − lnPn ∼ 0.7. (17.2)

Suppose that the totality of patterns is of the order of thousands of average sized identifier
patterns, then ∆S/S ∼ 0.001 and n ∼ 7000. This means that we would need several
thousand tests per suspicious object in order to obtain a fifty percent chance of identifying
it as malignant. Obviously this is a very large number, and it is derived using a standard
argument for biological immune systems, but the estimate is too simplistic.

Testing for patterns at random places in random ways does not seem efficient, and
while it might work with huge numbers in a three dimensional environment in the body,
it is not likely to be a useful idea in the one-dimensional world of computer memory
(though see [San01]). Computers cannot play the numbers game with the same odds as
biological systems. Even the smallest functioning immune system (in young tadpoles)
consists of 106 lymphocytes, which is several orders of magnitude greater than any
computer system. What one lacks in numbers must therefore be made up in specificity
or intelligence. The search problem is made more efficient by making identifications at
many scales. Indeed, even in the body, proteins are complicated folded structures with a
hierarchy of folds which exhibit a structure at several different scales. These make a lock
and key fit with receptors which amount to keys with sub-keys and sub-sub-keys and so
on. By breaking up a program structurally over the scale of procedure calls, loops and

17.3. BAYES THEOREM 303

high level statements one stands a much greater chance of finding a pattern combination
which signals danger.

17.3 BAYES THEOREM

The basic formula normally used in learning is Bayes theorem for conditional probability.
This prescribes a well defined method for a learning procedure, but it is not the only
method (see section 17.6). We have already seen how conditional probability allows
us to attach a causal arrow to the development of system information (see section 9.7).
We now take advantage of this to develop a method of increasing certainty, or refined
approximation by including the effect of observed evidence.

Bayes formula is an expression of conditional probability. The probability of two
separate events, A and B, occurring together may be written

P (AAND B) = P (A ∩B) = P (A|B)P (B) = P (B|A)P (A). (17.3)

If the events are independent of the order in which they occur, i.e. they occur simultane-
ously by coincidence, then this simplifies to

P (AAND B)→ P (A)P (B). (17.4)

The symmetry between A and B in eqn. (17.3) tells us that

P (A|B) =
P (B|A)P (A)

P (B)
. (17.5)

This trivial re-expression is that basis for system learning. If we rewrite it for more than
two kinds of event (see fig. 17.1), using fixed classes ci, for i = 1 . . . C, and an unknown
event E that could be in any of them, we have

P (ci|E) =
P (E|ci)P (ci)

P (E)
=

P (E|ci)P (ci)∑C
i=1 P (ci, E)

=
P (E|ci)P (ci)∑C
i=1 P (E|ci)P (ci)

. (17.6)

This is Bayes’ formula. The usefulness of this much adored result lies in a special
interpretation of the learning process. We assume that the ‘true’ classification of observed
information is represented by an event of type ci, and that this is a fixed classification.
Our aim in learning is to determine the most probable classification of information, given
new information.

The Bayesian philosophy distinguishes between a priori probabilities (i.e. our initial
estimate or guess, which is based on imperfect information), and a postiori probabilities
(i.e. our revised estimates of likely classification after receiving new information). The
formula is then interpreted as follows.

304 CHAPTER 17. KNOWLEDGE, LEARNING AND TRAINING

1

2

3

4

5

6

Figure 17.1: When several classes of event can occur simultaneously, the classes overlap and
this must be taken into account in approximating the cause of the events. The classes represent
different hypotheses for observed events.

• The uncorrelated probabilities of seeing different events P (ci) and P (E) are
assumed to be known. We can guess these initially, or simply admit that our
previous experience is always limited and that they are estimates of the truth,
and might not be very accurate. They are based on prior knowledge, i.e. the
experience we have before making any new observations.

• The conditional probability P (E|ci) is interpreted as the likelihood that we are
able to classify an event E, given that we know the classes. This is a likelihood
function. As this probability increases, our guesses become closer and closer to
the truth. This is treated as though it were a function of E, and is sometimes
written L(E|ci) to mark this special interpretation.

• The derived (a postiori) probability P (ci|E) is the best estimate of the probability
of seeing the classification ci, given the evidence E is P (ci|E). It can be thought
of as P (Hi|O), the probability of hypothesis being the correct explanation, given
the observation O. This result can be used directly, and it can also be used, with a
little subtlety, to replace our initial estimate of P (ci) to reiterate the procedure
once more.

17.4. BELIEF VERSUS TRUTH 305

Example 187 (Bayesian distributions). Consider a single cause-effect relationship
C = 1, and let c1 be computer failure by disk error, and let E be the probability of a
computer being down, by any cause. The probability of a disk error, on any computer, is
found over time to be P (c1) = 0.02.

The probability that a computer will be down due to disk error is initially unknown,
so the system administrator sucks a finger and pokes it into the air, declaring that
P (E|c1) = L(E|c1) = 0.6, i.e. there is a sixty percent chance that disk error will
be the cause of computer failure. The probability that disk failure is not the cause
is thus P (E|¬c1) = 0.4, since probabilities sum to one. We can now combine these
uncertainties to find the probability that disk error will be the cause, given that a computer
is observed to be down:

P (c1|E) = P (H|O) =
L(E|c1)P (c1)

P (c1)L(E|c1) + P (¬c1)L(E|¬c1)

=
0.6× 0.02

0.6× 0.02 + 0.4× 0.98
= 0.03. (17.7)

The probability that the true cause is a disk failure is really only as low as 0.02. The
uncertainty flies in the face of the system administrators finger estimate, and reflects the
fact that 98% of computers do not show the symptoms of disk failure and yet 40% of
computers will be down anyway, due to other causes. Note that the result is larger than
the independent estimate, but only slightly: 0.03 is now our belief of the probability of
disk error, rather than 0.02 that was measured. This tells us that our initial finger-in-
the-air estimate was badly wrong and it has been adjusted almost all the way down to
the independent measurement. We should therefore replace this new value with the old
P (E|c1) = L(E|c1) = 0.03 and use the formula again, if we obtain new data.

17.4 BELIEF VERSUS TRUTH

It is a philosophical conundrum for science that, in spite of a search for absolute truth,
one is forced to settle for making a value judgement about belief. This is an inevitable
consequence of unsupervised learning: the world does not give up its secrets easily, and
never according to a classification that is preordained. It is therefore up to a process
of inference to determine what is a reasonable belief about the truth and falsity of our
hypotheses. This realisation is both liberating and complicating for the administration of
human-computer systems, since so much of human involvement is based on belief.

This should not be received as a signal to abandon method however. As always, we
are in the business of reducing uncertainty by proper observation and analysis. Rather,
it opens up an alternative viewpoint in the form of Bayesian statistical methods. There

306 CHAPTER 17. KNOWLEDGE, LEARNING AND TRAINING

is only space to mention these briefly here. Readers are referred to [Bre70, Pea88] and
[DHS01] for more details.

Example 188 (Network Intrusion). Network Intrusion Detection Systems (NIDS) exam-
ine arriving packets of data on the network and examine them using pattern matching
rules, for possible intrusion attempts by crackers. Suppose the IDS signals an alarm.
What is the likelihood that an intrusion has taken place? Clearly, we cannot be certain
about this; indeed, does the question even have any meaning. We can talk about our
degree of belief in the matter.

Suppose that there is a 95% chance that an attempted intrusion will trigger an alarm:

P (alarm|intrusion) = 0.95. (17.8)

Based on the possibility of false alarms, there is a 6% chance that an alarm will be false:

P (alarm|¬intrusion) = 0.06. (17.9)

Figures from security watchdog organizations indicate that there is a 0.01% chance of
being attacked on a given day, so P (intrusion) = 0.0001. What is our basis for belief
that the alarm is a true signal of attack? Let A stand for alarm, and I for intrusion.

P (I|A) =
P (A|I)P (I)

P (A|I)P (I) + P (A|¬I)P (¬I)

=
0.95× 0.0001

0.95× 0.0001 + 0.06× (1− 0.0001)

= 0.00158. (17.10)

Thus, this additional information about the behaviour of the alarm in response to data,
has increased our belief in the validity of the alarm from 0.0001 to 0.0.00158, some
sixteen-fold. Although the likelihood of truth is still tiny, there is a significant improvement
due to the constraints on uncertainty implied by the conditional probabilities.

17.5 DECISIONS BASED ON EXPERT KNOWLEDGE

Decision making is central to system administration. A system that claims to perform an
expert function cannot afford to be as badly wrong as in the finger-sucking example 187
above, so it is crucial to make reasoned estimates of the truth of our hypotheses. Bayes
formula tells us how close our estimate of knowledge is to independently measured
values. The Bayesian method allows iteration of the formula, and it identifies this
iterative revision of probabilities with learning, or the refinement of probable hypothesis
fitting (data recognition). The likelihood function L(H|O) tells us the latest state of our
knowledge about the reasonableness of a hypothesis H , given the observed data O. The
programme is:

17.5. DECISIONS BASED ON EXPERT KNOWLEDGE 307

1. Formulate C hypotheses to classify data.

2. Formulate a discriminant criterion for deciding when a hypothesis is actually
true. This is needed to train the likelihood function, otherwise we can never make
decisions.

3. Train the likelihood function by working out probabilities from independent
measurements, as far as possible. Even if these are imperfect, they allow us to
make a start.

4. Work out the revised estimates probability for probable hypothesis, or update the
likelihood function with new data.

Consider the following example of using Bayes theorem to make a decision based on
training, or supervised learning, in which a human is able to pass on expert judgement to
a computer program in order to manage a flow of data.

Example 189 (Hypothesis testing). One of the classic examples of Bayesian hypothesis
discrimination in system management is the filtering of junk mail by mail servers. There
are various approaches to codifying the hypotheses about what constitutes junk mail,
some are rule based and others are probabilistic.

Suppose that we initially separate junk mail by hand and collect statistics about the
percentage of junk mail arriving. Using the mail history, we train the likelihood function
P (data|junk) = L(junk|data), giving

L(junk|data) = 0.95

L(¬junk|data) = 0.1 (17.11)

This tells us that, when we feed junk into the likelihood function, and update the proba-
bilities based on certain knowledge (discrimination of junk from non-junk) we obtain a
probability estimate of seeing the discriminating features in the data. In reality, there will
be many triggers that cause us to classify mail as junk mail (spam), but they all result
in a final classification of either junk or NOT junk (in set notation “¬ junk”). Note that
some mail is not junk, even though it passes all the tests that we make for it; thus, the
separation is not a clean one.

The data we use to train our likelihood function are the test results of expert probes
over thousands of E-mails. The data that we use to discriminate each incoming mail
then comes from each individual E-mail, after training has ceased. We thus compare the
likelihood that each individual message is spam, based on what has been learned from
all the others.

308 CHAPTER 17. KNOWLEDGE, LEARNING AND TRAINING

On examining a new message, we test the hypothesis that it is junk. We find that
about sixty percent of the junk-tests on this mail are found to be positive: P (c1) =

P (junk) = 0.6, P (¬junk) = 0.4, where the ¬ symbol means NOT or complement.

P (junk|training) =
L(junk|data)P (junk)

L(junk|data)P (junk) + L(¬junk|data)P (¬junk)

=
0.95× 0.6

0.95× 0.6 + 0.4× 0.1
= 0.93. (17.12)

The probability that this is actually junk is slightly less than the training estimate, i.e.
we have an almost maximally high degree of likelihood that the message is spam. In
this example, out belief is amplified by the high proportion of E-mail messages that are
correctly identified by the data sample tests. The main effect of the Bayesian formula
is to go from a simple true/false picture of whether an E-mail is junk or not, to a more
refined threshold based decision that can be dealt with by making a policy decision about
the correct threshold for discarding a message.

The previous example is rather simplistic. In general, effects have many causes,
each of which is a potential hypothesis for failure. Bayesian networks are a way of
modelling the dependencies in more involved cause trees. Here we shall offer only a
simple example.

Example 190 (VPN). Consider a situation in which a worker is trying to establish a
Virtual Private Network connection with their company from home, over an Internet
Service Provider (ISP) line. The probability of a fault F (not being able to establish a
connection) depends on two factors: either the server is busy, or the network in between
is too slow. Let us denote these two causes by B and S respectively. From monitoring
software, the probabilities of these independent events can be estimated:

B S

Server Busy Network Slow

C

VPN fault

Figure 17.2: A simple Bayesian network with two possible cause hypotheses.

P (B) = P (busy) = 0.1, P (¬B) = 0.9

P (S) = P (slow) = 0.4, P (¬S) = 0.6. (17.13)

17.5. DECISIONS BASED ON EXPERT KNOWLEDGE 309

Moreover, we might believe the following probabilities about how these probabilities link
up the independent events in a dependency network.

P (F |BS) = 0.8 P (F |B¬S) = 0.6

P (F |¬BS) = 0.5 P (F |¬B¬S) = 0.5

P (¬F |BS) = 0.2 P (¬F |B¬S) = 0.4

P (¬F |¬BS) = 0.5 P (¬F |¬B¬S) = 0.5

Note that, when the server is busy, we don’t really have any prior knowledge of the cause
of the failure: it’s 50/50.

We begin by calculating the likelihood of a fault given these rough estimates of our
beliefs. This is surprisingly complicated to take account of these biases fairly.

P (F) = P (FBS) + P (F¬BS) + P (FB¬S) + P (F¬B¬S)

= P (F |BS)P (BS) + P (F |¬BS)P (¬BS)

+P (F |B¬S)P (B¬S) + P (F |¬B¬S)P (¬B¬S). (17.14)

Now, since B and S are independent, P (BS) = P (B)P (S).

P (F) = P (F |BS)P (B)P (S) + P (F |¬BS)P (¬B)P (S)

+P (F |B¬S)P (B)P (¬S) + P (F |¬B¬S)P (¬B)P (¬S)

= (0.8× 0.1× 0.4) + (0.5× 0.9× 0.4) +

(0.6× 0.1× 0.6) + (0.5× 0.9× 0.6)

= 0.518 (17.15)

Thus, the best we can conclude is that the probability that there will be a fault is a
little over even odds. The reason for this is our lack of knowledge about the network
hypothesis.

Suppose now, we make more observations. This would be expected to reduce the
uncertainty and we have the opportunity to learn from the added evidence. We use the
Bayes formula for each branch of the tree in fig 17.2.

If we learn the B caused the time out, i.e. the server is busy, then we apply the Bayes
formula for propagating that fact into the probability for B being the correct hypothesis.

P (B|F) =
P (F |B)P (B)

P (F)

=
[P (F |BS)P (S) + P (F |B¬S)P (¬S)]P (B)

P (F)

=
(0.8× 0.4 + 0.6× 0.6)

0.518
= 0.131. (17.16)

310 CHAPTER 17. KNOWLEDGE, LEARNING AND TRAINING

This is the probability that it was B that caused the fault F . It should be compared to
P (B) — it is slightly larger, i.e. the new evidence makes the likelihood of this hypothesis
more likely (though still not very likely). If we learn, on the other hand, that the slow
network S is the cause of the error, we use:

P (S|F) =
P (F |S)P (S)

P (F)

=
[P (F |BS)P (B) + P (F |B¬S)P (¬S)]P (S)

P (F)

=
(0.8× 0.1 + 0.5× 0.9)

0.518
= 0.409. (17.17)

This can be compared to P (S). Again it is slightly larger, adding more support to that
hypothesis. To take account of this learned experience, we might consider replacing
P (B), P (S) with the new estimates 0.131, 0.409 and using the Bayesian rule again.
This process of iteration can sometimes result in the determination of optimal estimates,
in which case one speaks of Bayesian learning.

Taking the new estimate and feeding it back into the formula to obtain a new one
forms the basis of what is known as Bayesian learning. It is a gradual refinement of
certainty about estimated values. To make this idea precise, we must stray into more
technical discussions about parameter estimation that are beyond the scope of this book,
so we leave this as an open problem for the reader to investigate further. The implications
for measurement are that even an imperfect experiment is better than no experiment.
We can make precise use of imperfect data, in a way that can be revised later, if more
observations can be made.

17.6 KNOWLEDGE OUT OF DATE AND THE IMPORTANCE

OF FORGETTING

The process of learning is not only advantageous; an excess of knowledge amount to
a prejudice. Some kinds of knowledge have a sell-by date, after which the knowledge
no longer applies. One example of this is in anomaly detection, where the distant past
history is of little interest to the recent past. If knowledge accumulates for longer than the
period over which one expects policy to be constant, then it becomes anomalous itself
according to the new policy.

There are two approaches to retaining finite window knowledge: a fixed width sliding
window can be used to eliminate any data points that were accumulated before a certain
fixed width interval, measured backwards in time from the present; alternatively, old

17.6. KNOWLEDGE OUT OF DATE AND THE IMPORTANCE OF FORGETTING311

knowledge can gradually be degraded by assigning newer knowledge a higher weight
(see [Bur02b]).

Example 191 (Anomaly detection). Anomaly detection is usually performed using one
of two techniques: off-line time-series analysis, or real-time event threshold processing.
Time-series data consume a lot of space and the subsequent calculation of local averages
costs a considerable amount of CPU time as the window of measurement increases. In
[Bur02b] it is shown how compression of the data can be achieved, and computation
time can be spared by the use of iterative updating, by geometrical series convergence.
The key to such a compression is to update a sample of data iteratively rather than using
an off-line analysis based on a complete record.

The approximate periodicity observed in computer resources allows one to parame-
terize time in topological slices of period P , using the relation

t = nP + τ. (17.18)

This means that time becomes cylindrical, parameterized by two interleaved coordinates
(τ, n), both of which are discrete in practice. This parameterization of time means that
measured values are multi-valued on over the period 0 ≥ τ < P , and thus one can
average the values at each point τ , leading to a mean and standard deviation of points.
Both the mean and standard deviations are thus functions of τ , and the latter plays the
role of a scale for fluctuations at τ , which can be used to grade their significance.

The cylindrical parameterization also enables one to invoke a compression algorithm
on the data, so that one never needs to record more data points than exist within a single
period. It thus becomes a far less resource intensive proposition to monitor system
normalcy.

An iteration of the update procedure may be defined by the combination of a new
data point q with the old estimate of the average q.

q → q′ = (q|q) (17.19)

where

(q|q) =
w q1 + w q

w + w
. (17.20)

This is somewhat analogous to a Bayesian probability flow. The repeated iteration of this
expression leads to a geometric progression in the parameter λ = w/(w + w):

(q1|(q2| . . . (qr|(. . . |qn)))) =
w

w + w
q1 +

ww

(w + w)2
q2 +

+ . . .

+
wwr−1

(w + w)r
qr + . . .

wn

(w + w)n
qn. (17.21)

312 CHAPTER 17. KNOWLEDGE, LEARNING AND TRAINING

Thus on each iteration, the importance of previous contributions is degraded by λ. If we
require a fixed window of size N iterations, then λ can be chosen in such a way that,
after N iterations, the initial estimate qN is so demoted as to be insignificant, at the level
of accuracy required. For instance, an order of magnitude drop within N steps means
that λ ∼ |10−N |. Using the definition of the pseudo-fixed-window average 〈...〉N , we
may now define the average standard deviation, or error, by

〈σ(τ)〉 ≡
√
〈(δq(τ))2〉N

δq(τ) = q(t)− 〈q(τ)〉N (17.22)

This has similar properties to the degrading average itself, though the square root makes
the accuracy more sensitive to change.

In order to satisfy the requirements of a decaying window average, with determined
sensitivity α ∼ 1/N , we require,

1. w
w+w

∼ α, or w ∼ w/N .

2.
(

w
w+w

)N
� 1

N
, or wN � w.

Consider the ansatz w = 1− r, w = r, and the accuracy α. We wish to solve

rN = α (17.23)

for N . With r = 0.6, α = 0.01, we have N = 5.5. Thus, if we consider the weekly
update over 5 weeks (a month), then the importance of month old data will have fallen to
one hundredth. This is a little too quick, since a month of fairly constant data is required
to find a stable average. Taking r = 0.7, α = 0.01, gives N = 13. Based on experience
with offline analysis, this is a reasonable arbitrary value to choose.

17.7 CONVERGENCE OF THE LEARNING PROCESS

The process of learning should converge with time; i.e. we would like the amount of
information on which a system depends to be non-increasing. If the information required
to perform a function diverges, we have no hope of managing the process. Then, we
must be contented with watching the system in either despair or wonder as it continues to
operate. If, however, the information base of the system is constant or even diminishing,
then there is a possibility to learn sufficient information to manage system expertise.

Feeding the a postiori estimates back into the input of Bayes formula provides a
method (with some reservations) of iteratively determining the ‘true’ cause of the data, as
one of the available hypotheses. It is when the prior probabilities (in their nth iteration)
tend towards a very specific answer (low uncertainty or low entropy) that one says the

17.8. FROM PATTERN RECOGNITION TO SEMANTIC REASONING 313

true value has been learned. In section 9.11, we noted that the principle of maximum
informational entropy is a way of modelling the effect of maximum uncertainty, under
given conditions. The maximum entropy principle is a model for forces that tend to
increase uncertainty, such as random fluctuations and errors. Bayesian learning is the
logical opposite of this; thus we can think of learning and entropy as being competing
forces of uncertainty and certainty in a system.

Finally, note that this brings us back, once again, to the idea of convergence and
policy (see sections 5.8 and 10.4). If a well posed system, learning will tend towards
a unique result and stay there in the limit of many observations. This is a stability
criterion for the algorithmic flow of cause and effect in the system. Creating such systems
predictably is still an open problem in many areas, but note the approaches of convergent
configuration management in [Bur04, CS03].

17.8 FROM PATTERN RECOGNITION TO SEMANTIC REA-
SONING

Applications and Further Study 17.

• Discussion of knowledge and expertise in a quantitative fashion.

• A strategy for collecting data as a basis for expert knowledge.

• Automation of data acquisition (machine learning).

CHAPTER 18

POLICY TRANSGRESSIONS AND

FAULTS

“And now remains
That we find out the cause of this effect
Or rather say, the cause of this defect,
For this effect defective comes by cause.”

– Shakespeare, (Hamlet II. ii.100-4).

Non-deterministic systems are usually affected by the arrival of events or random
occurrences, some of which are acceptable to system policy and some of which are not.
Events which are not acceptable may be called faults. The occurrence of system faults
is an extensive and involved topic that is the subject of whole texts (see, for instance
[NRC81] and [SS03]). A fuller discussion in terms of promise theory is given in volume
2. This chapter could not cover the breadth of this subject in any detail, rather we attempt
to distill one aspect of its essence in relatively simple terms and extract some conclusions
from a management perspective, for general synthesis in this work. Readers may consult
[SS03] for a survey of technological methods of fault localization in systems.

18.1 FAULTS AND FAILURES

System faults fall into three main categories:

• Random faults: unpredictable occurrences or freaks of nature.

314

18.1. FAULTS AND FAILURES 315

• Emergent faults: faults which occur due to properties of the system which it was
not designed for. These usually come about once a system is in contact with an
environment.

• Systemic faults: faults which are caused by logical errors of design, or insufficient
specification.

How we classify and define faults, seek their causes and remedies, is a difficult topic that
we cannot cover here (however, note the remarks in section 9.13, especially example 95).
We persue the subject further in volume 2.

The IEEE classification of computer software anomalies ([IEE]) includes the fol-
lowing issues: operating system crash, program hang-up, program crash, input problem,
output problem, failed required performance, perceived total failure, system error mes-
sage, service degraded, wrong output, no output. This classification touches on a variety
of themes all of which might plague the interaction between users and an operating
system. Some of these issues encroach on the area of performance tuning, e.g. service
degraded. Performance tuning is certainly related to the issue of availability of network
services and thus this is a part of system administration. However performance tuning
vis of only peripheral importance compared to the matter of possible complete failure.

Many of the problems associated with system administration can be attributed to
input problems (incorrect or inappropriate configuration) and failed performance through
loss of resources. Unlike many software situations these are not problems which can be
eliminated by re-evaluating individual software components. In system administration
the problems are partly social and partly due to the cooperative nature of the many
interaction software components. The unpredictability of operating systems is dominated
by these issues.

Another source of error is found at the human edge of the system:

• Management errors.

• Forgetfulness/carelessness.

• Misunderstanding/miscommunication.

• Confusion/stress/intoxication.

• Ignorance.

• Personal conflict.

• Slowness of response.

• Random or systematics procedural errors.

316 CHAPTER 18. POLICY TRANSGRESSIONS AND FAULTS

• Inability to deal with complexity.

• Inability to cooperate with others.

In system administration the problems are partly social and partly due to the cooperative
nature of the many interaction software components. The unpredictability of operating
systems is dominated by these issues.

Humans filter all communication through their own view of the world. We respond
to things that make sense to us, and we tend to reject things that do not. This can lead
to misunderstanding, or only partial understanding of a communicated message (see
chapter 15). It can be modelled as the projection of a signal into a digital alphabet that
describes our limited domain of understanding. We match input to the closest concept
we already know.

Unlike machines, humans do not generally use reliable protocols for making them-
selves understood (except perhaps in military operations). A system administrator or
user can easily misunderstand an instruction, or mis-diagnose a problem.

When a problem arises, it means that an undesirable change has occurred in the
system. Debugging is a meta process - a process about the system, but not generally
within the system itself. It involves gathering evidence and tracing cause-relationships.
A fault might be

• A conflict with policy.

• A logical error.

• A random error.

• An emergent fault.

We can adopt different strategies for solving a problem:

• Mitigate the damage by relieving symptoms.

• Fix the cause of the problem at source.

In many complex systems, it is profitable to employ both of these.

Example 192 (Immune system). The immune system which protects higher animals
from infections, uses short term counter measures to prevent the spread of infection
(chemicals which retard cell replication processes, for instance), while at the same time
it is synthesizing a counter-agent to the specific threat (antibodies and killer cells).

18.2. DETERMINISTIC SYSTEM APPROXIMATION 317

18.2 DETERMINISTIC SYSTEM APPROXIMATION

A simplistic, but effective, mode of analysis of systems is to treat them as deterministic
boolean directed graphs. These are system representations that classify systems into
those that either work or don’t work. It is essentially a dependency analysis of systems,
composed of networks of components.

Consider a system of order n components, labelled by a vector or coordinates
~x = (x1, x2, . . . , xn), joined together by links that transmit information. It is normal to
have one of more entry points to this network, and one more more exit points. Information
flows along the links from input to output.

A deterministic analysis assumes a two state model, in which:

xi =

{
1 – if component works
0 – if component is broken

(18.1)

This appears, at first, to be rather simplistic; however, its chief value is in showing that
the concept of ‘not working’ can be broken down into a more detailed view in which the
source of failure is determined to be a single component. An alternative interpretation of
this model is to view the connections between components to mean ‘depends on’ rather
than ‘results in’.

Let us define a system configuration in terms of the so-called structure function φ(~x)

that summarizes the dependencies of the system on its components. (When we extend
this analysis to include stochastic (random) failure events, this will become a macrostate
function.)

Definition 74 (Structure function). The system’s state of repair is described uniquely by
φ(~x):

φ =

{
1 – if the system works
0 – if the system is broken

(18.2)

Example 193 (Fault models). Let xi, (i = 1, 2, 3, 4) describe the CPU, disks and
memory, and kernel of a computer database system. The structure function for this
system is:

φ(~x) = x1 · x2 · x3 · x4. (18.3)

According to this deterministic model, if a single component is not working, then the
entire system is not working.

318 CHAPTER 18. POLICY TRANSGRESSIONS AND FAULTS

Figure 18.1: System components in series, implies dependency.

Figure 18.2: System components in parallel, implies redundancy.

The example above shows the simple view taken by this analysis. Clearly, there are
various degrees by which the memory or disks of a computer system might not work, but
we are not able to describe that yet. Nonetheless, there is something to be learned from
this simple approach, before we extended it to cope with partial or probabilistic failures.

A serial dependency structure (fig. 18.1) works if and only if each of the components
works. The combination is by the boolean AND operation:

φ(~x)serial = x1 AND x2 AND . . . xn =

n∏
i=1

xi

= min
i

xi. (18.4)

A parallel dependency structure (fig. 18.2) works if at least one of its components works.
The combination is by the boolean OR operation:

φ(~x)parallel = x1 OR x2 OR . . . xn = 1−
n∏
i=1

(1− xi)

=

n∐
i=1

xi. (18.5)

The ‘voting’ gate or k of n requires k out of the n components to work. If k = 1, this is
a parallel connection; if k = n it is a serial connection. Clearly this interpolates between
these two cases.

So far we have looked at the system from the viewpoint of a random failure of a
whole component. The dual description of the system describes the viewpoint of an
attacker or saboteur.

18.2. DETERMINISTIC SYSTEM APPROXIMATION 319

Definition 75 (Dual structure). Given a structure function φ(~x), we can define the dual
function φD , or the dual vector ~xD .

φD(~xD) = 1− φ(~x), (18.6)

and

~xD = (1− x1, 1− x2, . . . , xn) = ~1− ~x. (18.7)

From the dual viewpoint, we see the vulnerabilities of the system more explicitly. If a
system works when only a single component functions (parallel system), then it doesn’t
work if (n− 1) additional components are destroyed. If a system works only when all
components function, then we have only to destroy 0 additional components to destroy
the system.

NORMALIZATION CRITERIA

The concept of irrelevant components is a way of identifying and eliminating redundant
parameterization in the structure function. It is a way of pruning the graph of irrelevant
nodes. We are interested in the relevant components only.

Definition 76 (Relevant components). The ith component of a system is relevant to its
structure if φ(~x) is a non-constant function of xi, i.e.

∂φ

∂xi
6= 0, (18.8)

i.e. the function depends non-trivially on xi.

Another criterion for only discussing rationally constructed system is to consider only
those systems where the repair of a component never makes the system worse1. Such
systems are said to be coherent or monotonic, in reliability analysis.

Definition 77 (Coherent and monotonic systems). A system of components is said to be
coherent if and only if φ(~x) is a non-decreasing function of xi, and all the components
are relevant, i.e. iff

∂φ

∂xi
> 0. (18.9)

It is additionally monotonic if we have φ(~0) = 0 and φ(~1) = 1, which is equivalent to
requiring at least one relevant component.

1Note the similarity of this concept to that of convergence in section 5.8

320 CHAPTER 18. POLICY TRANSGRESSIONS AND FAULTS

The requirement of coherence might seem superficially obvious, but if there are mutually
exclusive events in a system, parameterized by separate coordinates xi, the positivity of
the structure dependence is not guaranteed.

Example 194 (Fail over server). Consider a system for providing fault free access to a
network server, using a fail-over server. Let x1 be non-zero if server 1 is active and x2

be non-zero if server 2 is active. Since the events are mutually exclusive, the structure
function is a convex mixture of these:

φ(~x) = x1(1− x2) + x2(1− x1). (18.10)

Clearly
∂φ

∂xi
< 0, i = 1, 2. (18.11)

The same example could be applied to different shifts of human workers, in providing a
’round-the-clock service. The fact that the system is non-coherent means that the failure
of one server does not leave the system in a non-vulnerable state.

REDUNDANCY FOLK THEOREM

A folk theorem about redundancy that follows from this simple deterministic model
concerns where to arrange for redundancy in a system. Roughly speaking it says that a
parallel coupling of components (i.e. a low level parallelism) is never worse than a high
level parallelism. In formal terms this follows from two inequalities. Using the notation,

xi
∐

yj ≡ 1− (1− xi)(1− yj), (18.12)

and

~x
∐

~y = (x1

∐
y1, x2

∐
y2, . . . , xn

∐
xn), (18.13)

we have the inequalities for parallelization

φ(~x
∐

~y) ≥ φ(~x)
∐

φ(~y). (18.14)

This tells us that the working condition of a system with redundant components is
never worse than a redundant combination systems of non-redundant components. For
serialization, the opposite is true:

φ(~x · ~y) ≤ φ(~x) · φ(~y), (18.15)

i.e. the working condition of a system with strong serial dependencies is never better
than a series of dependent systems. The message in both cases is the the lower the level
at which we can introduce redundancy, the better.

Example 195 (RAID). Keeping a server reliable using RAID disks arrays, multiple
CPUs and error correcting memory, is never worse than keeping two independent systems
with single disks, single CPUs and so on.

18.3. STOCHASTIC SYSTEM MODELS 321

1 4

3

2 5

Figure 18.3: A Wheatstone bridge configuration of components provides a good example for
demonstrating the concept of minimal path sets and minimal cut sets.

PATHWAYS AND CUT SETS

Two concepts about flow graphs that illuminate their vulnerabilities are pathways and
cut sets. We can partition the components in a system into two sets: those that work and
those that don’t. If φ(~x) be a monotonic system, then a vector ~x : φ(~x) = 1, i.e. there is
a pathway through the system that works. A minimal path vector is one in which all the
components work along the path. A vector is a cut vector is φ(~x) = 0, i.e. if the vector
leads to a broken system. The minimal cut set can then be defined in relation to this, as a
set of components such that, if all components in the set are broken, the system is broken.

Example 196 (Cut set). Consider the network in fig. 18.3, taking an input on the left of
the graph to an output on the right hand side. The minimal path sets are seen by referring
to the figure.

P1 = {1, 4}, P2 = {2, 5}, P3 = {1, 3, 5}, P4 = {2, 3, 4}. (18.16)

The minimal cut sets are

C1 = {1, 2}, C2 = {4, 5}, C3 = {1, 3, 5}, C4 = {2, 3, 4}. (18.17)

18.3 STOCHASTIC SYSTEM MODELS

The deterministic analysis above is a useful point of reference that can sometimes be
applied directly to human-computer systems. The weakness of the deterministic view of
systems is that one cannot ask questions like the following: only 0.1 percent of my disk
has an error, what is the likelihood that this will prevent the whole system from working

322 CHAPTER 18. POLICY TRANSGRESSIONS AND FAULTS

at any given time? Or the probability of reaching the customer help-desk service on the
telephone within 30 minutes is 0.3; what is the likelihood that the customer’s enterprise
will lose business?

A more flexible analysis of the system treats component states as probabilistic
variables. Such a stochastic analysis can also be used in a predictive way, to develop
architectural strategies (see chapter 13). It is important for continuum approximations
of systems, as only probabilities or averages can vary smoothly and characterize the
changing external conditions of a system.

Using the notation of the previous section, we define the probability of a component’s
working (i.e. the reliability of the component) as the expectation value of the component’s
state:

pi = P (xi = 1) = 〈xi〉. (18.18)

The reliability of the whole system is then given by

ρ ≡ P (φ(~x) = 1) = 〈φ(~x)〉. (18.19)

ρ is called the reliability function; it is a generalization of the structure function from
boolean estimates to real-valued probabilities.

RELATIONSHIP BETWEEN φ AND ρ

We can see the relationship between these by taking the deterministic limit of the
stochastic model, i.e. the limit in which probabilities are either zero or one. Then it
follows that they are functionally the same:

ρ(~p) = φ(~p). (18.20)

This follows since, if pi = {0, 1}, xi = pi

ρ(~p) = 〈φ(~x)〉 = φ(~x) = φ(~p). (18.21)

This tells us how to compute the probabilities of system reliability, given component
reliabilities.

Example 197 (Serial components). For a serially coupled system:

ρ(~p) = 〈x1 AND x2 AND . . . AND xn〉

= 〈
n∏
i=1

xi〉

=

n∏
i=1

pi, (18.22)

i.e. the combined probability is the product of the component reliabilities.

18.3. STOCHASTIC SYSTEM MODELS 323

Example 198 (Parallel components). For a system with a parallel coupling of compo-
nents:

ρ(~p) = 〈
∐

xi〉

= 〈1−
n∏
i=1

(1− xi)〉

= 1−
n∏
i=1

(1− 〈xi〉)

=

n∐
i=1

pi. (18.23)

These rules allow us to generalize the folk theorems about system redundancy in a
straightforward manner:

ρ
(
~p
∐

~p′
)
≥ ρ(~p)

∐
ρ(~p′)

ρ
(
~p · ~p′

)
≤ ρ(~p) · ρ(~p′). (18.24)

In other words: the probability that a single parallelized system is working is greater than
or equal to the probability that parallel components will both be working. Conversely,
the probability that a system that depends on serialization is working, is always less than
the probability that the components are working. Note that there is no impediment to
making probabilities into functions of time, in order to track changing conditions.

BIRNBAUM MEASURE OF STRUCTURAL IMPORTANCE

One measure of component importance that is related to the minimal pathways and cut
sets of the deterministic analysis is the Birnbaum measure, defined as follows.

Definition 78 (Birnbaum importance). The partial rate of change of the system reliability
ρ with respect to a given component reliability pi indicates its structural dependence on
the component.

I
(i)
B ≡ ∂

∂pi
ρ(~p). (18.25)

This measure is easily calculated from a knowledge of the structure function of the
system, and it describes the probability that the ith component lies in a critical path
vector of the system, i.e. that a failure of component i would lead to a failure of the
system. To see this, we note that, for a monotonic system,

ρ(~p) = piρ(1i, p−i) + (1− pi)ρ(0i, p−i), (18.26)

324 CHAPTER 18. POLICY TRANSGRESSIONS AND FAULTS

i.e. The reliability of the system is equal to the probability that i is working multiplied
by the reliability of the system, given that i is working, plus (OR) the probability that
component i is not working and that the rest of the components’ states are unknown.
Using this expansion that gives special prominence to i, we can now examine the
Birnbaum measure for component i:

I
(i)
B =

∂

∂pi
ρ(~p)

= ρ(1i, p−i)− ρ(0i, p−i). (18.27)

This is an expression of the conditional probability that the system is working, given that
i is working, minus the conditional probability that the system is working given that i is
not working; i.e. it is the change in reliability as a result of i being repaired.

We can rewrite this as follows:

I
(i)
B = ∆iρ(~p)

= 〈φ(1i, x−i)〉 − 〈φ(0i, x−i)〉

= P ([φ(1i, x−i)− φ(0i, x−i)] = 1)

= P ((1i, x−i)is a critical pathway) . (18.28)

Put another way, if the change in structure ∆iφ = 1, then it must mean that the system
breaks when i is destroyed. Thus, the Birnbaum measure tells us the probable importance
of the ith component to overall reliability, assuming that we know the structural form of
the system.

Example 199 (Weakest link). For a system of components in series:

I
(i)
B =

∂

∂pi

(∏
j

pj

)
=
∏

i 6= jpj . (18.29)

Suppose we order the reliabilities of the components (this results in no loss of generality),
so that

p1 ≤ p2 ≤ p3 . . . ≤ pn. (18.30)

This implies that

I
(1)
B ≥ I(2)

B ≥ I(3)
B . . . ≥ I(n)

B . (18.31)

Or, the component with the lowest reliability has the greatest importance to the reliability
of the system, i.e. “a chain is only as strong as its weakest link”.

18.3. STOCHASTIC SYSTEM MODELS 325

Example 200 (Structural importance). For a system of components in parallel:

I
(i)
B =

∂

∂pi

(∐
j

pj

)
=

∏
i 6=j

(1− pj). (18.32)

Ordering probabilities again,

p1 ≤ p2 ≤ p3 . . . ≤ pn. (18.33)

we have that

I
(1)
B ≤ I(2)

B ≤ I(3)
B . . . ≤ I(n)

B . (18.34)

Or, the component with the highest reliability has the greatest structural importance to
the overall reliability since, if it has failed, it is likely that all the others have failed too.

CORRELATIONS AND DEPENDENCIES

The interdependence of components can be important a system in a number of ways. For
instance, if one component fails, others might fail too. Or, related components might
experience heavy loads or stresses together. In subsystems that are used to balance load
between incoming information, the failure of one component might lead to an extra load
on the others.

The correlation of component reliabilities is an indication of such interdependence.
One measures this using the statistical covariance or un-normalized correlation function
of the variables. If variables are associated, then

cov(x, x′) = 〈(x− 〈x〉)(x′ − 〈x′〉)〉

= 〈xx′〉 − 〈x〉〈x′〉

≥ 0. (18.35)

Readers are referred to texts on reliability theory, e.g. [Nat98, HR94], for details on this.
We note in passing that ignoring correlations can lead to erroneous conclusions about
system reliabilities. The assumption of independence of components xi in a serial struc-
ture leads to an underestimation of the reliability ρ, in general, whereas the assumption
of independence of components in a parallel structure leads to an overestimation of ρ, in
general.

326 CHAPTER 18. POLICY TRANSGRESSIONS AND FAULTS

18.4 APPROXIMATE INFORMATION FLOW RELIABILITY

One of the aims of building a sturdy infra-structure is to cope with the results of failure.
Failure can encompass hardware and software. It includes downtime due to physical
error (loss of power, communications, etc.) and also downtime due to software crashes.
The net result of any failure is loss of service.

Our main defences against actual failure are parallelism (redundancy) and main-
tenance. When one component fails, another can be ready to take over. Often it is
possible to prevent failure altogether with pro-active maintenance (see the next chapter
for more on this issue). For instance, it is possible to vacuum clean hosts, to prevent
electrical short-circuits. It is also possible to perform garbage collection which can pre-
vent software error. System monitors (e.g. cfengine) can ensure that crashed processes
get restarted, thus minimizing loss. Reliability is clearly a multifaceted topic. We shall
return to discuss reliability more quantitatively in section 18.4.

Component failure can be avoided by parallelism, or redundancy. One way to think
about this, is to think of a computer system as providing a service which is characterized
by a flow of information. If we consider figure 18.2, it is clear that a flow of service can
continue, when servers work in parallel, even if one or more of them fails. In figure 18.1
it is clear that systems which are dependent on other series are coupled in series and a
failure prevents the flow of service. Of course, servers do not really work in parallel. The
normal citation is to employ a fail-over capability. This means that we provide a backup
service. If the main service fails, we replace it with a backup server. The backup server
is not normally used however. Only in a few cases can one find examples of load-sharing
by switching between (de-multiplexing) services.

Reliability cannot be measured until we define what we mean by it. One common
definition uses the average (mean) time before failure as a measure of system reliability.
This is quite simply the average amount of time we expect to elapse between serious
failures of the system. Another way of expressing this is to use the average uptime, or the
amount of time for which the system is responsive (waiting no more than a fixed length
of time for a response). Another complementary figure is then, the average downtime,
which is the average amount of time the system is unavailable for work (a kind of

informational entropy). We can define the reliability as the probability that the system is
available:

ρ =
Mean uptime

Total elapsed time
(18.36)

Some like to define this in terms of the Mean Time Before Failure (MTBF) and the Mean
Time To Repair (MTTR), i.e.

ρ =
MTBF

MTBF + MTTR
. (18.37)

18.4. APPROXIMATE INFORMATION FLOW RELIABILITY 327

This is clearly a number between 0 and 1. Many network device vendors quote these
values with the number of 9’s it yields, e.g. 0.99999.

FLOW OF SERVICES

The effect of parallelism, or redundancy on reliability can be treated as a facsimile of the
Ohm’s law problem, by noting that service provision is just like a flow of work (see also
section B.27 for examples of this).

Rate of service (delivery) = rate of change in information / failure fraction

This is directly analogous to Ohm’s law for the flow of current through a resistance:

I = V/R (18.38)

The analogy is captured in this table:

Potential difference V Change in information
Current I Rate of service (flow of information)
Resistance R Rate of failure or delay

This relation is simplistic. For one thing it does not take into account variable latencies
(although these could be defined as failure to respond). It should be clear that this
simplistic equation is full of unwarranted assumptions, and yet its simplicity justifies its
use for simple hand-waving. If we consider figure 18.2, it is clear that a flow of service
can continue, when servers work in parallel, even if one or more of them fails. In figure
18.1 it is clear that systems which are dependent on other series are coupled in series and
a failure prevents the flow of service. Because of the linear relationship, we can use the
usual Ohm’s law expressions for combining failure rates:

Rseries = R1 +R2 +R3 + . . . (18.39)

and

1

RParallel
=

1

R1
+

1

R2
+

1

R3
. . . (18.40)

These simple expressions can be used to hand-wave about the reliability of combinations
of hosts. For instance, let us define the rate of failure to be a probability of failure, with
a value between 0 and 1. Suppose we find that the rate of failure of a particular kind
of server is 0.1. If we couple two in parallel (a double redundancy) then we obtain an
effective failure rate of

1

R
=

1

0.1
+

1

0.1
(18.41)

328 CHAPTER 18. POLICY TRANSGRESSIONS AND FAULTS

i.e. R = 0.05, the failure rate is halved. This estimate is clearly naive. It assumes,
for instance, that both servers work all the time in parallel. This is seldom the case. If
we run parallel servers, normally a default server will be tried first, and, if there is no
response, only then will the second backup server be contacted. Thus, in a fail-over,
model, this is not really applicable. Still, we use this picture for what it is worth, as a
crude hand-waving tool.

The Mean Time Before Failure (MTBF) is used by electrical engineers, who find that
its values for the failures of many similar components (say light bulbs) has an exponential
distribution. In other words, over large numbers of similar component failures, it is found
that the probability of failure has the exponential form

P (t) = exp(−t/τ) (18.42)

or that the probability of a component lasting time t is the exponential, where τ is the
mean time before failure and t is the failure time of a given component. There are many
reasons why a computer system would not be expected to have this simple form. One is
dependency, which causes events to be correlated rather than independent.

Thus the problem with these measures of system reliability is that they are difficult
to measure and assigning any real meaning to them is fraught with subtlety. Unless the
system fails regularly, the number of points over which it is possible to average is rather
small.

18.5 FAULT CORRECTION BY MONITORING AND INSTRUC-
TION

Let us now use the flow approach of described above to analyze the likely success of a
number of common network topologies. Many systems rely on centralized management,
but we know that centralization, while a cheap strategy, is fragile since it results in many
points of failure. The efficiency of fault correction models has been estimated under
different communication infra-structures to analyze the scalability of the solutions (see
[BC03]). A simple estimate of the scalability of fault correction can be found by using
the system model in chapter 15 for time evolution and error correction.

The simplest estimate is made by assuming that the reliability of each component
in a system and each channel is independent of all others, so that the probabilities of
resource availability are all independent random variables. This suffices to discuss many
aspects of reliability and scaling. If a system component or dependency fails or becomes
outdated, a ‘repair’ or update requires a communication with the component from some
source of ‘correctness’ or policy.

18.5. FAULT CORRECTION BY MONITORING AND INSTRUCTION 329

Let a set of components or resources in a system be defined by a column vector of
probabilities

~C =

p1

p2

...
pN

 (18.43)

where pi(i = 1 . . . N) is the probability that component i is available. If the probabilities
are 1, the hosts are said to be reliable, otherwise they are partially reliable.

The channels of information and flow that link the components are represented in
the adjacency matrix of the network. This matrix need not be symmetrical in practice,
but we shall not address that issue here.

We define a simple measure of the availability of a service, using the connectivity of
the graph χ (see section 6.2). χ has a maximum value of 1, when every node is connected
to every other, and a minimum value of zero when all nodes are disconnected.

For a fixed topology and time-independent node availabilities, χ is a constant charac-
terizing the network. In general χ is time-dependent, as the system evolves; one then
obtains a static figure for the network by taking the long-time average:

〈χ〉 = lim
n→∞

1

n

n∑
i=1

χ(ti). (18.44)

The purpose of this measure is that it enables us to gauge and compare different network
configurations on equal terms. It is also a measure for comparison by which we can map
the problem of unreliable components in a fixed network onto a corresponding problem
of reliable components in an ad hoc network.

A DUALITY: AD HOC NETWORKS AND UNRELIABLE COMPONENTS

Ad hoc networks are networks whose adjacency matrices are subject to a strong, appar-
ently random time variation. If we look at the average adjacency matrices, over time,
then we can represent the probability of connectivity in the network as an adjacency
matrix of probabilities.

Example 201 (Ad hoc network). In an ad hoc communications network, with a fixed
number of components, the links are not independent variables. They are constrained
both by the physical geography in which the components move (only nearby components
are candidates for links), and by interference effects among the set of components near
to a given component. Any given component thus may or may not establish a working
link with a near component, depending on interference from other near components.

330 CHAPTER 18. POLICY TRANSGRESSIONS AND FAULTS

For our purposes here, these dependencies are not important; the important property
of the ad-hoc net is the intermittency of the links, due to the components’ mobility.

Definition 79 (Ad hoc adjacency matrix). An ad hoc network is represented by a
symmetric matrix of probabilities for adjacency. Thus the time average of the adjacency
matrix (for, e.g., four components) may be written as

〈A〉 =

0 p12 p13 p14

p21 0 p23 p24

p31 p32 0 p34

p41 p42 p43 0

 (18.45)

An ad hoc network is therefore a partially reliable network.

To motivate our discussion further, we note that:

Theorem 8. A fixed network of partially-reliable components, Ci, is equivalent to an ad
hoc network of reliable components, on average.

Proof. This is easily seen from the definition of the connectivity, using a matrix compo-
nent form:

N(N − 1)〈χ〉 = ~C(p′)T 〈A(1)〉 ~C(p)

= ~C(1)T 〈A(pp′)〉 ~C(1)

=
∑
ij

Ci(pi) 〈Aij(1)〉Cj(pj)

=
∑
ij

Ci(1) 〈Aij(pipj)〉Cj(1). (18.46)

The proof demonstrates the fact that one can move the probabilities (uncertainties) for
availability from the host vectors to the connectivity matrix and vice versa; for example p1

p2

p3

T 0 1 1

1 0 1

1 1 0

 p1

p2

p3

 =

 1

1

1

T 0 p1p2 p1p3

p2p1 0 p2p3

p3p1 p3p2 0

 1

1

1

 . (18.47)

Thus an array of system components with reliability probabilities pi, is equivalent to an
array of completely reliable components in an unreliable network, where the probability

18.5. FAULT CORRECTION BY MONITORING AND INSTRUCTION 331

of communication between them is the product of probabilities (assumed independent)
from the reliability vector.

POLICY CURRENT IN A GRAPH

As networks grow, some system structure topologies do not scale well. We are interested
in examining the scaling properties of different configuration management schemes,
especially in the context of network models that look to the future of configuration
management.

Using even the most simplistic analysis, we can consider a number of cases, in order
of decreasing centralization, to find the worst case scaling behaviours. Our discussion
follows [BC03]2.

We assume a simple linear relationship between the probability of successful mainte-
nance and the rates of communication with the policy- and enforcement-sources. This
need not be an accurate description of reality in order to lead to the correct scaling laws
(see section 12.8). Let us suppose that a change of configuration ∆Q is proportional to
an average rate of information flow I , over a time ∆t; that is

∆Q = I∆t. (18.48)

This equation says that I represents the time-averaged flow over the interval of time
for which is acts. As we are interested in the limiting behaviour for long times, this is
sufficient for the job.

Now we apply this simple picture to configuration management for dynamic net-
works. We take the point of view of a ‘typical’ or ‘average’ host. It generates error in its
configuration at the (average) rate Ierr, and receives corrections at the rate Irepair. Hence
the rate of increase of error for the average node is:

Ifail = (Ierr − Irepair) θ(Ierr − Irepair). (18.49)

The Heaviside step-function is only non zero when its argument exceeds zero:

θ(x) =

{
1 x > 0

0 x <= 0
(18.50)

and we use it to incorporate the fact that, if the maintenance rate exceeds the error rate,
then (on average, over long times) nothing remains outstanding and there is no net rise in
configuration error. Thus this averaged quantity is never negative.

2This ordering also corresponds, roughly, to decreasing predictability. However this interpretation may
be misleading, since centralized control schemes are also prone to noise, and local or even catastrophic
system-wide failures.) The various cases that we consider are presented in Table 18.1 below.

332 CHAPTER 18. POLICY TRANSGRESSIONS AND FAULTS

If random errors and changes to configuration occur at a rate Ierr and the configura-
tion agent is unavailable to correct them, then Ifail = Ierr. If this holds during a time ∆t,
the configuration falls behind by an amount:

Bytes

missing

(∆Q)

=
bytes/sec

(Ierr)
×

seconds

unavailable

(∆t)

.

In the following we will use p to denote the average (over time, and over all nodes) prob-
ability that configuration management information flow (repair current) is not available
to a node. This unavailability may come from either link or node unreliability. We can
lump all the unreliability into the links (see above) and so write

p = (1− 〈Aij〉) , (18.51)

where 〈Aij〉 denotes both time and node-pair average. Each node then can only receive
repair current during the fraction (1− p) of the total elapsed time.

The repair current is generated by two possible sources in our models: i) a remote
source, and ii) a local source. In each case, the policy can be transmitted and/or enforced
at a maximum rate given by the channel capacity of the source. We shall denote the
channel capacities by CR and CL for remote and local sources for clarity, but we assume
that CR ∼ CL, since source and target machines are often comparable, if not identical.
If the communication by network acts as a throttle on these rates, then one can further
assume that CR < CL. In any case, the weakest link determines the effective channel
capacity. Note that in the case of a confluence of traffic, as in the star models below, the
channel capacity will have to be shared by the incoming branches.

We now have a criterion for eventual failure of a configuration strategy. If

Ifail =
∆Q

∆t
> 0, (18.52)

the average configuration error will grow monotonically for all time, and the system
will eventually fail in continuous operation. Our strategy is then to look at the scaling
behaviour of Ifail as the number of nodes N grows large.

18.6 POLICY MAINTENANCE ARCHITECTURES

MODEL 1: STAR MODEL

The traditional (idealized) model of host configuration is based on the idea of remote
management (e.g. using SNMP). Here one has a central manager who decides and
implements policy from a single location, and all networks and hosts are considered to be

18.6. POLICY MAINTENANCE ARCHITECTURES 333

Table 18.1: Comparison of models from the viewpoint of the different dimensions: policy
dissemination, enforcement, freedom of choice, whether hosts can exchange chosen policy ideas
with peers and how political control flows. A ‘push’ model implies a forcible control policy,
whereas ‘pull’ signifies the possibility to choose. Model 3 lies between these two, in having the
possibility but not the inclination to choose.

Model Application Enforcement Policy Policy Control
Topology Freedom Exchange Structure

1 Star Transmitted No No Radial push
2 Star Transmitted No No Radial push
3 Mesh Local No No Radial pull
4 Mesh Local Yes No Radial pull
5 Mesh Local Yes Yes Hierarchical pull
6 Mesh Local Yes Yes P2P pull

completely reliable. The manager must monitor the whole network, using bi-directional
communication. This leads to an N : 1 ratio of clients to manager (see fig 18.4). This
first model is an idealized case in which there is no unreliability in any component of the
system. It serves as a point of reference.

The topology on the left hand side of fig 18.4 is equivalent to that on the right
hand side. We can assume a flow conservation of messages on average, since any
dropped packets can be absorbed into the probabilities for success that we attribute to the
adjacency matrix. Thus the currents must obey Kirchoff’s law:

Icontroller = I1 + I2 + . . . IN . (18.53)

The controller current cannot exceed its maximum capacity, which we denote by CS .
We assume that the controller puts out a ‘repair current’ at its full capacity (since the
Heaviside function corrects for lower demand), and that all nodes are average nodes.
This gives that

Irepair =
CS
N
. (18.54)

The total current is limited only by the bottleneck of queued messages at the controller,
thus the throughput per node is only 1/N of the total capacity. We can now write down
the failure rate in a straightforward manner:

Ifail =

(
Ierr −

CS
N

)
θ

(
Ierr −

CS
N

)
. (18.55)

AsN →∞, Ifail → Ierr—that is, the controller manages only a vanishing repair current
per node. The system fails however at a finite N = Nthresh = CS/Ierr. This highlights

334 CHAPTER 18. POLICY TRANSGRESSIONS AND FAULTS

Controller

Figure 18.4: Model 1: the star network. A central manager maintains bi-directional communica-
tion with all clients. The links are perfectly reliable, and all enforcement responsibility lies with
the central controller.

the clear disadvantage of centralized control, namely the bottleneck in communication
with the controller.

MODEL 2: STAR MODEL IN INTERMITTENTLY CONNECTED ENVIRONMENT

The previous model was an idealization, and was mainly of interest for its simplic-
ity. Realistic centralized management must take into account the unreliability of the
environment.

In an environment with partially reliable links, a remote communication model bears
the risk of not reaching every host. If hosts hear policy, they must accept and comply, if
not, they fall behind in the schedule of configuration. Monitoring in distributed systems
has been discussed in [ALB99].

The capacity of the central manager CS is now shared between the average number
of hosts 〈N〉 that is available, thus

Irepair =
CS

N〈Aij〉
≡ C

〈N〉 . (18.56)

This repair current can reach the host, and serve to decrease its policy error ∆Q, during
the fraction of time (1− p) that the typical host is reachable. Hence we look at the net
deficit ∆Q accrued over one “cycle” of time ∆t, with no repair current for p∆t, and a
maximal current CS/〈N〉 for a time (1− p)∆t. This deficit is then

∆Q(∆t) = Ierrp∆t+

(
Ierr −

CS
〈N〉

)
(1− p)∆t (18.57)

18.6. POLICY MAINTENANCE ARCHITECTURES 335

Controller

Figure 18.5: Model 2: a star model, with built-in unreliability. Enforcement is central as in
Model 1.

(here it is implicit that a negative ∆Q will be set to zero). Thus, the average failure rate
is

Ifail = Ierrp+

(
Ierr −

CS
〈N〉

)
(1− p) = Ierr −

CS
N

. (18.58)

(Again there is an implicit θ function to keep the long-time average failure current
positive.) This result is the same as for Model 1, the completely reliable star. This is
because we assumed the controller was clever enough to find (with negligible overhead)
those hosts that are available at any given time, and so to only attempt to communicate
with them.

This model then fails (perhaps surprisingly), on average, at the same threshold value
for N as does Model 1. If the hunt for available nodes places a non-negligible burden on
the controller capacity, then it fails at a lower threshold.

MODEL 3: MESH TOPOLOGY WITH CENTRALIZED POLICY AND LOCAL ENFORCE-
MENT

The serialization of tasks in the previous models forces configuration ‘requests’ to queue
up on the central controller. Rather than enforcing policy by issuing every instruction
from the central source, it makes sense to download a summary of the policy to each host
and empower the host itself to enforce it.

There is still a centrally determined policy for every host, but now each host carries
the responsibility of configuring itself. There are thus two issues: i) the update of

336 CHAPTER 18. POLICY TRANSGRESSIONS AND FAULTS

the policy and ii) the enforcement of the policy. A pull model for updating policy is
advantageous here, because every host then has the option to obtain updates at a time
convenient to itself, avoiding confluence contentions; moreover, if it fails to obtain the
update, it can retry until it succeeds. We ask policy to contain a self-referential rule for
updating itself.

The distinction made here between communication and enforcement is important,
because it implies distinct types of failure, and two distinct failure metrics: i) distance of
the locally understood policy from the latest version, and ii) distance of host configuration
from the ideal policy configuration. In other words: i) communication failure, and ii)
enforcement failure.

Controller

Figure 18.6: Model 3. Mesh topology. Nodes can learn the centrally-mandated policy from other
nodes as well as from the controller. Since the mesh topology does not assure direct connection
to the controller, each node is responsible for its own policy enforcement.

The host no longer has to share any bandwidth with its peers, unless it is updating
its copy of the policy, and perhaps not even then, since policy is enforced locally and
updates can be scheduled to avoid contention.

Let Iupdate be the rate at which policy must be updated. This current is usually quite
small compared to Ierr. Based on the two failure mechanisms present here, we break up
the failure current into two pieces:

Ifail = Ifail(i) + Ifail(ii) . (18.59)

The former term is

Ifail(i) = (Ierr − CL)θ(Ierr − CL) ; (18.60)

18.6. POLICY MAINTENANCE ARCHITECTURES 337

this term is independent ofN and may be made zero by design. Ifail(ii) is still determined
by the ability of the controller to convey policy information to the hosts. However, the
load on the controller is much smaller since Iupdate � Ierr. Also, the topology is a
mesh topology. In this case the nodes can cooperate in diffusing policy updates, via
flooding3, i.e. by using asking each neighbour to pass on the policy to its neighbours, but
never back in the direction it came from.

The worst case—in which the hosts compete for bandwidth, and do not use flooding
over the network (graph)—is that, for large N , Ifail → Iupdate. This is a great improve-
ment over the two previous models, since Iupdate � Ierr. However note that this can be
further improved upon by allowing flooding of updates: the authorized policy instruction
can be available from any number of redundant sources, even though the copies originate
from a central location. In this case, the model truly scales without limit, i.e. Ifail = 0.

There is one caveat to this result. If the meshed network of hosts is an ad hoc network
of mobile nodes, employing wireless links, then connections are not feasible beyond a
given physical range r. In other words, there are no long-range links: no links whose
range can grow with the size of the network. As a result of this, if the ad hoc network
grows large (at fixed node density), the path length (in hops) between any node and the
controller scales as a constant times

√
N . This growth in path length limits the effective

throughput capacity between node and controller, in a way analogous to the internode
capacity. The latter scales as 1/

√
N (see [GK00, LNP90]). Hence, for sufficiently large

N , the controller and AHN will fail collectively to convey updates to the net. This failure
will occur at a threshold value defined by

Ifail(ii) = Iupdate −
CS

c
√
Nthresh

= 0 , (18.61)

where c is a constant. The maximal network size Nthresh is in this case proportional to(
CS

Iupdate

)2

—still considerably larger than for Models 1 and 2.

MODEL 4: MESH TOPOLOGY WITH PARTIAL HOST AUTONOMY AND LOCAL EN-
FORCEMENT

As a variation on the previous model, we can begin to take seriously the idea of distance
from a political centre. In this model, hosts can choose not to receive policy from a
central authority, if it conflicts with local interests. Hosts can make their own policy,
which could be in conflict or in concert with neighbours. Communication thus takes
the role of conveying ‘suggestions’ from the central authority, in the form of the latest
version of the policy.

3Note, flooding in the low-level sense of a datagram multicast is not necessarily required, but the
effective dissemination of the policy around the network is an application layer flood.

338 CHAPTER 18. POLICY TRANSGRESSIONS AND FAULTS

For instance, the central authority might suggest a new version of widely-used soft-
ware, but the the local authority might delay the upgrade due to compatibility problems
with local hardware. Local enforcement is now employed by each node to hold to its
chosen policy Pi. Thus communication and enforcement use distinct channels (as with
Model 3); the difference is that each node has its own target policy Pi which it must
enforce.

Controller

?

?

?

?

?

?

?

?

?

?

?

?

Figure 18.7: Model 4. As in Model 3, except the hosts can choose to disregard or replace aspects
of policy at their option. Question marks indicate a freedom of hosts to choose.

Thus the communications and enforcement challenges faced by Model 4 are the
same (in terms of scaling properties) as for Model 3: i.e. Ifail is the same as that in
Model 3. Hence this model can in principle work to arbitrarily large N .

Model 4 is the model used by cfengine ([Bur95, Bur04]). The largest current clusters
sharing a common policy are known to be of order 104 hosts, but this could soon be of
order 106, with the proliferation of mobile and embedded devices.

MODEL 5: MESH, WITH PARTIAL AUTONOMY AND HIERARCHICAL COALITION

An embellishment of Model 4 is to allow local groups of hosts to form policy coalitions
that serve to their own advantage. Such groups of hosts might belong to one department
of an organization, or to a project team, of even to a group of friends in a mobile network.

Once groups form, it is natural to allow sub-groups and thence a generalized hierarchy
of policy refinement through specialized social groups.

If policies are public then the scaling argument of Model 3 still applies since any
host could cache any policy; but now a complete policy must be assembled from several
sources. Once can thus imagine using this model to distribute policy so as to avoid
contention in bottlenecks, since load is automatically spread over multiple servers. In

18.6. POLICY MAINTENANCE ARCHITECTURES 339

Controller

?

?

?

?

Figure 18.8: Model 5. Communication over a mesh topology, with policy choice made hierar-
chically. Sub-controllers (dark nodes) edit policy as received from the central controller, and pass
the result to members of the local group (as indicated by dashed boxes). Question marks indicate
the freedom of the controllers to edit policy from above.

effect, by delegating local policy (and keeping a minimal central policy) the central
source is protected from maximal loading. Specifically, if there are S sub-controllers
(and a single-layer hierarchy), then the effective update capacity is multiplied by S.
Hence the threshold Nthresh is multiplied (with respect to that for Model 3) by the same
factor.

MODEL 6: MESH, WITH PARTIAL AUTONOMY AND INTER-PEER POLICY EXCHANGE

The final step in increasing autonomy is the free exchange of information between
arbitrary hosts (peer to peer). Hosts can now offer one another information, policy or
source materials in accordance with an appropriate trust model. In doing so, impromptu
coalitions and collaborations wax and wane, driven by both human interests and possibly
machine learning. A peer-to-peer policy mechanism of this type invites trepidation
amongst those versed in traditional control mechanisms, but it is really no more than a
distributed genetic algorithm. With appropriate constraints it could equally be made to
lead to sensible convergent behaviour, or to catastrophically unstable behaviour.

Before a distributed policy exchange nears a stable stationary point, policy updates
could be much more numerous here than for the previous models. This could potentially

340 CHAPTER 18. POLICY TRANSGRESSIONS AND FAULTS

Figure 18.9: Model 6. Free exchange of policies in a peer-to-peer fashion; all nodes have choice
(dark). Nodes can form spontaneous, transient coalitions, as indicated by the dashed cells. All
nodes can choose; question marks are suppressed.

dominate configuration management behaviour at early times.

Example 202 (Collaborative network). A collaborative network that has led to positive
results is the Open Source Community. The lesson of Open Source Software is that it
leads to a rapid evolution. A similar rapid evolution of policy could also be the result
from such exchanges. Probably policies would need to be weighted according to an
appropriate fitness landscape. They could include things like shared security fixes, best
practices, code revisions, new software, and so on.

Note that this model has no centre, except for a dynamically formed centre repre-
sented by centrality (see section 6.5). Hence it is, by design, scale-free: all significant
interactions are local. Therefore, in principle, if the model can be made to work at small
system size, then it will also work at any larger size.

In practice, this model is subject to potentially large transients, even when it is on
its way to stable, convergent behaviour. These transients would likely grow with the
size of the network. Here we have confined ourselves to long-time behaviour for large
N—hence we assume that the system can get beyond such transients, and so find the
stable regime.

Finally we note that we have only assessed the success of the given models according
to their ability to provide an integrity preserving, or error correcting stream, as discussed
in chapter 15, that communicates and enforces policy.

18.7. CRITIQUE OF A CURRENT APPROXIMATION 341

18.7 CRITIQUE OF A CURRENT APPROXIMATION

The scaling approximation used in the foregoing models 1-6 is based on the notion of a
neutral information current, basically similar to Kirchoff’s laws in physics. The virtue of
the model is its simplicity, but it also glosses over many important features of what is
going on in a system. We are justified in using this kind of model when there is weak
coupling between the specific semantics of interactions between agents, and the agents
themselves are homogeneous in their treatment of the information.

The models do not address semantic aspects of the architectures, such as the degree
of centralizaton (centralization is known to assist in calibration and consistency of shared
input and output). Conversely, it does not address the robsustness of the peer models,
where there are no privileged roles to act as single points of failure. A discussion of these
points must wait until volume 2, where we can delve into more details.

18.8 DIAGNOSTIC CAUSE TREES

From the previous sections, we recognize that the causal relationships within a system
can form complex networks. Unravelling such networks is difficult. In many cases we
can simplify the causal structure by replacing part of the network with an effective tree
that more clearly describes the causal relationships. The price for this simplification is
that the events are non-deterministic; by hiding details, we lose complete information
about the system, but achieve the illusion of a higher level understanding.

Charting cause-trees is a systematic method used in fault diagnosis. The idea is to
begin by building lists of possible causes, then causes of those causes, and so on, until
one has covered an appropriate level of detail. Once a cause tree has been constructed for
a system, it becomes a road-map for fault finding for the future also. The use of cause
trees is sometimes called Root Cause Analysis (RCA). A related method called Event
Tree Analysis (ETA) maps out every single eventuality, as a true/false binary tree, where
every possibility is documented, but only certain pathways actually occur. The latter is
mainly a way of documenting the extent of a system; it has little analytical value.

Many of the techniques described in this chapter were pioneered over the last half
century by authorities working with nuclear power, where the risk of accidents takes on a
whole different level of importance. The keyword in causal analyses is dependencies.
All of the immediate causes of an phenomenon or event are called dependencies, i.e. the
event depends on them for its existence. The cause tree for the diagnostic example 203 is
shown in fig. 18.10. The structure is not completely hierarchical, but it is approximately
so.

342 CHAPTER 18. POLICY TRANSGRESSIONS AND FAULTS

Example 203 (Network services become unavailable). A common scenario is the sudden
disappearance of a network service, like, say, the WWW. If a network service fails to
respond it can only be due to a few possibilities:

• The service has died on the server host.

• The line of communication has been broken.

• The latency of the connection is so long that the service has timed-out.

A natural first step is to try to send a network ping to server-host:

ping www.domain.country

to see whether it is alive. A ping signal will normally return with an answer within a
couple of seconds, even for a machine halfway across the planet. If the request responds
with

www.domain.country is alive

then we know immediately that there is an active line of communication between the our
host and the server hosts and we can eliminate the second possibility. If the ping request
does not return, then there are two further possibilities

• The line of communication is broken.

• The DNS lookup service is not responding.

The DNS service can hang a request for a long period of time if a DNS server is not
responding. A simple way to check whether the DNS server is at fault or not is to bypass
it, by typing the IP address of the WWW server directly:

ping 128.39.74.4

If this fails to respond then we know that the fault was not primarily due to the name
service. It tends to suggest a broken line of communication. The traceroute command
on Unix-like operating systems, or tracert on Windows can be used to follow a net
connection through various routers to its destination. This often allows us to narrow
down the point of failure to a particular group of cables in the network. If a network
break has persisted for more than a few minutes, a ping or traceroute will normally
respond with the message

ICMP error: No route to host

18.8. DIAGNOSTIC CAUSE TREES 343

and this tells us immediately that there is a network connectivity problem.
But what if there is no DNS problem and ping tells us that the host is alive? Then the

natural next step is to verify that the WWW service is actually running on the server host.
on a Unix-like OS we can simply log onto the server host (assuming it is ours) and check
the process table for the httpd daemon which mediates the WWW service.

ps aux | grep httpd BSD

ps -ef | grep httpd Sys V

On a Windows machine, we would have to go to the host physically and check its status.
If the WWW service is not running, then we would like to know why it stopped working.
Checking log files to see what the server was doing when it stopped working can provide
clues or even an answer. Sometimes a server will die because of a bug in the program.
It is a simple matter to start the service again. If it starts and seems to work normally
afterwards, then the problem was almost certainly a bug in the program. If the service
fails to start, then it will log an error message of some kind which will tell us more. One
possibility is that someone has changed something in the WWW service’s configuration
file and has left an error behind. The server can no longer make sense of its configuration
and it gives up. The error can be rectified and the server can be restarted.

What if the server process has not died? What if we cannot even log onto the server
host? The latter would be a clear indication that there was something more fundamentally
wrong with the server host. Resisting the temptation to simply reboot it, we could then
try to test other services on the server host to see if they respond. We already know that
the ping service is responding, so the host is not completely dead. There are therefore
several things which could be wrong:

• The host is unable to respond (e.g. it is overloaded)

• The host is unwilling to respond (e.g. a security check denying access to our host)

We can check that the host is overloaded by looking at the process table, to see what is
running. If there is nothing to see there, the host might be undergoing a denial of service
attack. A look at netstat will show how many external connections are directed
towards to host and their nature. This might show something that would confirm or deny
the attack theory. An effective attack would be difficult to prevent, so this could be the
end of the line for this particular investigation and the start of a new one, to determine
the attacker. If there is no attack, we could check that the DNS name service is working
on the server-host. This could cause the server to hang for long periods of time. Finally,
there are lots of reasons why the kernel itself might prevent the server from working
correctly: the TCP connection close time in the kernel might be too long, leading to
blocked connections; the kernel itself might have gone amok; a full disk might be causing

344 CHAPTER 18. POLICY TRANSGRESSIONS AND FAULTS

errors which have a knock-on effect (the log files from the server might have filled up
the disk), in which case the disk problem will have to be solved first. Notice how the
DNS and disk problems are problems of dependency: a problem in one service having a
knock-on effect in another.

Net service down

Timed−outService died

Routing prob.DNS failure
Will not

Respond

Cannot

RespondCrashed Deleted Misconfig

No route Busy

to host
Access

control
Bug Upgraded

No reply

Figure 18.10: Attempt at cause tree for a missing network service.

A cause tree for diagnosing a full disk is shown in fig. 18.11. This is a particularly
simple example; it simply becomes a flat list. Causal analyses can be used at different

Disk full

Bad usersFilesystem
Corruption Files

Log files Legitimate
Usage

Temporary

Figure 18.11: Attempt at cause tree for a full disk.

levels. At the level of human management, it takes on a more heuristic role, e.g.

• Inadequate procedures.

• Inadequate training.

• Quality Control.

• Miscommunication.

18.9. PROBABILISTIC FAULT TREES 345

• Poor management.

• Social/human engineering.

• Supervision error.

• Preventative maintenance lacking.

Information is collected about an incident or phenomenon and this is broken down into
cause-effect relationships. Analysts must understand the systems they model thoroughly
from the highest levels, down to the component level.

The construction of an event tree is just like the top-down analysis performed in
programming. Breaking the event up into component causes is like breaking up a task
into subroutines. The benefit is the same: a complex problem is reduced to a structured
assembly of lesser problems.

18.9 PROBABILISTIC FAULT TREES

How can we go beyond mapping cause and effect to calculating the likely outcomes of
the different pathways through a cause tree, to include some of the stochastic reliability
analysis from the start of this chapter? This would give us an approximate way of per-
forming reliability analysis based on a kind of spanning tree approximation to diagnosis.
To accomplish this, we must acknowledge that not all of the possible pathways occur
all of the time: some occur only infrequently, some are mutually exclusive, some are
co-dependent and others are uncorrelated. To make serious headway in estimating likely
cause, we thus need to add probabilities and combinatorics to the discussion. This is
the value of fault tree analysis. The discussion here follows that of Apthorpe ([Apt01]),
based on [NRC81].

18.9.1 FAULTS

For the purposes of modelling, fault tree analysis distinguishes between:

• Failures: abnormal occurrences.

• Faults: systemic breakdowns within the system.

An important subset of faults is formed by component faults.
Component faults fall into three categories:

• Primary faults: occur when a component is working within its design limits, e.g.
a web server that is rated at 50 transactions per second fails when it reaches 30
transactions per second.

346 CHAPTER 18. POLICY TRANSGRESSIONS AND FAULTS

• Secondary faults: occur when a fault is operating outside its design specification.
e.g. a web server that is rated at 50 transactions per second fails when it reaches
90 transactions per second.

• Command faults: are faults that occur when a system performs its specified
function, but at the wrong time or place. e.g. a Web server that begins querying a
database persistently when no request is being made by an external agent.

Faults occur in response to events. The events are also categorized, this time depend-
ing on their position within the tree structure:

• Top: This is the top of the tree – the end phenomenon that we are trying to explain.
It is analogous to the ‘main’ function in a computer program.

• Intermediary: This is a dependency within the tree, but not a root cause of the
phenomenon. It is analogous to a subroutine of the main program, it has deeper
dependencies that are subroutines of itself.

• Primary: This is an event that is either a root cause, or — as deep an explanation
as we can manage to determine. In a computer program analogy, it is like a basic
library function, i.e. the lowest level of control available. Events that we cannot
say much about are called undeveloped events because although we cannot dig
any deeper, we know that there is more going on than we can say. Events that
have no further explanation are called basic events. These are the primitive atoms
of causality: the very root causes.

Events are drawn according to the symbols in fig. 18.12.

(a)

(b)

(c)

(d)

(e)

Figure 18.12: A basic symbols for fault trees.

18.9. PROBABILISTIC FAULT TREES 347

18.9.2 CONDITIONS AND SET LOGIC

When several smaller causes lead to an intermediate event or phenomenon, there arises
a question about how many of the sub-events were needed to trigger the higher level
event – all of them? Any of them? a certain number? Events thus combine in ways
that can be represented by simple combinatoric set notation – with ‘AND’ and ‘OR’ or
other conditions. These are best known to computer scientists in the form of logic gates4.
Figure 18.13 shows the standard symbols for the gates types. Although there are many
gate types, for a richness of expression, in practice AND and OR suffice for most cases.

m

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 18.13: Basic gate types: (a) AND , (b) OR , (c) XOR , (d) Transfer partial result to
separate sub-tree, (e) Voting gate (m of n), (f) Inhibit conditional of ’if’ gate, and (g) Priority
AND (inputs ordered from left to right).

The properties of the gates, in combining the probabilities are noted below. Note that
it makes a difference whether or not events are independent, in the probabilistic sense:
i.e. the occurrence of one event does not alter the probability of occurrence of another.

• In OR gates, probabilities combine so as to get larger.

P (A OR B) = P (A) + P (B)− P (A AND B). (18.62)

4One might be forgiven for believing that Boolean logic arrived with digital computers, but this is not
the case. Mechanical logic gates may be created, e.g. with hydraulics.

348 CHAPTER 18. POLICY TRANSGRESSIONS AND FAULTS

In general,

P (A1 OR A2 OR . . . An) =

n∑
i=1

P (Ai)−
n−1∑
i=1

n

n∑
j=i+1

P (Ai)P (Aj) + . . .

+ (−1)n+1P (A1)P (A2) . . . P (An). (18.63)

• In AND gates, probabilities combine so as to get smaller:

P (A AND B) = P (A)P (B|A), (18.64)

or in general:

P (A1 AND A2 AND . . . An) =

n∏
i=1

P (Ai). (18.65)

If A and B are independent, then

P (A)P (B|A) = P (A)P (B), (18.66)

which is smaller than P (A) or P (B); but if the events are not independent, the
result can be much greater than this.

• XOR gates have no predictable effect on magnitudes.

P (A XOR B) = P (A) + P (B)− 2P (A AND B) (18.67)

Thus if we see many OR pathways, we should be scared. If we see many AND pathways,
we should be pleased — the latter means that things are tied down quite tightly with
redundancy or protections.

18.9.3 CONSTRUCTION

As a simple example, consider how to work out the probability of failure for a system at-
tack, where an attacker tries the obvious pathways of failure: guessing the root password,
or exploiting some known loopholes in services which have not been patched.

We split the tree into two main branches: first try the root password of the system,
‘OR’ try to attack any services which might contain bugs.

• The two main branches are ”independent” in the probabilistic sense, because
guessing the root password does not change the sample space for attacking a
service and vice versa (it’s not like picking a card from a deck).

18.9. PROBABILISTIC FAULT TREES 349

Bug Config

Server failure

Router

Service down

P(B) P(C)

P(BC)

P(A)

Figure 18.14: A simple fault tree for an unavailable service.

• On the service arm, we split (for convenience) this probability into two parts and
say that hosts are vulnerable if they have a service which could be exploited AND
the hosts have not been patched or configured to make them invulnerable.

• Note that these two arms of the AND gate are time-dependent. After a service
vulnerability becomes known, the administrator has to try to patch/reconfigure
the system. Attackers therefore have a window of opportunity. This adds a time
dimension to the fault analysis which we might or might not wish to address.

Since all the events are independent, we have:

P (break in) = P (AOR (NOTAAND (B AND C))) (18.68)

= P (A) + (1− P (A))× P (B)P (C) (18.69)

Suppose we have, from experience, that

• Chance of router problem P (A) = 5/1000 = 0.005.

• Chance of server problem P (B) = 50/1000 = 0.05.

350 CHAPTER 18. POLICY TRANSGRESSIONS AND FAULTS

• Chance that server is misconfigured P (C) = 10% = 0.1.

P (T) = 0.005 + 0.995× 0.05× 0.1

= 0.005 + 0.0049

= 0.01

= 1% (18.70)

Notice how, even though the chance of guessing the root password is small, it
becomes an equally likely avenue of attack, due to the chance that the host might have
been upgraded. Thus we see that the chance of break in is a competition between an
attacker and a defender.

A cutset is a set of basic events that are essential for a top level fault to occur. A
minimal cutset is a cutset in which the removal of a single event no longer guarantees the
occurrence of the top level the event. One of the aims of fault tree analysis is to identify
these cut sets. They represent the critical dependencies of the system.

Applications and Further Study 18.

• Analysis of structure and its effects on failure modes.

• Determining the likely place and time window of fault occurrence.

• Quantifying reliability.

• Avoidance of flawed structures.

• Choosing reliable stategies in policy decisions.

CHAPTER 19

DECISION AND STRATEGY

Decisions are made at many levels in network systems, from the top level decisions about
policy to the low level choices made during diagnostics. Rational decision making is
often assumed central to the optimal performance of human-computer systems. However,
humans do not always behave rationally, and even computers do not always behave
predictably, so one must take into account the possibility that systems will not always be
deterministic.

This chapter is about how one can evaluate the rational limits of strategy in a system,
and how one sets choosing the best strategies to maximize the result delivered by the
system.

19.1 RATIONAL ACTORS

The dream of rational decision making has a long history in philosophy, going far back
in time[Mir89]. The idea that there exists a rational function, which might be minimized
to determine the best possible solution to any problem is a part of the heritage that comes
from the laws of physics, where energy conservation principles reveal such methods to
us in the so-called action principle. Beyond this, the social sciences like economics
and sociology have often attempted to describe human behaviour as if it were based on
rational minimization of effort. Research in psychology has hopefully disproved this
idea once and for all[Kah11, Ari12, Sti90], though it persists especially in the field of
economics[NM44].

On short timescales, we know that humans are driven by emotion, not rational
computation. If there is an approximation in which human behaviour may be considered
rational, it would have to be averaged over time and space at a large ensemble size. Such

351

352 CHAPTER 19. DECISION AND STRATEGY

behaviours might be able to describe crowds, species, or civilizations over evolutionary
timescales, but not the minutae of systemic decision making.

Why then should we look at such methods to study systems? One reason is to
understand whether the machine aspects of systems, which do not respond emotionally,
could be modelled as rational actors. We surely cannot deny that they behave rationally,
in the sense of being free of emotion, but we cannot really be sure that they behave
optimally, or that the degrees of freedom available to them are free of human bias.

19.2 CAUSAL ANALYSIS

All human and computer systems satisfy basic natural ‘laws’ that tell us how the world
works. We cannot escape such laws; they bind us to basic truths about systems, even
when the physics of systems seems utterly buried from view. Causality is the term used
to express a basic truth about the world: that for every effect there is a cause that precedes
it.

Sometimes authors confuse the necessity of this basic law with the ability to identify
the precise root of a cause. It is important to realize that effects need not have one simple
cause, but that even complex systems that are practically unpredictable obey the law of
causality. Causality says simply that physics is a directed graph, at a low level. However,
we know from weather charts that when we combine a lot of arrows pointing in different
directions, the result can be far from easy to predict. This is why we are often more
interested in systems that are predictable than in necessarily being able to trace the exact
sequence of changes that led to the state of the system. Still, we are bound by the basic
constraint of causality in every decision we make.

When a causally directed system ends up in a state that is not going anywhere, we
say that it has reached an equilibrium, as discussed in chapter 10. Such a state is stable
to small perturbations in the conditions under which it formed. This concept returns
in this chapter in connection with decision making. We would like to ask: what is the
likelihood of being able to base decisions on causal, rational information that can tell us a
stable kind of ‘truth’ that will not be undone by the smallest change in the environment?
The weather forecast suggests to us that this is not going to be easy, but can we at least
minimize the uncertainty in decision making by using all of the available information
about a human-computer system?

19.3. DECISION MAKING 353

19.3 DECISION MAKING

The simplest decisions are made by associating an action with the occurrence of a state
in a chain of events1. States are identified with actions by combining predicates about
the world using logical operations such as AND , OR and NOT . These state-based
classifiers are set constructions (see chapter 5).

Sets effectively make decisions because they classify the world into regions: inside
the set, outside the set, inside this set and that set, and so on. Thus, if we give every set
a name, then we have labelled all of the objects that lie within the sets also, and this is
what we use to sift through members and identify their properties in terms of a state that
is given by the label of the set.

Example 204 (CFEngine strategies). The system administration tool CFEngine ([Bur93])
makes decisions by classifying systems according to their set membership. When the
cfengine agent starts executing on any computer, it tries to identify the sets or classifiers
to which it belongs:

Defined Classes = (Saturday Hr12 Min10 Min10_15 Day7 June Yr2003

solaris nexus 32_bit sunos_5_9 sun4u sunos_sun4u_5_9 sparc

myname_domain ipv4_128_39_89_10)

This list of sets identifies the type of operating system, the name of the computer, its
Internet address and so on. Notice that even the time is classified into sets that describe
the days of the week, the hours of the day and intervals of minutes etc. Any property can
be classified in this way, using sets. That is the essence of logic and reasoning.

Some sets do not overlap, or are mutually exclusive:

linuxAND windows = linux ∩ windows = ∅ (19.1)

Others do overlap and provide nuances of description to decide whether or not to take
one course of action or another:

linux AND Saturday :: action 1

linux AND Sunday :: action 2

(linux OR windows) AND Monday :: action 3

Another way in which decisions are made is by statistical confidence: we have
processes such as voting. If sufficient support is given to a certain proposition, we can
view it as being statistically ‘true’, or at least significant.

1This is like a switch-case or if-then-else construction in programming

354 CHAPTER 19. DECISION AND STRATEGY

Finally we have games. The point of game theory is to find out the limits of rational
choices with varying degrees of information about competing inputs. If one player has
a high expectation of payoff from a particular decision, the game can provide a reality
check on those expectations. The results of the game set the baseline for expectation.
There will then be noise on top of this, since not all agents in the game ware likely to
behave rationally.

19.4 GAME THEORY

The Theory of Games was first significantly developed by J. Von Neumann and O.
Morgenstern ([NM44]) and later developed by Nash (see [Nas96]) and many others. It is
a method for pitting a set of pre-emptive and defensive strategies against one another,
and finding their point of balance in order to see how they fare against one another. By
doing this one tries to maximize gain and minimize loss in a competitive setting.

Games are played in many contexts: in fact, a wide variety of interactive processes
can be formulated as some kind of game. The simple pendulum, mentioned in chapter 4 is
a game that is played between gravity and motion for winning ‘energy’. At a supermarket,
customers and merchants play a game with each other in which prices are used to lure
customers to a particular seller but also to maximize profits. A balance must be then
found between setting the prices as high as possible without losing customers and using
a cheaper strategy to sell more items but with a lesser profit per item.

Game theory is applicable in all cases where it is difficult to evaluate the gains
generated by following particular policies. This occurs whenever the number of choices
is large or the effects are subtle. Contests which are caused by conflicts of interest
between system policy and user wishes, unfold in this framework as environmental
interactions which tend to oppose convergence and stability (see [NM44, Dre61]). Game
theory introduces ‘players’, with goals and aims, into a scheme of rules and then analyzes
how much each player can win, according to those restrictions. Each pair of strategies in
a game affords the players a characteristic value, often referred to as the ‘payoff’. Game
theory has been applied to warfare, to economics (commercial warfare) and many other
situations.

Game theory is a vast subject, with many technical challenges. Here, we shall restrict
our examples to games between two players, since this is adequate for many situations
and presents a sufficient range of issues to exhaust the time allowed in an introductory
text.

19.4. GAME THEORY 355

WHO ARE THE PLAYERS?

The players in a game are any actors or influences that affect the transfer of value to any
of the other players; i.e. they are entities who exchange some form of system currency.
Each player has their own viewpoint of what is best (most valuable) for them but that
viewpoint is constrained to work within and share the same system as all of the other
players. In some cases, players have opposing interests in which case we speak of
non-cooperative games. In other cases players share some common interests and can
collaborate leading to partially cooperative games.

Players are labelled by Roman indices i = 1 . . . n and abstract players can be made
to represent many opposing viewpoints about a system:

• System users versus system policy (or system administrator),

• System policy versus entropy - chance degradation of the system,

• A rogue user versus the other n− 1 users.

In many games, it is not necessary to interpret a player as a person or rational entity, as
one does in classical game theory. As we have seen in chapter 16, the random forces of
disorder, measured as entropy, are a sufficient counter-player in many situations. The
principle of maximizing entropy is sufficient to make even random chance into a ‘rational’
player in the game theoretical sense: it is an influence that cares nothing for the other
players and which is statistically biased against them. In that sense, it can be viewed as
seeking to maximize its own gains. We can therefore think of system administrators as
playing a two-person game against ‘gremlins’ in the system, and this will be a profitable
way of formulating the strategic problem.

However, we should be cautious with this viewpoint. There is a slight difference
between playing a game against a rational user and playing a game against chance. It is
not necessarily true that the most likely outcome of chance is an optimal strategy in a
game. When we look for the strategies played by the forces of chance, the most reliable
guide is to measure them with experimental data to find out what they actually do, rather
than necessarily trusting the formalism of the game that would like to assume the worst.
In either case, it is instructive to assume the worst and then compare how efficient chance
is at maximizing its effect. If actual data are procured later, they can be substituted and
the table elements with a known (sub-optimal) strategy can be summed over to reduce
the problem to one of optimization with respect to one less variable.

Definition 80 (Worst case scenario). We define this to be the mixed-strategy minimax
solution of a zero-sum game. Even if our counter-player is ‘nature’ or the forces of
chance, the equilibrium solution tells us that chance is playing its most destructive hand.

356 CHAPTER 19. DECISION AND STRATEGY

REFINEMENT OF REASONABLE BELIEF

In chapter 17, the issue of learning or the refinement of belief was raised for the attainment
of expert knowledge. Decisions must clearly be made based on this kind of expert
knowledge. This applies to games or to any other form of decision. If one does not have
a reasonable observational basis for making decisions, a strategy of confining the limits
of possibility can be used. For example, one begins with the worst case scenario, and
then refines it as more data become available. The worst case scenario is bound to be
pessimistic, but it is the only rational starting point in the absence of more data.

Principle 9 (Policy confinement). In the absence of perfect information about a prob-
lem, one adopts a strategy of finding the bounds of reason, and refining these as new
information is acquired.

There is thus a synergy between decision theory and Bayesian learning.

PAYOFF OR ‘UTILITY’

What is it that players win or lose in a system administration game? In classical game
theory, the payoff has often been money, as game theory was employed as a means for
studying economic competition. In section 4.9, we looked at the ways of measuring gain
in a human-computer system in terms of system resources or even social capital (status
and privilege). There is no simple answer, nor recipe for what the payoff is in a game
within the system. If we can formulate a game in which players compete for something,
then that is a sufficient justification for doing so. One can imagine payoff being formed
from a combination of several importance factors: e.g., memory share, CPU resources,
disk space, money, privilege, time for human recreation, and so on.

Payoff2 is represented by a function Πi for each player i. For two players, this
function is a matrix with a finite number of pure strategies si. Games fall into two
distinct types: constant sum games and non-constant sum games. In a constant sum
game, each element of the payoff sums to a constant value over all players:

n∑
i=1

Πi = const× 1, (19.2)

where 1 is a matrix or table filled with ones.

WHAT IS A STRATEGY?

A pure strategy is a single course of action taken by a player throughout a game. We
can think of it as a mode of behaviour. There are two interpretations of strategies: in the

2The payoff is also called the player’s utility is many texts.

19.4. GAME THEORY 357

extensive form of a game, a strategy represents a single set of moves by a single player
from start to finish; in the strategic or ‘normal’ form of the game, the strategy represents
an average mode of play, without specifying the details of individual moves.

Different courses of action lead to different returns or payoffs, and the point of the
game is to compare the results of using different strategies on the final payoff. The
method of solution of a game is to vary each player’s strategy, or mixture of strategies so
as to optimize the amount they can win.

Suppose that the set of all pure strategies si for player i is denotes by Si, so that
si ∈ Si. The set of all players’ strategies is denoted by the outer product:

S = S1 × S2 × . . .× Sn. (19.3)

Sometimes it is not advisable for players to play a single strategy, but to mix several
different approaches to playing a game. For instance, we might discover that it pays
more to play one strategy half the time and a different strategy the remainder of the time.
This is expressed by defining mixtures of pure strategies.

A mixed strategy is a probability distribution over pure strategies, and is denoted σi
for player i. In other words, if player i players strategy α with probability P (α) then,

σi(α) = Pi(α). (19.4)

Clearly the sum of probabilities for all alternative strategies is one, for every player, so:∑
α

σi(α) = 1, ∀i. (19.5)

Mixed strategy probabilities can be interpreted in various ways:

• The average play over time within a single execution of a game.

• The likelihood of choosing a particular pure strategy on repeated invocations of
similar games.

• The average strategies of multiple players of a game, over multiple trials.

Mixed strategies are important because they make the theory of games into a tool
for statistical inference. A certain randomness of strategy can often compensate for
uncertainty by randomly hitting a randomly moving target.

THE VALUE FOR A PLAYER

The value of what is earned or ‘won’ by a player in a game is given by the scalar product
of the payoff function Πi with the strategy profiles of the users.

The value of any player is weighted by the choices made by all the players. Thus no
player can win an arbitrary amount, without other players being able to downgrade their
potential payoff by counter-play.

358 CHAPTER 19. DECISION AND STRATEGY

Example 205 (2 person game). Consider a two person game with payoff matrix

Π1 =

 4 5 6

2 8 3

3 9 2

 (19.6)

for player 1 and payoff matrix

Π2 =

 3 1 2

1 4 6

0 6 8

 (19.7)

for player 2. These two matrices are often combined as follows:

Π(1,2) =

 (4, 3) (5, 1) (6, 2)

(2, 1) (8, 4) (3, 6)

(3, 0) (9, 6) (2, 8)

 . (19.8)

Now let σT
1 be the transpose of a general mixed strategy vector for player 1, i.e.

σT
1 = (P (s1), P (s2), P (s3)) = (

1

3
,

1

3
,

1

3
), (19.9)

and let σ2 be the mixed strategy vector for player 2, i.e.

σ2 =

 P (s′1)

P (s′2)

P (s′3)

 =

 0
1
2
1
2

 . (19.10)

The value of the payoff to player 1

v1 = σT
1 Π1 σ2 = (

1

3
,

1

3
,

1

3
)

 4 5 6

2 8 3

3 9 2

 0

1
2
1
2

 =
11

2
. (19.11)

The value of the game for player 2 is

v2 = σT
1 Π2 σ2 = (

1

3
,

1

3
,

1

3
)

 3 1 2

1 4 6

0 6 8

 0

1
2
1
2

 =
27

6
. (19.12)

19.5 THE STRATEGIC FORM OF A GAME

The strategic or normal form of a game consists of a number of players, strategies and
rewards or payoffs that result from the use of the strategies.

19.5. THE STRATEGIC FORM OF A GAME 359

1. A set of players i = 1, 2, . . . n.

2. Sets of pure strategies Si for each player i. The vector ~s = (s1, s2, . . . , sn)

,where si ∈ Si is called a strategy profile for the game, i.e. a choice of strategies
for each player. Note that each si is also a vector whose number of elements is
the number of pure (independent) strategies available to player i.

3. A function Πi(s) for player i that describes the player’s payoff when a certain
combination of strategies s is played by all the players.

Example 206 (Upgrading strategy). A simplistic formulation of a game to weigh the
advantages and disadvantages of upgrading software by various methods. The payoff
can be thought of as the level of ‘convenience’ to the players. Thus the row player, who is
the system administrator, considers the advantage to the system, while the column player,
who represents the users of the system, considers the advantage to themselves.

Security Bug in Missing
hole function function

Upgrade version now (10,5) (10,0) (5,-5)
Test then upgrade (5,5) (3,9) (0,8)
Keep parallel versions (-10,5) (-1,10) (0,10)

The system administrator believes that the maximum advantage (10) to the system arises
from upgrading software immediately when faced with a security hole, while the hostile
user is dealt a maximum blow by a quick upgrade so this is also of advantage to the users
of the system, who do not have the same level of advantage (5) from the strategy since
they are perhaps protected in other ways, with redundancy and backup. If the users are
missing some important functionality that only exists in a newer version of the program
they have a high level of payoff by getting the upgrade quickly (8), however new versions
often incorporate new bugs, so parallel versions give the maximum benefit to users (10),
but neither of these cases are of any great interest to the system administrator who does
not use the software.

If there is a bug in the software, the administrator benefits from upgrade by not
having to deal with irate users (3), while users clearly benefit from upgrade (9). Again
parallel versions suit users (10) but might disadvantage administrators (-1) since multiple
versions often present technical and administrative challenges to administrators.

We can continue in this way, posing values for the payoffs. The payoff values here
certainly depend on other factors than we have considered in the primitive example, e.g.
how reliable the new versions tend to be from the software producer. A better model of
this game would take these explicitly into account.

360 CHAPTER 19. DECISION AND STRATEGY

The real challenge in formulating strategic form games is how to model the payoffs
using actual numbers. Inspired guesswork is the most primitive level of approximation.
One might imagine that this would not lead to any useful result, but often surprises result
when the game is solved. Games automatically take into account all of the competing
forces in the game, which often leads to results that are not easily seen or guessed from
the individual estimations of payoffs.

Measurement of the system over time is another way to develop payoff models. A
semi-empirical model can easily be used to gauge the relative advantages of different
strategies. This also allows one to introduce dimensions such as time variation into the
games. Note however that a game has no concept of causal time in its strategic form, with
one strategy leading to another. Time becomes at best an average parameter changing
conditions for the whole game.

19.6 THE EXTENSIVE FORM OF A GAME

How do we find the strategic payoffs from a game that has many complicated moves and
courses of action? In a board game, such as chess for instance, we normally think of a
complex interaction of the players’ moves and counter-moves. In system administration,
games between users and the system might extend over considerable numbers of moves
and counter moves. The extensive form of a game is thus based on a complete tree
of every detailed possible move or sub-decision between the players (fig. 19.1). It is

Attacker

Defender Defender

Attacker Attacker

Do nothing
Attack

Counter−attackDefend

Change attackStop Stop Change attack

Figure 19.1: The extensive form of a game is a complete history of the state space of the players.
By tracing the choices made from the start of the game, a player can examine the payoff accrued
and predict the best course of action for the remaining moves.

19.6. THE EXTENSIVE FORM OF A GAME 361

a way of mapping out the behaviour of the players causally, though not necessarily
deterministically. The decision trees in game theory are related to the fault trees in
chapter 18: we can examine the tree for the players’ moves in turn (one moves, then
the other counter-moves etc), or we can separate the two decision trees of the players, if
we do not necessarily know the order in which the moves are made. The two cases are
referred to as games with perfect and imperfect information, respectively.

The extensive form consists of a number of players, a game tree and a set of payoffs.
A game tree is a graph (x,Γ) consisting of nodes and edges or arcs (see section 6.2).
Each edge represents a move in the game, and each node is a player whose turn it is
to make a decision. The graph for the game must be a tree, i.e. every node must have
exactly one path back to a root node, i.e. must have a unique parent. This is somewhat
like a state diagram, except that the same ‘state’ in a system can appear several times
in the game tree, if it can be reached by a number of different means. The game tree
codifies the history of the transitions as well as the actual states of the players.

A player in a game might have complete knowledge of the game tree when it is his
or her turn to move, but he might also not be able to remember how he arrived at a given
node – thus, if several nodes have the same state, there might be several alternatives to
play that seem appropriate. In fact, only one choice is the true choice, but the player
might not be able to determine this and could believe that the best course of action
forward is from one of the other nodes that look the same. Game play can therefore also
describe situations where the players have perfect recall of the entire game history, and
situations where that information is lost.

Example 207 (Forgetting and garbage collection). In an organization, records are
usually kept only for a certain length of times. In a computer system, logs of system
events are rotated and deleted after a certain length of time. In each case, information
must eventually be forgotten due to limited resources. This might affect the ability of
system administrators and managers to determine the best course of action forward in
time.

The extensive form of a game can finally be reduced to a strategic form, by summing
the payoffs of the individual pathways in the game. Two extensive forms of a game are
said to be equivalent if they reduce to the same strategic form.

In this book, we shall not look at extensive games in any detail; such a topic could
probably be a book in its own right. The strategic form of game theory will be the most
immediately useful form for ordinary decision making, however the extension to using
causal trees as an interpretation of the extensive form of the game allows more detailed
analyses of system dependencies by game theoretical means.

362 CHAPTER 19. DECISION AND STRATEGY

19.7 SOLVING ZERO SUM GAMES

Zero sum games are games that satisfy conservation of pay-off constraints, i.e. we are
neither allowed to create nor destroy the currency of the game. This is a familiar idea in
the physical world, where energy is conserved for closed systems. Certain simplifications
arise for this type of game, as a result of this constraint. The basic approach to solution
of zero-sum games begins with the minimax theorem, due to J. Von Neumann.

Consider a two person zero sum game, with payoff matrices (Π1,Π2) and pure
strategy sets (S1, S2). The pay-off matrices satisfy

Π2(s1, s2) = −Π1(s1, s2), ∀ s1 ∈ S1, s2 ∈ S2. (19.13)

The minimax theorem tells us that all games have a solution that is expressible in terms
of mixed strategies, and games that have an immediate saddle-point have a solution in
terms of pure strategies. The minimax theorem says that it is always possible to find
a pair of mixed strategies (σ1, σ2) such that there is a unique equilibrium between the
players that gives value v1 to player 1 and −v2 to player 2:

v1 = max
σ1

min
σ2

σT
1 Π1 σ2 = min

σ2

max
σ1

σT
1 Π1 σ2. (19.14)

Moreover, the limiting case of the theorem occurs when the the payoff matrix alone has
a saddle-point, i.e.

max
σ1

min
σ2

Π1 = min
σ2

max
σ1

Π1. (19.15)

For the two player game, this condition is very easy to check, by looking along the rows
and the columns of the payoff matrix for either of the players.

Example 208 (Zero sum minimax example). The following game has a pure strategy
saddle-point. Let the payoff or utility matrix for player A be given by:

ΠA =

 1 −3 −2

2 5 4

2 3 2

 . (19.16)

This game is zero-sum, so ΠB = −ΠA. We look for a saddle-point:

max
l

min
↔

ΠA = max
l

 −3

2

2

= 2. (19.17)

min
↔

max
l

ΠA = min
↔

(2, 5, 4)

= 2. (19.18)

19.8. DOMINATED STRATEGIES 363

Since these two values are equal, we have found the value of the game v = 2, and see
see two optimal strategy saddle-points, with row-column coordinates: (r∗, c∗) = (2, 1)

and (3, 1).

19.8 DOMINATED STRATEGIES

We wish to discuss varying the strategies of a single player i, while holding the opponents
strategies fixed. Let si be an element of Si, the strategy space of player i, and let s−i
denote a strategy selection for every player other than i (i.e. using the set notation from
section 5.1, this is the strategy for the set −i or ‘not’ i). We can now write a complete
strategy selection for all players, but singling out i as (si, s−i). Better still, we can draw
attention to the fact that we are looking at a trial strategy for i by writing si → ti, so that
a complete strategy profile is given by:

~s = (ti, s−i). (19.19)

Similarly, for mixed strategies, we can write (σi, σ−i) or

~σ = (τi, σ−i). (19.20)

We say that a pure strategy ti is strictly dominated for player i if

Πi(σi, s−i) > Πi(ti, s−i), ∀s−i, (19.21)

i.e. a player is always better off using some other mixture of strategies than choosing
ti, regardless of what the other players do. If the strict inequality above is replaced
by a weak inequality ≥, the the strategy is said to be weakly dominated. Notice that
means that the definition in eqn. (19.21) also applies for any opponent mixed strategies,
since σ−i =

∑
i pis−i, but all si are covered in this relation, and all pi ≤ 1, hence

σ−i ≤ s−i. Similarly, given any pure strategy that is dominated, a mixed strategy that
gives non-zero weight to this strategy is also dominated.

19.9 NASH EQUILIBRIA

The Nash equilibrium is probably the most important solution concept in game theory.
For two-person zero-sum games, it corresponds to the minimax saddle-point for mixed
strategies; however, it also generalizes this concept as it is not limited to zero sum games.
Nash proved that all games have at least one equilibrium in terms of mixed strategies.

The concept of a Nash equilibrium is related to the idea of fixed points and equilibria
encountered in chapter 10. It is most easily formulated for the strategic form of the

364 CHAPTER 19. DECISION AND STRATEGY

game. Suppose a game has n players with pure strategy sets Si, and payoff functions
Πi : S → R1 for i1, . . . , n. The set or space of all random strategy profiles is defined by

Σ = σ(s1)× σ(s2)× . . .× σ(sn)

= ×i∈n σ(si). (19.22)

A Nash equilibrium is a mixed strategy profile σ∗ for each and every player, such that
each player’s strategy is an optimal response to all of the other’s strategies, i.e.

Πi(τ
∗
i , σ

∗
−i) ≥ Πi(σi, σ

∗
−i), ∀σi ∈ Σi. (19.23)

The Nash equilibrium is related to the Kakutani fixed point theorem, by forming a
correspondence between every mixed strategy and its optimal response. Let us define
the optimal response mapping as the function Ri that maps a certain combination of
opponents strategies σ−i to an optimal strategy σi for player i:

σi = Ri(σ−i) = argmaxτ∈Σ Πi(τ, σ−i), (19.24)

i.e. it selects the value of the argument that maximizes the payoff and returns it as its
value. Although this function does not need to know the value of σi, since it actually
selects it, it does no harm to make Ri functionally dependent on it in a trivial way, i.e.
we can equally well write this for all the players’ σi:

σi = Ri(σ). (19.25)

Finally, we can form the product correspondence of all of these functions for all the
players:

R(σ) = R1(σ)×R2(σ)× . . .×Rn(σ). (19.26)

The Nash equilibrium is then defined as strategy profile σ∗ which is the fixed point of
this correspondence;

σ∗ = R(σ∗). (19.27)

Nash used this construction to prove that such a fixed point must exist in a finite game,
for mixed strategies.

Example 209 (Competition or cooperation for service?). Consider, for simplicity, just
two customers or users A and B who wish to share a service resource. We shall assume
that the service ‘market’ is a free-for-all; i.e. no one player has any a priori advantage
over the other, and that both parties behave rationally.

The users could try to cooperate and obtain a ‘fair’ share of the resource, or they
could let selfish interest guide them into a competitive battle for largest share. The

19.9. NASH EQUILIBRIA 365

cooperation or collaboration might, in turn, be voluntary or it might be enforced by a
service provider.

These two strategies of competition and collaboration are manifestly reflected in
technologies for networking, for instance:

• Voluntary sharing: Ethernet is an example of voluntary sharing, in which any
user can grab as much of a share as is available. There is a maximum service
rate that can be shared, but it is not necessarily true that what one user loses is
automatically gained by the other. It is not a zero-sum game.

• Forced sharing: Virtual circuits (like MPLS, ATM or Frame Relay networking
technologies) are examples of forced sharing, over parallel circuits. There are
thus fixed quotas that enforce users’ cooperation. These quotas could be allocated
unevenly to prioritize certain users, but for now we shall assume that each user
receives an equal share of the resource pot.

We analyze this situation, in a very simple way, using a classic game theoretical
approach. The customers can ‘win’ a certain amount of the total service rateR (e.g. bytes
per second, in the case of network service), and must choose strategies for maximizing
their interests. We can therefore construct a ‘payoff’ matrix for each of the two users
(see tables 19.1,19.2,19.3).

A B Cooperate B Compete
A Cooperate R

2
R
2
− δR

A Compete R
2

+ δR Rc

Table 19.1: A’s payoff matrix in two customer sharing.

B B Cooperate B Compete
A Cooperate R

2
R
2

+ δR

A Compete R
2
− δR Rc

Table 19.2: B’s payoff matrix in two customer sharing.

Thus, we assume that each of the users assumes an equal share R/2 when they
cooperate with one another. The relative sizes of the payoff are important. We have:

δR ≤ R

2
(19.28)(

R

2
− δR

)
≤ R

2
≤
(
R

2
+ δR

)
. (19.29)

366 CHAPTER 19. DECISION AND STRATEGY

A,B B Cooperate B Compete
A Cooperate R

2
, R

2
R
2
− δR, R

2
+ δR

A Compete R
2
− δR, R

2
+ δR Rc, Rc

Table 19.3: A,B combined payoff matrix in two customer sharing. This is the usual way of
writing the payoff matrices. We see that, when both customers collaborate (either willingly or by
forced quota), they obtain equal shares. If one of them competes greedily, it can obtain an extra
δR that is then subtracted from the other’s share. However, if both users compete, the result is
generally worse (Rc) than an equal share.

In other words, by competing, a selfish user might be able to gain an additional amount
of the service capacity δR to the other’s detriment. The sum of both users’ shares cannot
exceed R. If both users choose to compete, the resulting competition might lead to
an amount of waste that goes to neither of the users. This is the case in Ethernet, for
instance, where collisions reduce the efficiency of transmission for all parties equally.
We model this by assuming that both users then obtain a share of Rc < R/2.

This leaves us with two separate cases to analyse:

1. Rc > R/2 − δR: If the result from competitive ‘attacks’ against one another
is greater than the result that can be obtained by passively accepting the other
customer’s aggressiveness, then we are inclined to retaliate. This becomes an
instance of the Prisoner’s Dilemma game. It has a solution in terms of Nash
equilibria by dominant strategies.

2. Rc < R/2− δR: If the payoff for mutual competition is less than than penalty
for collaborating, then the situation becomes equivalent to another classic game:
the Maynard-Smith Dove-Hawk game. Both players see that they can win an
important share by being greedy, but if the other player retaliates they both stand
to win less. Thus one player can afford to be aggressive (Hawkish) but then the
other must be peaceful (Dove-like). This is the case with Ethernet, for instance. If
there is excessive contention, there is an exponential ‘back-off’ from collisions
leading to significantly worsened performance.

We can ask if there is a mixed strategy of partial cooperation that would succeed
at countering the poor result from mutual competition, but which yield slightly
more. To show that this is not the case, let us pick B’s strategy and then allow A

to choose cooperation with probability p:

(a) B cooperates: compare then the payoffs for A and B and ask, is there a

19.9. NASH EQUILIBRIA 367

B1

A1

A2

B2 B1

A1

A2

B2 B1

A1

A2

B2

=&

EquilibriumB’s PayoffA’s payoff

Figure 19.2: With Rc > R/2− δR, the game becomes a classic game theoretical problem of
‘Prisoner’s Dilemma’. The dominant Nash equilibrium is where both players decide to compete
with one another. If the customers are altruistic and decide to collaborate (or are forced to
collaborate) with one another, they can win the maximum amount. However, if they know nothing
about each other’s intentions then they realize, rationally, that they can increase their own share
by δR by choosing a competitive strategy. However, if both choose to be competitive, they
cannot achieve exactly this much: the balance point for mutual competition is Rc. This value is
determined by the technology used by the service provider. If either one of the players decided to
cooperate with the other, they would lose.

value of p such that

p
R

2
+ (1− p)

(
R

2
+ δR

)
> p

R

2
+ (1− p)

(
R

2
− δR

)
? (19.30)

Either we must have δR = 0 or p = 0, so the answer is no: there is no
way to improve on this strategy as long as there is something to gain from
competition.

(b) B competes: compare then the payoffs for A and B and ask, is there a
value of p such that

p

(
R

2
− δR

)
+ (1− p)Rc > p

(
R

2
+ δR

)
+ (1− p)Rc? (19.31)

Again, consistency forces us to take p = 0 or δR = 0.

These simple games capture the essence of the issues involved in sharing. They reflect
both human strategies for competition and technological ones. We see that there is no
clear answer as to whether Ethernet (Hawkish) or fixed quota virtual circuit (Dove-like)
behaviour is preferable, it depends on the level of traffic.

Example 210 (Scheduling games). The model in the previous example addresses many
situations. We can use it for human scheduling too. The basic result from game theory,
although simplistic, tells us that random event competition works well as long as the

368 CHAPTER 19. DECISION AND STRATEGY

B1

A1

A2

B2

A or B’s payoff

Figure 19.3: With Rc < R/2− δR the game becomes another classic game of Dove-Hawk. If
both players are ‘hawkish’ and attack greedily, they both lose out. The stable equilibria are that
one player is greedy and the other is submissive.

number of jobs is small, i.e. as long as there is plenty of time and no one is taxed to
the limit. However, as a human becomes very busy, it becomes better to schedule fixed
quota time-slices for jobs, otherwise all jobs tend to suffer and nothing gets done. The
overhead of swapping tasks at random can lead to great inefficiency if time is short.

19.10 A SECURITY GAME

Electronic banking, and other on-line services that require users to identify themselves
in secure way, use a variety of mechanisms to achieve this authentication. Many banks
issue ‘calculator’-like smartcards that generate one-time passwords based on a personal
code and the time of day. Others use a Transmission Layer Security (TLS)3 certificate
mechanism to download a secret key from the bank, using a login and Personal Identifi-
cation Code that they receive from the bank by postal mail. At the lowest end level, some
sites are password protected, or could use some kind of biometric secret. The attacks
that can be levelled against these measures include actually stealing a user’s credentials,
hijacking the TCP session, spoofing the web site and placing a Trojan horse in the user’s
browser.

Let us formulate a game based on the a simple system versus adversary model. At
the most simplistic level, security can be regarded as a zero-sum game. What is secured
properly, is lost to the potential attacker and what is not secured is gained. However, if
we add in the cost of buying or developing and then maintaining the security system, the
‘gains’ of the defender are somewhat mitigated by the cost of ownership. This would
make the game non zero-sum. We can therefore examine the game in stages. We begin

3TLS was formerly known as Secure Socket Layer (SSL).

19.10. A SECURITY GAME 369

by defining the payoffs in the ‘game’.

We estimate the payoffs on a scale of 0-100%. We shall consider the payoff to the
defender of the system, so that the payoff is essentially the same as the estimated level
of security. Suppose that the security levels are given as in table below for defence and
attack (D,A).

Security Steal Hijack Spoof Trojan in
credentials session site browser

Smartcard (90,10) (90,10) (40,60) (30,70)
Certificate (70,30) (80,20) (70,30) (10,90)
Password (50,50) (70,30) (10,90) (10,90)

These values are posed only for illustration, not actually measurements or estimates,
but we can justify them approximately as follows. Smart cards are difficult to steal, since
they can be carried with a person and kept safe; thus they offer a high level of security to
theft. Certificates are a little easier to steal, since they reside on the user’s computer and
could therefore be eavesdropped or extracted somehow. Passwords are easier still to steal
or tease out of users by social engineering or eavesdropping.

If an attacker can hijack a session smartcard systems require code confirmations
of all important operations so without the smartcard such session hijacking would not
be a useful strategy. Certificates are slightly less secure, since they can sometimes be
extracted from transactions; again, passwords offer the weakest security.

An attacker who spoofs a web site can trick a user with a smartcard to enter a code
that could be used by the attacker instead for a short interval of time, so the security level
to spoofing is quite low. A certificate a somewhat better here, however, since it is used
to encipher information for the specific site, and thus would provide only nonsense to
a spoofed web site. Passwords would be trivially collected at a spoof site. They offer
essentially no security.

Finally, if an attacker can sneak Trojan code into the user’s browser or computer,
then none of the security mechanisms are really secure, but the smartcard is a little more
secure than either certificates or passwords, since it is external to a user’s computer
and can only be abused for a limited time window when a user enters a code from the
smartcard.

19.10.1 ZERO SUM APPROXIMATION

In order to apply the minimax theorem, we renormalize the matrix elements so that the
sum of attack and defence is not 100 but zero, thus we subtract 50 from all the values,

370 CHAPTER 19. DECISION AND STRATEGY

giving

ΠD = −ΠA

 50 50 −10 −20

20 30 40 −40

0 20 −40 −40

 . (19.32)

We begin by looking for a saddle-point in the game.

max
l

min
↔

ΠD = max
l

 −20

−40

−40

= −20. (19.33)

min
↔

max
l

ΠD = min
↔

(50, 50, 40,−20)

= −20. (19.34)

The matrix yields a single saddle-point and the value of the game as −20, with the
optimal strategies being smartcards versus Trojan horses. This is an surprising result that
is not clearly obvious from the original payoff table. First of all, the value of the is a
negative number, which means that the result is in the attacker’s favour. This might not
have been expected by looking at the original estimates of security, but the conclusion
is the stable equilibrium of the two opposing sides, and therefore reveals the ‘rational’
conclusion in the data.

We might however consider this to be a unfair conclusion, since the likelihood that
an attacker will be able to insert a Trojan horse into a user’s computer is quite low and
might be detected by anti-virus software. We could therefore delete the Trojan strategy
and recompute the equilibrium. Thus, the game is still zero-sum, but we now have

Π′D = −Π′A

 50 50 −10

20 30 40

0 20 −40

 . (19.35)

We now find that there is no saddle point equilibrium in the matrix, thus there is no
optimal pure strategy contest here. This means that the solution must be in terms of
a mixture of strategies and is therefore rather harder to solve. We begin by trying to
eliminate any obviously weak strategies from the mixture, since these cannot lead to any
optimal behaviour. Examining the matrix in eqn. (19.35), we see that rows i = 1, i = 2

both strictly dominate row i = 3, hence i = 3 is a weak strategy for the defending row
player “α”; we can delete it, giving:

Π′′D = −Π′′A

(
50 50 −10

20 30 40

)
. (19.36)

19.10. A SECURITY GAME 371

There is still no saddle point, and there are no more cases of strict dominance. We must
now find a way of solving the correct linear combinations. There are many ways one
might proceed, but this case is quite simple. The value of the payoff for the defending
row player is

v = ~αT Π′′D ~β, (19.37)

where ~α is the vector of strategies for the defence that now lies between a convex mixture
of the smartcard strategy and the certificate strategy, and ~β is a convex mixture of the
attack strategies, all of which are active at present:

~αT = (α, 1− α) , ~β =

 β1

β2

β3

 , (19.38)

where β1 + β2 + β3 = 1 and α > 0, βi > 0. We can try to maximize the payoff for
the defending player, by examining the rates of change and looking for any stationary
values. This is not a solution method, but it does provide an indication of how to choose
the values of the free parameters (α, β1, β2, β3). The partial derivatives are:

∂v

∂β1
= 30α+ 20

∂v

∂β2
= 20α+ 30

∂v

∂β3
= −50α+ 40

∂v

∂α
= 30β1 + 20β2 − 50β3 = 0. (19.39)

We set the last derivative to zero, since we are looking for a mixture of ~β that makes the
payoff stationary for the players. ’Thus, whatever the attacker would like to play, this
condition will limit the success of the attack, by virtue of the defending player’s optimal
responses. We notice first that the derivative with respect to β3 has a possibility of going
negative. This means that the β-attack player will try to play this strategy to make the
defence players payoff v less. Using the fact that the βi sum to one, we have

∂v

∂α
= 30β1 + 20β2 − 50(1− β1 − β2) = 0

= 80β1 + 70β2 − 50 = 0. (19.40)

Now let us examine some cases of this:

1. Suppose the attack player decides to avoid session hijack and play β2, since it
looks like a marginally weak strategy (it is a weakly dominant column of the

372 CHAPTER 19. DECISION AND STRATEGY

defence player’s payoff – and this is a zero sum game), then we have:

β1 =
5

8
, β3 =

3

8
. (19.41)

If we choose this mixture of strategies for ~β in eqn. (19.37), then the value of the
game is

v =
1

8
(α, 1− α)

(
220

220

)
. (19.42)

i.e. the payoff to the defence player is v = 27.5 regardless of what mixture of
strategies α is chosen. Thus both smartcards and certificates seem to be equally
valid defences to this attack. This conclusion is not particularly intuitive.

2. What if we choose β1 = 0? Then we have

∂v

∂α
= 70β2 − 50 = 0. (19.43)

i.e.

β1 =
5

7
, β3 =

2

7
. (19.44)

and the value of the game for the defence player is

v =
1

7
(α, 1− α)

(
230

230

)
. (19.45)

Again, surprisingly, the choice of α is irrelevant to the outcome. However,
crucially, the value of the game, v = 230/7, is now greater for the defence
player. This is to the defence player’s linking, but alas he is not calling the
shots and choosing ~β. The attacker would not choose this strategy, since he is
trying to minimize the defence player’s payoff. Remarkably, in both these cases,
the defence player is a ‘sitting duck’, with no way of improving his defence by
choosing one strategy or another, in any given mixture.

We have not proved that case 1 above is the optimal strategy, beyond doubt, but with a
little work it is not difficult to see that it is indeed the solution to the game. Indeed, we
can see from eqn. (19.40), the value of 80β1 + 70β2 can never be greater than when
β2 = 0, thus the value of the denominator in the fraction cannot be made larger and the
value of the game cannot be made smaller by choice of βi.

What is interesting about this example is that the conclusion is not at all obvious
from the original security level evaluations. This analytical procedure selects the limits
of the tug-of-war contest in an impartial way.

19.10. A SECURITY GAME 373

19.10.2 NON-ZERO SUM APPROXIMATION

The zero sum approximation does not allow us to take into account other sources of loss
and gain. What is lost to the defender is not necessarily gained by the attacker. The
cost of implementing a technological solution should be factored into the calculations in
considering “cost of ownership”. It is not gratis to implement a certificate system, for
example. We can add in costs of this kind by modifying the payoff:

Payoff = Security level - cost of strategy.

What should the exact formula be for this cost? This depends on our estimation of the
relative importance of these. We need to relate the currencies to one another, using the
same scale (see section 11.3).

Let us define for clarity α to be the defending player and β to be the attacking player.
There is no rational way to relate security level to cost of implementation, so we must
define this relationship as a matter of policy. For the defender:

Π1 = Π
(0)
1 − k1 Cα, (19.46)

where Π
(0)
1 is the basic constant sum estimation of payoff, k1 is a policy constant, and

Cα is the cost of investing in the security technology. Similarly, for the attacker:

Π2 = Π
(0)
2 − k2 Cβ , (19.47)

where Π
(0)
2 is the attackers basic payoff, k2 is the attackers own estimate of how gain

relates to invested time Cβ in carrying out the attack.
The addition of the cost of strategy term is a perturbation to the basic payoff. One

can use the solution for the Nash equilibrium of the resulting game to test how much of a
perturbation must be added to the constant-sum conclusion, before the conclusion about
optimal strategies is altered.

ADD COST TO DEFENDER σ1 = α

We now try to combine the information about the different strategies to modify the payoff,
as above. What is the cost of implementing the security technologies?

Smart cards cost money and need to be replaced sometimes, so there is an expense;
however we can make customers pay for these, so there is no effect on the payoffs for
the bank. A certificate system, on the other hand, is costly since it must be set up and
maintained, depending on the local web services. Also, cryptographic certificates do
not work consistently4 in all browsers, so there is much programming, debugging and

4This scenario is based around an Internet Bank known to the author.

374 CHAPTER 19. DECISION AND STRATEGY

maintenance to keep the system working. Passwords are available to everyone with no
investment, so these are also unaffected.

We shall thus suppose, as a combination of judgement and policy, that k1C = −20

for the certificate strategy, and zero for the others. Accordingly -20 is subtracted from
the second row of the payoff table, for the defender:

Security Steal Hijack Spoof Trojan in
credentials session site browser

Smartcard (90,10) (90,10) (40,60) (30,70)
Certificate (50,30) (60,20) (50,30) (-10,90)
Password (50,50) (70,30) (10,90) (10,90)

Now that the payoffs are not constant sum, different solution methods are required
than those used for the zero sum case. The solution of non-constant sum games is beyond
the scope of this book, however the open source Gambit software package[Gam] is a
useful tool for solving for Nash equilibria. Feeding these data into the computer software,
we obtain an answer that is, in fact, the same as for the zero-sum case: the pure strategy
equilibrium is (α1, β4), i.e. use of smartcards for the defender and Trojan horse for the
attacker.

ADD COST TO ATTACKER σ2 = β

Now we consider the cost of engagement from the attacker’s viewpoint. The bank is not
the only one in the game who needs to invest to use its available strategies. The average
attacker is poorly inclined to invest a huge effort in preparing an attack of the system,
thus he judges that the cost −k2Cβ of developing the Trojan horse strategy to be −40.
This is a relatively high price, but then the attacker is somewhat lazy and judges the effort
to be more than his time is worth. The value is thus subtracted from the final column.
Similarly, he judges the cost of the hijack strategy to be −10, on the payoff scale. This is
less expensive to him than the Trojan horse, because there are tools already available on
the Internet to help him. The resulting table is now like this:

Security Steal Hijack Spoof Trojan in
credentials session site browser

Smartcard (90,10) (90,0) (40,60) (30,30)
Certificate (50,30) (60,10) (50,30) (-10,50)
Password (50,50) (70,20) (10,90) (10,50)

After these alterations, there is no pure strategy equilibrium. Instead, there is now a
mixed strategy equilibrium, (1

2
α1 + 1

2
α2,

4
5
β3 + 1

5
β4), with the defender mixing 50-50

19.11. THE GARBAGE COLLECTION GAME 375

between smartcards and certificates, i.e. and the attacker mixing 4
5
β3 (site spoofing) and

1
5
β4 (Trojan horse). The analysis mixes these as probabilities, but suppose we decide

that a one in five chance of using a Trojan makes it worth disregarding this attack strategy
altogether, then the game is solved by a pure strategy equilibrium of certificates versus
site-spoofing.

CONCLUSIONS

This example, although somewhat contrived, tells us the relative stability of the con-
clusions drawn from placing value on different aspects of the system solution. It is not
necessary to have precise information about the different payoffs in order to make a
reasonably informed decision about the optimal strategies. Why? In this case the reason
is that the payoffs are quite stable to small perturbations. If we use our best guesses in
order to find a suitable stable equilibrium, we can then test each assumption by saying:
what if I perturb the value by a small amount? Is the equilibrium robust under this
change? If it is, we have a good idea what conclusion the model predicts. On the other
hand, if a small change leads to a quite different solution, then the onus is on the system
analyst to find an accurate payoff model, or to find additional strategies that can result in
a more stable conclusion.

19.11 THE GARBAGE COLLECTION GAME

The difficult aspect of game theoretical modelling is turning the high level concepts and
aims listed above, into precise numerical values. This is particularly true when the values
that govern a game change over time.

To illustrate a possible solution to this problem we consider an example of some
importance, namely the clearing of garbage files from user disks (see fig. 19.4). The
need for user garbage collection (called tidying) has been argued by several authors
(see [Zwi89, Bur95, BR97]), but users do not like having even the most useless of files
deleted from their home areas.

We shall model this game as a zero sum game. The currency of this game must first
be agreed upon. What value will be transferred from one player to the other in play?
There are three relevant measurements to take into account: (i) the amount of resources
consumed by the attacker (or freed by the defender); sociological rewards: (ii) ‘goodwill’
or (iii) ‘privilege’ which are conferred as a result of sticking to the policy rules. These
latter rewards can most easily be combined into an effective variable ‘satisfaction’. A
‘satisfaction’ measure is needed in order to set limits on individuals’ rewards for cheating,
or balance the situation in which the system administrator prevents users from using
any resources at all. This is clearly not a defensible use of the system, thus the system

376 CHAPTER 19. DECISION AND STRATEGY

Ask users

Rotate logs

Check fs

Disk quotas

Strategies
Counter−

? ? ? ? ?

??

? ???

??

?

? ? ? ? ?

???

Force tidy

Disk full

Bad usersFilesystem
Corruption Files

Log files Legitimate
Usage

Temporary

Figure 19.4: Payoff matrix and a fault tree showing how the fault tree feeds into the game as
probabilities, and vice versa. The values in the matrix are probabilistic expressions expressing
the likelihood of achieving each strategic goal, weighted by a currency scale for its relative
importance. See [Bur00c] for details of this game.

defences should be penalized for restricting users too much. The characteristic matrix
now has two contributions,

π = πr(resources) + πs(satisfaction). (19.48)

It is convenient to define

πr ≡ π(resources) =
1

2

(
Resources won

Total resources

)
. (19.49)

Satisfaction πs is assigned arbitrarily on a scale from plus to minus one half, such that,

−1

2
≤ πr ≤ +

1

2

−1

2
≤ πs ≤ +

1

2
−1 ≤ π ≤ +1. (19.50)

The pay-off is related to the movements made through the lattice ~d. The different
strategies can now be regarded as duels, or games of timing.

19.11. THE GARBAGE COLLECTION GAME 377

Users/System Ask to tidy Tidy by date Tidy above Quotas
Threshold

Tidy when asked π(1, 1) π(1, 2) π(1, 3) π(1, 4)

Never tidy π(2, 1) π(2, 2) π(2, 3) π(2, 4)

Conceal files π(3, 1) π(3, 2) π(3, 3) π(3, 4)

Change timestamps π(4, 1) π(4, 2) π(4, 3) π(4, 4)

These elements of the characteristic matrix must now be filled, using a model and a
policy. A general expression for the rate at which users produce files is approximated by:

ru =
nbrb + ngrg
nb + ng

, (19.51)

where rb is the rate at which bad users (i.e. problem users) produce files, and rg is the
rate for good users. The total number of users nu = nb + ng . From experience, the ratio
nb/ng is about one percent. The rate can be expressed as a scaled number between zero
and one, for convenience, so that rb = 1− rg .

The payoff in terms of the consumption of resources by users, to the users themselves,
can then be modelled as a gradually accumulation of files, in daily waves, which are a
maximum around midday:

πu =
1

2

∫ T

0

dt
ru (sin(2πt/24) + 1)

Rtot
, (19.52)

where the factor of 24 is the human daily rhythm, measured in hours, and Rtot is the
total amount of resources to be consumed. Note that, by considering only good user or
bad users, one has a corresponding expression for πg and πb, with ru replaced by rg or
rb respectively. An automatic garbage collection system (cfengine) results in a negative
pay-off to users, i.e. a pay-off to the system administrator. This may be written

πa = −1

2

∫ T

0

dt
ra (sin(2πt/Tp) + 1)

Rtot
, (19.53)

where Tp is the period of execution for the automatic system. This is typically hourly or
more often, so the frequency of the automatic cycle is some twenty times greater than
that of the human cycle. The rate of resource-freeing ra is also greater than ru, since file
deletion takes little time compared to file creation, and also an automated system will be
faster than a human. The quota payoff yields a fixed allocation of resources, which are
assumed to be distributed equally amongst users and thus each quota slice assumed to be
unavailable to other users. The users are nonchalant, so πs = 0 here, but the quota yields

πq = +
1

2

(
1

nb + ng

)
. (19.54)

The matrix elements are expressed in terms of these.

378 CHAPTER 19. DECISION AND STRATEGY

π(1, 1): Here πs = − 1
2

since the system administrator is as satisfied as possible by the
users’ behaviour. πr is the rate of file creation by good users πg , i.e. only legal
files are produced. Comparing the strategies, it is clear that π(1, 1) = π(1, 2) =

π(1, 3).

π(1, 4): Here πs = 0 reflecting the users’ dissatisfaction with the quotas, but the system
administrator is penalized for restricting the freedom of the users. With fixed
quotas, users cannot generate large temporary files. πq is the fixed quota payoff,
a fair slice of the resources. Clearly π(4, 1) = π(4, 2) = π(4, 3) = π(4, 4).
The game has a fixed value if this strategy is adopted by system administrators.
However, it does not mean that this is the best strategy, according to the rules
of the game, since the system administrator loses points for restrictive practices,
which are not in the best interest of the organization. This is yet to be determined.

π(2, 1): Here πs = 1
2

since the system administrator is maximally dissatisfied with users’
refusal to tidy their files. The pay-off for users is also maximal in taking control
of resources, since the system administrator does nothing to prevent this, thus
πr = πu. Examining the strategies, one find that π(2, 1) = π(3, 1) = π(3, 2) =

π(3, 3) = π(4, 1) = π(4, 2).

π(2, 2): Here πs = 1
2

since the system administrator is maximally dissatisfied with users’
refusal to tidy their files. The pay-off for users is now mitigated by the action
of the automatic system which works in competition, thus πr = πu − πa. The
automatic system is invalidated by user bluffing (file concealment).

π(2, 3): Here πs = 1
2

since the system administrator is maximally dissatisfied with users’
refusal to tidy their files. The pay-off for users is mitigated by the automatic
system, but this does not activate until some threshold time is reached, i.e. until
t > t0. Since changing the date cannot conceal files from the automatic system,
when they are tidied above threshold, we have π(2, 3) = π(4, 3).

Thus, in summary, the characteristic matrix π(u, s) is given by:

π =

− 1

2
+ πg(t) − 1

2
+ πg(t) − 1

2
+ πg(t) πq

1
2

+ πu(t) 1
2

+ πu(t) + πa(t) 1
2

+ πu(t) + πa(t) θ(t0 − t) πq
1
2

+ πu(t) 1
2

+ πu(t) 1
2

+ πu(t) πq
1
2

+ πu(t) 1
2

+ πu(t) 1
2

+ πu(t) + πa(t) θ(t0 − t) πq

 ,

where the step function is defined by,

θ(t0 − t) =

{
1 (t ≥ t0)

0 (t < t0)
, (19.55)

19.11. THE GARBAGE COLLECTION GAME 379

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

Figure 19.5: The absolute values of pay-off contributions as a function of time (in hours), For
daily tidying Tp = 24. User numbers are set in the ratio (ng , nb) = (99, 1), based on rough
ratios from the author’s College environment, i.e. one percent of users are considered mischievous.
The filling rates are in the same ratio: rb/Rtot = 0.99, rg/Rtot = 0.01, ra/Rtot = 0.1. The
flat dot-slashed line is |πq |, the quota pay-off. The lower wavy line is the cumulative pay-off
resulting from good users, while the upper line represents the pay-off from bad users. The upper
line doubles as the magnitude of the pay-off |πa| ≥ |πu|, if we apply the restriction that an
automatic system can never win back more than users have already taken. Without this restriction,
|πa| would be steeper.

380 CHAPTER 19. DECISION AND STRATEGY

and represents the time-delay in starting the automatic tidying system in the case of
tidy-above-threshold. This was explained in more detail in [Bur03].

It is possible to say several things about the relative sizes of these contributions. The
automatic system works at least as fast as any human so, by design, in this simple model
we have

1

2
≥ |πa| ≥ |πu| ≥ |πg| ≥ 0, (19.56)

for all times. For short times πq > πu, but users can quickly fill their quota and overtake
this. In a zero-sum game, the automatic system can never tidy garbage faster than users
can create it, so the first inequality is always saturated. From the nature of the cumulative
pay-offs, we can also say that

(
1

2
+ πu) ≥ (

1

2
+ πu + πaθ(t0 − t)) ≥ (

1

2
+ πu + πa), (19.57)

and

|1
2

+ πu| ≥ |πg −
1

2
|. (19.58)

Applying these results to a modest strategy of automatic tidying, of garbage, referring
to figure 19.5, one sees that the automatic system can always match users’ moves. As
drawn, the daily ripples of the automatic system are in phase with the users’ activity.
This is not realistic, since tidying would normally be done at night when user activity is
low, however such details need not concern us in this illustrative example.

The policy created in setting up the rules of play for the game, penalizes the system
administrator for employing strict quotas which restrict their activities. Even so, users do
not gain much from this, because quotas are constant for all time. A quota is a severe
handicap to users in the game, except for very short times before users reach their quota
limits. Quotas could be considered cheating by the system administrator, since they
determine the final outcome even before play commences. There is no longer an adaptive
allocation of resources. Users cannot create temporary files which exceed these hard
and fast quotas. An immunity-type model which allows fluctuations is a more resource
efficient strategy in this respect, since it allows users to span all the available resources
for short periods of time, without consuming them for ever.

According to the minimax theorem, if we have

max
↓

min
→

πrc = min
→

max
↓
πrc, (19.59)

it implies the existence of a pair of single, pure strategies (r∗, c∗) that are optimal for
both players, regardless of what the other does. If the equality is not satisfied, then the
minimax theorem tells us that there exist optimal mixtures of strategies, where each

19.11. THE GARBAGE COLLECTION GAME 381

player selects at random from a number of pure strategies with a certain probability
weight.

The situation for our time-dependent example matrix is different for small t and for
large t. The distinction depends on whether users have had time to exceed fixed quotas
or not; thus ‘small t’ refers to times when users are not impeded by the imposition of
quotas. For small t, one has:

max
↓

min
→

πrc = max
↓

πg − 1

2
1
2

+ πu + πa
1
2

+ πu
1
2

+ πu + πa θ(t0 − t)

=

1

2
+ πu. (19.60)

The ordering of sizes in the above minimum vector is:

1

2
+ πu ≥

1

2
+ πu + πaθ(t0 − t) ≥ πu + πaθ(t0 − t) ≥ πg −

1

2
. (19.61)

For the opponent’s endeavours one has

min
→

max
↓
πrc = min

→
(
1

2
+ πu,

1

2
+ πu,

1

2
+ πu, πq)

=
1

2
+ πu. (19.62)

This indicates that the equality in eqn. (19.59) is satisfied and there exists at least one
pair of pure strategies which is optimal for both players. In this case, the pair is for
users to conceal files, regardless of how the system administrator tidies files (the system
administrator’s strategies all contribute the same weight in eqn (19.62). Thus for small
times, the users are always winning the game if one assumes that they are allowed to
bluff by concealment. If the possibility of concealment or bluffing is removed (perhaps
through an improved technology), then the next best strategy is for users to bluff by
changing the date, assuming that the tidying looks at the date. In that case, the best
system administrator strategy is to tidy indiscriminately at threshold.

For large times (when system resources are becoming or have become scarce), then
the situation looks different. In this case one finds that

max
↓

min
→

πrc = min
→

max
↓
πrc = πq. (19.63)

In other words, the quota solution determines the outcome of the game for any user
strategy. As already commented, this might be considered cheating or poor use of
resources, at the very least. If one eliminates quotas from the game, then the results for
small times hold also at large times.

382 CHAPTER 19. DECISION AND STRATEGY

19.12 A SOCIAL ENGINEERING GAME

The extensive form of a game is the form in which all possible moves are documented.
The extensive form is more often associated with N -person game theory (where N > 2)
than with simple 2-person games, since the extensive game tree of a two person game is
often trivial, unless the moves are repeatable. A general introduction to N -person game
theory and the extensive form is well beyond the scope of this book. However, we can
examine some of the ideas through examples, as they contains some important insights.

So far, in decision making, we have ignored the causality of strategies and actions
taken by the agents within a human-computer system. The extensive form brings us
back to this issue and rounds off the topic of decision making by bringing together the
concepts of information, causality and utility into a unified framework. Let us consider a
simple example of causal decision making, with three participants.

The following example is a special case of a general decision game. A generic
3-person game tree for binary decision-making is shown in fig. 19.6. The yes-no decision
can be interpreted in a number of ways to apply this to difference scenarios.

Consider the following scenario: a company or other enterprise offers a training
programme to its employees so as to instruct them in policy. One of the aims of this
training is to prevent attacks of the company by social engineers. Whether or not
employees are trained, some of them will choose to obey company policy while others
will not. This decision can be based, or not, on the information from the training process.
A potential attacker of the company can observe the employees and have knowledge of
the decisions made by management and by the individual employees (he might be an
insider). How shall the employer, employees and attacker make their decisions?

In order to make rational decisions, there has to be a payoff to each player. We
shall consider first a game of perfect information, in which each player can see all of the
moves and decisions throughout the game, in the order in which they occur. Note that
the primary obstacle to understanding games in extensive form is in finding a suitable
notation for describing the possible strategy combinations. On the one hand, a more
complex notation can provide greater clarity, on the other hand it can also overwhelm.

Player Yes move No move
P1 = Employer Train personnel Don’t train personnel
P2 = Employees Obey policy Don’t obey policy
P3 = Attacker Attack enterprise Don’t attack enterprise

An alternative interpretation might be to imagine that the attacker is simply a bad case
of ‘gremlins’, i.e. chance, and to consider the worst case scenario for the enterprise’s
training policy given that chance error plays its ‘worst’ hand.

19.12. A SOCIAL ENGINEERING GAME 383

Player 1

Player 3

Player 2

Yes No

Yes No Yes No

NoYes Yes Yes YesNo No No

Figure 19.6: The extensive form of a 3-person game with binary decision-making.

A first step in solving this game is to change it into strategic form. One might
suppose that the game tree as shown in fig. 19.6 catalogues all possible strategies, but
this is not the case. The tree of moves is not the same as the tree of decisions about play
of an entire game. A game has two trees: a tree of moves (the game tree) and a tree of
strategies that is not normally drawn. The strategy tree determines a complete set of
contingencies for every player in every situation, and is often drawn as a table or payoff
matrix; however, the tree form preserves some of the causal structure in the game.

Any player’s pure strategy must specify a course of action in each and every contin-
gency that can occur throughout the game, given the information that is available to each
player when he or she commences play. After all, it is not known at the outset of the
game what will actually transpire between the players. A pure strategy must therefore
correspond to a complete play of the game, by the player concerned, with all reasoning
implicit. This means that, even if the response of a player is just one move, a strategy
must specify alternative moves concomitant with the actual state.

The states of the binary decision game are described by the information strings using
the binary symbols Y and N (for yes and no), or equivalently operations Ô1 and Ô2.
Each player α = 1, 2, 3 can send only one symbol or perform one operation, thus all
game plays consist of possible sequences of these two symbols: YYY, YNY, YNN, YYN,
NYY, NNY, NYN, and NNN. However, this is not the same as the number of decisions,
given that each player makes a move based on past information. Each decision has one
of two forms: either the player decides on a move (operation), given that the game has

384 CHAPTER 19. DECISION AND STRATEGY

arrived in a particular state,

Sα(Ô1elseÔ2 | state = Q), (19.64)

or the player decides to make a move, ignoring the information about past history:

Sα(Ô1), (19.65)

Sα(Ô2). (19.66)

Thus, as the state space grows exponentially, so the number of decisions grows expo-
nentially. For player 1 (the employer) there is only one state — the starting state, so the
conditional moves make no sense, or one can say that they are not independent of the
unconditional moves. Using Y,N notation for simplicity, these are:

S1(Y), S1(N) (19.67)

Player 2 inherits two possible states from player 1 and thus can choose between

S2(Y,N | Q = Y),

S2(N,Y | Q = Y),

S2(Y,N | Q = N),

S2(N,Y | Q = N),

S2(Y, Y | Q = Y),

S2(N,N | Q = N). (19.68)

The first four strategies can be summarized as two: i.e. do the same as player 1 or do the
opposite of player 1 (Employer). The latter two strategies are: do Y or N regardless of
what player 1 does, e.g. do Y else do Y implies ‘do anyway’.

Player 3 inherits four possible states from player 2 and thus can choose all of the

19.12. A SOCIAL ENGINEERING GAME 385

four choices at each node.

S3(Y,N | Q = Y Y),

S3(N,Y | Q = Y Y),

S3(Y, Y | Q = Y Y),

S3(N,N | Q = Y Y)

S3(Y,N | Q = Y N),

S3(N,Y | Q = Y N),

S3(Y, Y | Q = Y N),

S3(N,N | Q = Y N)

S3(Y,N | Q = NY),

S3(N,Y | Q = NY),

S3(Y, Y | Q = NY),

S3(N,N | Q = NY)

S3(Y,N | Q = NN),

S3(N,Y | Q = NN),

S3(Y, Y | Q = NN),

S3(N,N | Q = NN). (19.69)

Notice that there must be an ‘else’ alternative at each branch: i.e. each strategy is of
the form, “if the state of the system isQ do X else do Y”. If, for whatever reason, a player
formally chooses a strategy based on an irrelevant state, we must be able to evaluate
the game nevertheless5. What is the point of this? An intelligent player would hardly
choose a strategy corresponding to a given state unless the system were in that state —
but what if the player is somehow prevented from knowing the state, or suffers a lapse
of judgement? This is where one strays into the realms of imperfect information: we
shall not go down that path, but mention only the possibility in passing. Completeness
requires us to catalogue all possible pathways in a game.

If we imagine that each path through the tree is a sequence of operations Ô3Ô2Ô1,
then paths through the tree are represented, with dependencies explicit as

(3|21)(2|1)(1), (19.70)

5Note that the simple form “If (Q)... else...” is possible here due to the binary nature of the decisions.
The tree grows very complex if there are more than two choices. In a game with three or more decisions at
each node, there must be sufficient state information in the decision tree to distinguish a unique strategy
path, in every decision, otherwise choices must be made ad hoc, at random.

386 CHAPTER 19. DECISION AND STRATEGY

where each parenthesis is an operator, and we borrow the notation of conditional proba-
bility to make dependencies explicit. We must now transfer the payoffs from the tree of
moves to the table of payoffs (now a three dimensional table). Let us suppose hypotheti-
cally that an employer can earn 100 credits from a business in total. It costs 10 credits
to train the staff in the company policy and procedures. Moreover, staff wages amount
to a constant 10 credits, regardless of profits. If staff are found to be not complying
with policy, they are docked half their earnings, and thus they receive only 5 credits. An
attacker is likely to corrupt an employee into cooperating with an attack if the employee
does not follow policy, and might earn 20 credits from this, but must pay 10 to the corrupt
employee who was the ‘insider’ to compensate for losses in wages. Clearly this is rather
simplistic, but serves to illustrate a point.

Path Employer Employee Attacker Payoff vector
NNN 100-5 5 0 (95,5,0)
NNY 100-5-20 5+10 20-10 (75,15,10)
NYN 100-10 10 0 (90,10,0)
NYY 100-10-20 10 20 (70,10,20)
YNN 90-5 5 0 (85,5,0)
YNY 90-5-20 5+10 20-10 (65,15,10)
YYN 90-10 10 0 (80,10,0)
YYY 90-10-20 10 20 (60,10,20)

These are the payoffs to the various users. It is not clear from the table exactly
what strategy is best for any of the players pursuing selfish interest. Thus, a method that
can tell us the best rational choice in terms of the payoff currency is of great interest,
especially if it tells us the effect of changing the relative payoffs between users. Could an
employer maximize likely profits by paying employees a little more, faced with possible
attack?

The game presented is an almost constant sum game, except that the constant is
different in the two choices of player 1 (the employer). If the employer trains the
employees then total profit is only 90 rather than 100, since this costs him the outlay of
training6.

The payoff matrix is three dimensional, so we must be split into two slices for

6This could be handled by introducing a fourth player to whom we pay this value, but that would only
serve to complicate matters here, since the fourth player plays no strategic role in the security situation
being analyzed here.

19.12. A SOCIAL ENGINEERING GAME 387

S1 = Y :

Π(S1=Y,S2,S3) =

S3/S2 (Y, Y |Y) (Y,N |Y) (N,Y |Y) (N,N |Y)

(Y, Y |Y Y) Y Y Y Y Y Y Y NY Y NY

(Y,N |Y Y) Y Y Y Y Y Y Y NN Y NN

(N,Y |Y Y) Y Y N Y Y N Y NY Y NY

(N,N |Y Y) Y Y N Y Y N Y NN Y NN

(Y, Y |Y N) Y Y Y Y Y Y Y NY Y NY

(Y,N |Y N) Y Y N Y Y N Y NY Y NY

(N,Y |Y N) Y Y Y Y Y Y Y NN Y NN

(N,N |Y N) Y Y N Y Y N Y NN Y NN

(Y, Y |NY) Y Y Y Y Y Y Y NY Y NY

(Y,N |NY) Y Y N Y Y N Y NN Y NN

(N,Y |NY) Y Y Y Y Y Y Y NY Y NY

(N,N |NY) Y Y N Y Y N Y NN Y NN

(Y, Y |NN) Y Y Y Y Y Y Y NY Y NY

(Y,N |NN) Y Y N Y Y N Y NN Y NN

(N, Y |NN) Y Y Y Y Y Y Y NY Y NY

(N,N |NN) Y Y N Y Y N Y NN Y NN

(19.71)

and S1 = N :

Π(S1=N,S2,S3) =

S3/S2 (Y, Y |N) (Y,N |N) (N, Y |N) (N,N |N)

(Y, Y |Y Y) NY N NY N NNN NNN

(Y,N |Y Y) NY N NY N NNN NNN

(N,Y |Y Y) NY Y NY Y NNY NNY

(N,N |Y Y) NY N NY N NNN NNN

(Y, Y |Y N) NY Y NY Y NNY NNY

(Y,N |Y N) NY N NY N NNN NNN

(N,Y |Y N) NY Y NY Y NNY NNY

(N,N |Y N) NY N NY N NNN NNN

(Y, Y |NY) NY Y NY Y NNY NNY

(Y,N |NY) NY Y NY Y NNN NNN

(N, Y |NY) NY N NY N NNY NNY

(N,N |NY) NY N NY N NNN NNN

(Y, Y |NN) NY Y NY Y NNY NNY

(Y,N |NN) NY N NY N NNY NNY

(N, Y |NN) NY Y NY Y NNN NNN

(N,N |NN) NY N NY N NNN NNN

(19.72)

The outcomes of this game can be calculated (see [Gam]), with the the result that there

388 CHAPTER 19. DECISION AND STRATEGY

are many possible equilibrium strategies. The payoffs to the players are all pure strategy
equilibria and are all quite similar, since there the pure strategies of the extensive game
are not independent, in spite of the great number of distinguishable combinations. The
one that is best for the employer assigns payoffs (75,15,10) to the players. This comes
from no staff training, no policy conformance and attack by an attacker. This is not a bad
outcome perhaps, but the employer is losing ten units of profit to the attacker and has
disloyal staff. This is not desirable.

Perhaps of greater concern, the employer is powerless to decide the outcome of the
game in the equilibria. All of the solutions assume that no staff training is performed;
thus it is the actions of the other players who determine the employer’s payoff. There is
no point to the employer in training staff, because they can get more by corrupt means.
This is not a desirable situation, so we consider how to modify the rules of the game to
achieve a more desirable result, and restore some of the control the employer has over
destiny. Suppose, for instance, the employer doubles the wages of the employees and
maintains the policy of halving of wages for failure to comply with company training.

Path Employer Employee Attacker Payoff vector
NNN 100-10 10 0 (90,10,0)
NNY 100-10-20 10+10 20-10 (70,20,10)
NYN 100-20 20 0 (80,20,0)
NYY 100-20-20 20 20 (60,20,20)
YNN 90-10 10 0 (80,10,0)
YNY 90-10-20 10+10 20-10 (60,20,10)
YYN 90-20 20 0 (70,20,0)
YYY 90-20-20 20 20 (50,20,20)

We recompute the Nash equilibria with these values. The best new equilibrium is in fact
worse than before for the employer. Again, there are several equilibria; the outcomes for
the players are all close to (60,20,20) with equilibrium strategies: no training, break policy
and attack respectively for the players. Clearly bribing the staff does not necessarily help.
What else might we do? What we have not accounted for is the possible effect of training
on deflecting the attacker. Suppose instead of paying employees more, the employer
seeks more effective training that halves the gain of the attacker. This needn’t cost any
more — the employer simply finds a competent staff trainer. Now we have:

19.13. HUMAN ELEMENTS OF POLICY DECISION 389

Path Employer Employee Attacker Payoff vector
NNN 100-5 5 0 (95,5,0)
NNY 100-5-20 5+10 20-10 (75,15,10)
NYN 100-10 10 0 (90,10,0)
NYY 100-10-20 10 20 (70,10,20)
YNN 90-5 5 0 (85,5,0)
YNY 90-5-5 5 5 (80,5,5)
YYN 90-10 10 0 (80,10,0)
YYY 90-10-10 10 10 (70,10,10)

With these payoffs we have, again, many equilibria; however, amongst the equilibria
is now the possibility of the equilibrium payoffs (70,10,10) to the players using moves
Train staff, Staff obey policy, Attacker attack. Thus, while the employer does not increase
total profit, he can reduce losses to attackers.

We can continue reevaluating how much resources to assign to each part of the
system and indeed our own value systems (what is truly important to us), to see how far
we must go before the balance of the game tips over to a cost-effective result. The main
point to be derived from this toy model is that by changing value allocations in a game,
one can explore the rational consequences, even when they are somewhat convoluted and
counter-intuitive.

19.13 HUMAN ELEMENTS OF POLICY DECISION

Policy compliance by humans is a thorny issue, since humans do not always behave
rationally. Game theory suggests that humans require a payoff in order to tip their
judgement in favour of compliance, on the scales of rational judgement. While game
theory always assumes that humans will pursue purely selfish interest, this is clearly not
necessarily true (though more true than many of us would care to imagine), so the game
once again gives us mainly an insight into the worst case scenario.

Humans are also multifaceted souls. The payoff to a human might be include a
number of things. Sometimes thanks are enough, other times monetary reward is craved.
Choosing policy over humans is fraught with the irrationality of the possible response:
humans require training or conditioning to accept policy. Whether one calls this training
or brainwashing is a subject for an ethical debate, very interesting but somewhat outside
the scope of this chapter. Choosing a policy that is not understood by humans can lead to
actions that are ‘criminal’ according to policy. Peer review of policy prevents policies
that are overtly contrary to group wishes, but a group’s wishes are not always rational or
representative either. For humans to accept policy, they must often have the feeling of
freedom to decide their own destiny, even if this is through a democratic process in which

390 CHAPTER 19. DECISION AND STRATEGY

they actually have little influence. Responsibility within a system confers privilege; this
can be used as a payoff to motivate humans; it could also be withdrawn as a punishment,
though disgruntled humans tend to sabotage systems, or become criminals within its
policies.

19.14 CODA: EXTENSIVE VERSUS STRATEGIC

CONFIGURATION MANAGEMENT

Let us now put together many of the themes of this book to consider the entire devel-
opment of a human-computer system in terms of a game for attaining an ideal state
(see [Bur98b]). If it is a game of perfect information, it must be deterministic and the
size of the information sets must grow exponentially with each move. There is thus,
in the limiting case, an infinite number of pure strategies required to attain the desired
configuration in every possible situation. We must ask, however, whether or not the state
we acquire is desirable and by what criteria. The view taken in this book is that stability
is a key component of this criterion.

The path dependent and path independent approaches can be described using the
game theoretical language of this chapter. They also have their analogues in thermody-
namics of equilibrium and non-equilibrium systems. Asking whether or not complete
path is required is the same as asking whether or not configuration must be a game of
perfect information in order to “win”. We have not properly discussed the matter of
games of imperfect information here; this is a large and subtle topic which would require
inappropriately long discussion for this book (see [Ras01]), so we shall mention only the
briefest sketch.

In a game of imperfect information, every decision in the game tree is made without
knowing the whole history of the tree. All a player sees is the information in a coarse-
grained form. The nodes of the game tree are grouped into sets called information sets
that conceal the details of past history to the player. Information sets blur the distinction
between individual nodes, making them indistinguishable to the player, by grouping
together nodes in the game. Rasmusen calls these information sets ‘clouds’, since a
player can tell that the game has reached an approximate location covered by a cloud,
but cannot tell the exact node within the cloud.

Example 211 (Configuration management CFEngine). In the configuration management
approach used by the software CFEngine, only the current state of the system is known,
not the path by which this was achieved. The distinct routes by which the state occurred
are hidden, and thus cfengine operates a game of imperfect information.

Can a player win based on only imperfect information? This depends on whether

19.14. CODA: EXTENSIVE VERSUS STRATEGICCONFIGURATION MANAGEMENT391

there is a path to a node within the winning game equilibrium from the current location.
The key to this is to disallow deep trees. If every final state is attainable from every
intermediate state, then this condition is satisfied. If we use only commuting operators
(see section 15.3) this will be true, since there is no impediment to implementing a string
of operations that makes a move in the game. If we use path dependent operators, then
the property of ‘can get there from here’ is spoiled unless we can steer the exact path
throughout the game. If the something from the system environment should alter the
state of the system, so that it is no longer in the equilibrium solution, it must be corrected
by maintenance (see chapter 16), but now we are no longer guaranteed to be able to find
a path back to where we were unless the operations are commutative. We can summarize
this as follows.

Principle 10 (Regulation with imperfect information). Only a system with finite state
information (that functions with imperfect information) like a Markov process can be
regulated indefinitely with a finite policy. Open systems must forget their history in order
to satisfy this criterion.

We can also turn this argument around to make it sound less like a limitation and
more like an advantage. A system that achieves equilibrium cannot depend on the route
it took to reach equilibrium. A steady state, i.e. one that persists as the end-point of a
process, (see section 9.10) is one in which the system has reached a stable dynamical
equilibrium. That means that the system desires to change itself by amount zero in every
time step once it has reached that state. Since zero does not depend on anything, this
cannot depend on the path. Such a state is a property of a location, not a path. Consider
the following analogy.

Example 212 (Minima and attractors). Imagine a ball rolling into a valley: once it
reaches the bottom of the valley, it stays there regardless of the path it took — assuming
only that once such path exists. The bottom of the valley is the most stable state and
we would normally choose this as policy. Now, suppose we decide to place the ball on
a ledge and make this our policy. Now the ball might not be stable to perturbations
and if, by some perturbation, it falls out of that state, there is only a limited number of
paths that will take it back there. If there is no single point of ‘bottomness’ in the valley
(perhaps the whole base of the valley is at the same height), then these final states are an
equivalence class and there is no need to distinguish them.

The example above tells us that maintaining a truly stable state requires no particular
information about the path. However, if we ask to maintain an unstable state, precise
information is required.

The reason why the extensive, path-dependent approach sometimes seems desirable
in configuration management is that we seldom bother to construct the entire tree of

392 CHAPTER 19. DECISION AND STRATEGY

actions or moves explicitly, or analyze the dependencies to determine their final impor-
tance. Moreover, if an extensive approach is to be coded as a policy then we must find
the pre-determined strategies that describe the tree (as in eqns. 19.67,19.68 and 19.69);
these are even more numerous.

Traugott has argued that complete path information is vital to maintain the correct
‘congruent’ state of configuration of a host ([Tra02]). In Traugott’s proposal, one
specifies a path always starting from a known base state so that the configuration follows
the same path. The agrees with the view above, but is only distinct or special if the
system is to be configured in a non-stable state, i.e. a state which does not have maximum
stability. The viewpoint we must take here is that a sufficient description of policy must
guarantee a best stable state and that any path to this state is good enough. Once the
system arrives at the state, the path it took becomes irrelevant.

With the expert operator approach (see section 15.3), we provide a set of primitives
that, while not providing the actual strategy set, is guaranteed to cover the possibility
space for any policy (as orthogonal vectors span a vector space), thus provide a path
to any final state. Choosing a policy then constrains the space of all possible policies
along each orthogonal operations axis and reductions can be made rationally. It might
seem like a lot of work to build up a configuration in this way, but once it is done, it is
guaranteed to be stable to decision fluctuations.

19.15 VERDICT ON GAME THEORY

This chapter has gone to some lengths to attempt to apply simple game theoretic methods
to plausible examples. It is worth now returning to the question posed at the start of the
chapter: are such rational decision methods justified or beneficial.

The amount of preparation that goes into the formulation a problem game theoret-
ically seems to weigh against it as a practical method. Although it might be possible
to build software that automates the procedure for a limited domain in particular cir-
cumstances, it seems likely that other heuristic methods might well find more favour
amongst system designers. If systems have the prerequisite stability to support reliable
function, then they should not be strongly sensitive to the precise optimization of system
parameters. One would try to design for a certain resilience or insensitivity to such
choices.

The formulation of games is facilitated by an understanding of the basic promises
in a system[BB14]: this is the semantic connection between the interactions of agents
and the formulation of a utility function to guide them. However, we would seem to be
a long way from being able to use rational decision theory as one of the basic tools for
systems engineers. The level of effort and mathematical methodology is simply too high,

19.15. VERDICT ON GAME THEORY 393

and we should focus our attention on fundamental stability.

Applications and Further Study 19.

• Creating decision models that relate dependencies to their payoff in a rational
way.

• Understanding the mechanics of decision making.

• Investigating how changes in assumptions can lead to changes in the rational
outcome of the decision procedure (hence provide a formal procedure for testing
one’s assumptions).

• Evaluating the stability of policy conclusions to errors of assumption, by changing
utility estimates until the rational outcome becomes significantly altered.

CHAPTER 20

CONCLUSIONS

...to see the general in the particular and the eternal in the transitory
– Alfred North Whitehead

System administration or engineering has been presented in this book as a rational
endeavour, whose aim is to provide checks and balances to the design, construction and
running of human-computer systems. These checks and balances can be investigated and
described by traditional scientific inquiry. Some specific tools and techniques have been
presented here to guide and inspire their usage in future work.

In this book, we have assumed that no system can be isolated from its environment—
that opening a system for input means opening it to unpredictability. The task of the
theoretician is then to look for a formal language by which to describe the observable
phenomena of interacting humans and computers, including all of the uncertainties and
fluctuations. For this we need sets, graphs and functions of time and space (addresses),
as well as statistical methods and the control of empiricism.

The approach taken here has been to allow the predictable and unpredictable meet,
by mapping the ideal of maintenance onto the idea of error correction of strings of digital
operations (as in the communications theory of Shannon). The challenge lies in defining
complex, multi-dependent processes as discrete operators that work predictably in noisy
environments; if one can do that, classical error correction methods automatically apply.

Key notions of stability, predictability, resource management, connectivity and flow
then allow one to define the concept of a set of reasonable policies, or stable regions of
behaviour for the system. Policies are alternative configurations that reflect system goals.
By defining policy to be a point of stable operation for a system, one ensures that the
system will not immediately come undone as soon as it is allowed to run. However, there
might be several policies that can be sustained, so there is a freedom that remains.

394

395

The remaining freedom can be partially eliminated by rational means; it requires
a value judgement, and here the language of games and decision theory can be used.
Once this has been allowed to play its role, we are left with a far smaller number of
alternatives, that is sharpened by the decision constraints. This might still not select a
unique policy; the remaining choices for policy are thus not rationally distinguishable.
Human preference, or random choice, thus enters for the final selection of one or more
of these policies; we refer to the remaining choice as a strategy.

Bringing the scientific tradition to a new field of research is not a trivial matter. The
thickness of this brief, introductory volume is a testament to the effort required to make a
precise, rational statements that can be challenged by experiment. Even so, this book
is only a beginning: it suggests a platform or springboard in the form of a number of
theorems and paradigms. For example,

• The maintenance theorem tells us what kinds of systems can have a probably
stable policy.

• Convergence, closure and orthogonality tell us how systems can reach a stable
fixed point of operation through a stochastic process, hence in a noisy environment.

• Shannon’s theorem shows us that error correction is possible in maintainable
systems.

• Queueing and fault network theorems and centrality measures indicate where
and problems and faults are likely to occur, as well as how resources should be
deployed most efficiently.

Some readers will find the liberal mixture of technology and sociology in this book
disconcerting. These traditionally incompatible domains are treated here as one, with
common methods. Subjective concerns are made into rational choices by formulating the
utility of the choices on a measurable scale. Ultimately this allows us to employ algebraic
reasoning. Utility theory, as originated by Von Neumann and Morgenstern, extends far
beyond the tiny introduction offered here and should provide research theses for decades
to come.

There are plenty of reasons not to be judgemental about the inadequacies of treating
the human part of systems with approximate characterizations. We have survived such
inadequacies in other sciences with no great injury. Moreover, it is always good to
remember that all scientific models are descriptive and have underlying uncertainties.

The analogies between system administration and economics are not accidental; nor
are the clear parallels between system administration and physics. All these fields share
the goal of describing systems in which accountable resources are distributed, flow and
interact. Physics is a game in which different forces compete for their share of the energy

396 CHAPTER 20. CONCLUSIONS

available in a system; we can rightfully describe the contents of this book as a physics of
human-computer systems1. The main difference is that physics operates according to
only one set of rules (one policy). In human-computer systems, each region can have its
own laws: the question then becomes not only what happens within such regions, but
also what happens where these regions meet. This is a fascinating challenge that should
be of interest to computer scientists and physicists alike.

Security, as an explicit viewpoint, has been avoided in this book, with good reason.
Once mentioned, it tends to dominate discussions, and deflect from core issues. However,
security is, in fact, addressed implicitly in a number of the topics: accessibility, vulnera-
bility of nodes, percolation and decision theory. For more specific discussions of security,
readers are directed to [Bis02]. One of the key problems in security is not technical but
sociological: the sabotage of systems by disgruntled users. The Romans are reputed
to have claimed that civilization is never more than three meals away from anarchy. In
other words, for humans, systematic cooperation depends on the subtle bribery of the
people: give them what the want and they will play by the rules of the system. If the
system should fail to give them what they want, it will degenerate into a free for all.

Finally, it is worth directing a critical eye on the substance of this book. What does it
actually achieve? Does it advance our ability to describe human-computer systems, or is
it simply an indulgence in applying familiar forms to an insubstantial field of research? I
believe that it does represent an advance. In particular:

• It invalidates certain ad hoc discussions that recur in the literature on subjective
issues and suggests a rational replacement.

• It provides a number of conclusions about what makes one system better than
another, with measurable certainty.

• It documents a conceptual basis so that discussions can be made uniform.

• It identifies current weaknesses and new goals for technological development.

I have always been a theorist by inclination. When I practice or experiment, it is not
for love of it, but in deference to its importance. Practice brings humility and experience,
but only theory brings understanding. The trouble I have found is that few academics
really believe in theory, when it comes down to it. They believe that it is acceptable in
books, or in the classroom, but not in the infamous real world. I know colleagues who
lecture of algorithms but will not apply the principles and knowledge to organize their
surroundings. I know of economists who teach theory but resort to guesswork when it

1This viewpoint has often caused distress when I have expressed it in the past. “This is not physics, it’s
computer science” say critics, but this artificial segregation misses the point completely. Science rarely
advances by splintering off sub-cultures; it usually benefits when apparently dissimilar fields are fused.

397

comes to application in ”the real world”. There are mathematicians who do not believe
that any non-elementary mathematics should be applied to mundane problems. When it
comes to ”real life”, too many academics are sceptical of the validity of the knowledge
they teach! As Faust exclaims in David Luke’s superior translation:

”And I fear...
Hard studies that have cost me dear.
And now I sit, poor silly man,
No wiser than when I began.
They call me Professor and Doctor, forsooth,
For misleading many an innocent youth...”

Some have said of the endeavour to bring some formality to engineering: ”It is too
early in the field to be talking of theory!” For others it is too late: ‘If you’d told me that
before it might have changed my ways.... Never was more effort expended in justifying a
viewpoint than in the defence of the irrational.

In revising the text for this reincarnated edition, I have added mainly examples of
modern relevance to a cultural survey of mainly historical analytical methods. The one
exception has been to try to integrate a brief introduction to the concept of promises
to the text, because the latter plays a major role in volume 2. Thus, here we leave this
survey of methods, as a partially successful search for enlightenment and practicality.
What came out of the writing of this volume was mainly a conviction that the role of
intent was not properly or expediently captured within any of the methods reviewed here,
and that something needed to be done to rectify that omission. Thus began a ten year
effort to develop ‘Promise Theory’ and apply it to all forms of system—a effort which
continues today. Indeed, the popular attention that Promise Theory has received has been
a source of constant surprise. Part of the reason for that lies in its intuitive simplicity,
even without attending to its formal rigour. I leave you, the reader, to discover that for
yourself, in the subsequent volume.

398 CHAPTER 20. CONCLUSIONS

APPENDIX A

SOME BOOLEAN FORMULAE

The probability of that event B follows event A is

P (BA) = P (B|A)P (A), (A.1)

i.e. the probability that A happens, multiplied by the probability that B happens, given
that A has already happened. There is an implicit causal sequence in these probabilities,
because we are assuming that B depends on A somehow.

If the events are independent, i.e. if the probability of A and B occurring is indepen-
dent of the order of measurement, then it makes sense to refer to the concept of “AND”,
i.e. a symmetrical operator, with no memory of what came before. In this case, the
probability of both events happening is merely coincidental, and is given by the overlap
product of the probabilities:

P (AAND B) = P (A∩B) = P (A)P (B). (A.2)

For independent events, the inclusive or exclusive ORs are the same:

P (AOR A) = P (A∪B) = P (A) + P (B)− P (A)P (B). (A.3)

These expressions can be iterated, using the symmetry of their arguments for greater
numbers of inputs. If the events are not independent, then the exclusive OR is given by

P (AXOR A) = P (A ⊕ B) = P (A) + P (B)− 2P (A)P (B). (A.4)

399

400 APPENDIX A. SOME BOOLEAN FORMULAE

A.1 CONDITIONAL PROBABILITY

Let the set A consist of subsets A = {a1, a2, . . .}, some of which might overlap. If the
sets do not overlap, then:

P (a1) =
N(a1)∑
iN(ai)

(A.5)

In general, we can write the set that is complementary to a1 as a1, i.e. all of the elements
that are not in a1. Then

P (a1) =
N(a1)

N(a1) +N(a1)
. (A.6)

The conditional probability of two overlapping events is

P (a1|a2) =
N(a1∩a2)

N(a2)
=
N(a1∩a2)/N

N(a2)/N

=
P (a1∩a2)

P (a2)
. (A.7)

i.e., knowledge that the search space is within a2 increases the likelihood of finding the
result, so the conditional probability is greater.

Now, by symmetry

P (a2|a1) =
N(a1∩a2)

N(a1)
=
N(a1∩a2)/N

N(a1)/N

=
P (a1∩a2)

P (a1)
. (A.8)

thus

P (a1∩a2) = P (a2|a1)P (a1) = P (a1|a2)P (a2), (A.9)

thus one has Bayes formula

P (a2|a1) =
P (a1|a2)P (a2)

P (a1)
. (A.10)

This is really a definition of conditional probability.

A.2 BOOLEAN ALGEBRA AND LOGIC

Thanks to Von Neumann et. al. our present day idea of computers is that of binary digital
devices which perform Boolean logical operations. Such a device can simulate any com-
putational process in principle. What remains in order to create systems which compute

A.2. BOOLEAN ALGEBRA AND LOGIC 401

the results of mathematical or logical problems is the ability to combine information
streams into functions which are things we want to evaluate.

Modern computers are based on the use of binary data and Boolean algebra or logic.
It is straightforward to show that a simple set of linearly independent operations on bits
can be used to perform simple binary arithmetic, and thus more complex calculations
in combination. The commonly referred to operations in Boolean algebra are the unary
(1:1) operator

NOT ¬
In Out
1 0
0 1

and the binary (2:1) operators

AND ∩
In1 In2 Out
0 0 0
0 1 0
1 0 0
1 1 1

OR ∪
In1 In2 Out
0 0 0
0 1 1
1 0 1
1 1 1

XOR ⊕
In1 In2 Out
0 0 0
0 1 1
1 0 1
1 1 0

In digital electronics, these are simulated using multi-transistor circuit blocks.

It is easy to show that any Boolean logic operation can be constructed from the two
operations ∩ (AND) and ¬ (NOT). This may be seen from the following identities:

P ∪ Q = ¬(¬P ∩ ¬Q)

P → Q = ¬P ∩ Q

P ↔ Q = (P → Q) ∩ (Q→ P)

P ⊕ Q = ¬(P ↔ Q). (A.11)

or, in modern programming notation

P | Q = !(!P & !Q)

P -> Q = !P & Q

P == Q = (P -> Q) & (Q -> P)

P ˆ Q = ! (P == Q).

402 APPENDIX A. SOME BOOLEAN FORMULAE

or, again, in more common notation

P OR Q = NOT (NOTP AND NOTQ)

P → Q = NOTP AND Q

P EQUALS Q = (P → Q) AND (Q→ P)

P XOR Q = NOT (P EQUALS Q). (A.12)

The ‘implication’ symbol is defined by the truth table

0→ 0 = 1

0→ 1 = 1

1→ 0 = 0

1→ 1 = 1. (A.13)

APPENDIX B

STATISTICAL AND SCALING

PROPERTIES OF TIME-SERIES

DATA

Consider a stochastic dynamical variable q(t), whose complete behaviour is unknown.
In the following sections we refer to a sample of data, measured by a sensor, or

represented as an abstract function of time. The time span of the same is take to be from
t = 0 to t = T . If the sample was measured at discrete regular time intervals, then t is a
subset of discrete values labelled t = [i].

The average of a measured or represented function or sample, taken over all points, is
denotes simply by the expectation value brackets; this is also denoted by E() in statistics
literature:

〈q(t)〉 = E[q(t)]. (B.1)

These brackets have no subscript. Subscripts are used to denote the average taken over a
limited subset of the points.

Similarly the variance over the entire sample is denoted by σ2 with no subscript.
Subscripts are used to denote the variance of a limited subset of the full sample, as
defined below.

B.1 LOCAL AVERAGING PROCEDURE

Let us define a local averaging procedure, or method of coarse-graining (see fig 3.10).

403

404APPENDIX B. STATISTICAL AND SCALING PROPERTIES OF TIME-SERIES DATA

The local averaging procedure re-averages data, moving from a detailed view to a
less detailed view, by grouping neighbouring data together. In practice one always deals
with data which are sampled at discrete time intervals. We shall consider this case first,
and then return to a continuous function approach, which is a useful approximation to
the discrete case.

DISCRETE TIME DATA

Consider the function q(t) shown in fig. 3.10. Let the small ticks on the horizontal
axis represent the true sampling of the data, and label these by i = 0, 1, 2, 3, . . . , I .
These have unit spacing. Now let the large ticks, which are more coarsely spread out, be
labelled by k = 1, 2, 3, . . . ,K. These have spacing ∆t = m, where m is some fixed
number of the smaller ticks. The relationship between the small and the larger ticks is
thus:

i = (k − 1)∆t = (k − 1)m. (B.2)

In other words, there are ∆t = m small ticks for each large one. To perform a coarse-
graining, we replace the function q(t) over the whole kth cell with an average value, for
each non-overlapping interval ∆t. We define this average by

〈q(k)〉m ≡
1

∆t

k∆t∑
i=(k−1)∆t+1

q(i). (B.3)

We have started with an abstract function q(t), sampled it at discrete intervals, giving
q(i), and then coarse-grained the data into larger contiguous samples 〈q(k)〉m:

q(t)→ q(i)→ 〈q(k)〉m. (B.4)

The variance of data q(i) over the kth cell is thus

σ2(k) =
1

∆t

k∆t∑
i=(k−1)∆t+1

(q(i)− 〈q(k)〉m)2 (B.5)

= 〈q2(k)〉m − 〈q(k)〉m. (B.6)

The mean of the entire set of samples (summed over either i or k variables) is the same:

〈q〉 =
1

I

I∑
i=0

q(i) =
1

K

K∑
k=0

〈q(k)〉m, (B.7)

This follows from the linearity of the sums. The same is not true of the variances however.

B.1. LOCAL AVERAGING PROCEDURE 405

i-COORDINATES (SMALL TICKS)

〈q〉 =
1

I

I∑
i=0

q(i) (B.8)

The variance:

σ2 =
1

I

I∑
i=0

(q(i)− 〈q〉)2

= 〈q2〉 − 〈q〉2. (B.9)

Recall this expression for comparison below.

k-COORDINATES (LONG TICKS)

The average is the same as for the small ticks:

〈q〉 =
1

K

K∑
k=0

〈q(k)〉m,

=
1

K

K∑
k=0

 1

∆t

k∆t∑
i=(k−1)∆t+1

q(i)

=

1

K∆t

 1

K

K∑
k=0

k∆t∑
i=(k−1)∆t+1

 q(i)

=
1

I

I∑
i=1

q(i)

= 〈q〉. (B.10)

However, the variance is not the same:

σ2
K =

1

K

K∑
k=0

(〈q(k)〉m − 〈q〉)2

≡ 〈(〈q(k)〉m − 〈q〉)2〉K
= 〈〈q(k)〉2m〉K − 2〈〈q(k)〉m〈q〉〉K + 〈q〉2

= 〈〈q(k)〉2m〉K − 2〈〈q(k)〉m〉K〈q〉+ 〈q〉2

(B.11)

Now

〈· · · 〉 = 〈〈· · · 〉m〉K, (B.12)

406APPENDIX B. STATISTICAL AND SCALING PROPERTIES OF TIME-SERIES DATA

thus

σ2
K = 〈〈q(k)〉2m〉K − 〈q〉2 (B.13)

6= σ2
I . (B.14)

The two expressions thus differ by

σ2 − σ2
K = 〈q2〉 − 〈〈q(k)〉2m〉K

= 〈〈q2〉m − 〈q(k)〉2m〉K
= 〈σ2

m(k)〉K, (B.15)

which is the average variance of the coarse-grained cells.

CONTINUOUS TIME DATA

We can now perform the same procedure using continuous time. This idealization will
allow us to make models using continuous functions and functional methods, such as
functional integrals. Referring once again to the figure, we define a local averaging
procedure by

〈q(t)〉∆t =
1

∆t

∫ t+∆t/2

t−∆t/2

q(t̃′) dt̃′. (B.16)

The coarse-grained variable t is now the more slowly varying one. It is convenient to
define the parameterization

t̃ = (t− t′) (B.17)

t =
1

2
(t+ t′), (B.18)

on any interval between points t and t′. The latter is the mid-point of such a cell, and the
former is the offset from that origin. The variance of the fundamental variable, over such
a grain is

σ2(t) =
1

∆t

∫
dt′(q(t′)− 〈q(t)〉∆t)2

= 〈q2(t)〉∆t − 〈q(t)〉2∆t. (B.19)

t-COORDINATES (INFINITESIMAL TICKS)

Over a total sample, running from 0 to T

σ2 =
1

T

∫ T

0

dt′(q(t′)− 〈q(t′)〉)2

= 〈q2〉 − 〈q〉2. (B.20)

B.2. SCALING AND SELF-SIMILARITY 407

t-COORDINATES (∆t TICKS)

Define the average over the τ cells of width ∆t by

〈〈q(t)〉∆t〉t =
1

τ

∫ τ

0

〈q(t)〉∆t. (B.21)

Noting that τ = T/∆t and dτ = dt/∆t, one confirms that

〈〈q(t)〉∆t〉t = 〈q〉 (B.22)

i.e. that

〈〈· · · 〉∆t〉t ≡ 〈· · · 〉. (B.23)

Over a total sample, running from 0 to T = τ∆t, the directly calculated variance is

σ2 =
1

T

∫ T

0

dt′(q(t′)− 〈q(t′)〉)2

= 〈q2〉 − 〈q〉2. (B.24)

The variance of the coarse-grained variables differs, once again,

σ2 =
1

τ

∫ τ

0

(〈q(t)〉∆t − 〈q〉)2

= 〈〈q(t)〉2∆t〉t − 〈q(t)〉
2. (B.25)

The difference

σ2 − σ2
t = 〈q(t)〈q(t)2〉∆t〈q(t)〉2∆t

= 〈σ2(t)〉t, (B.26)

which, again, is the average of the local variances.

B.2 SCALING AND SELF-SIMILARITY

The scaling hypothesis, for a function q(t), under a dilatation by an arbitrary constant
α,is expressed by:

q(αt) = Ω(α) q(t). (B.27)

In other words, the assumption is that stretching the parameterization of time t→ αt,
leads to a uniform stretching of the function q(t), by a factorizable magnification Ω(α).
The function retains its same ‘shape’, or functional form; it is just magnified by a constant
scale.

408APPENDIX B. STATISTICAL AND SCALING PROPERTIES OF TIME-SERIES DATA

This property is clearly not true of an arbitrary function. For example, q(t) = sin(ωt)

does not satisfy the property. Our interest in such functions is connected with dynamical
systems which exist and operate over a wide range of scales. Physical systems are always
limited by some constraints, so this kind of scaling law is very unlikely to be true over
more than a limited range of α values. Nevertheless, it is possible to discuss functions
which, indeed, scale in this fashion, for all values of α, as an idealization. Such functions
are said to be scale invariant, dilatation invariant, or self-similar.

In addition to perfect self-similarity, or dilatation invariance of a function, physical
systems sometimes exhibit other forms of self-similarity.

Dynamical invariance tells us that the equations which describe how the function
q(t) behaves, or is constrained, are invariant under the change of scale. This is a weaker
condition, which means that the behaviour of a complete system is invariant, but that q(t)
itself need not be.

S[Ω−1(α)q(αt)]→ S[q(t)]. (B.28)

Statistical invariance, tells us that the average properties of a stochastic variable, or
a physical system are invariant; i.e. the function need only satisfy the scaling law on
average.

B.3 SCALING OF CONTINUOUS FUNCTIONS

From eqn (B.27), the symmetry between q(t) and Ω(s), tells us that

q(x) ∼ Ω(x), (B.29)

i.e. that they must possess similar scaling properties. In fact, q(t) and Ω(s) must be
homogeneous functions, in order to satisfy this relationship:

q(t) = tH

Ω(s) = sH , (B.30)

for some power H . In other words, one has

s−Hq(st) = q(t). (B.31)

Consider a stochastic process q(t). whose average properties show invariance over
a wide range of scales, compared to the limiting resolution of the data. Consider what
happens if we scale the basic definition of the local averaging procedure; the procedure,
starting from the basic function, is as follows:

B.3. SCALING OF CONTINUOUS FUNCTIONS 409

(1) The coarse graining parameterization is t = ∆t · t+ t̃, i.e. q(t)→ q(t, t̃), where
t is the slowly varying parameter, and t̃ is the more rapidly varying parameter.

(2) Average over the intervals of size ∆t, by integrating or summing over t̃.

(3) Rescale the coarse-graining interval from ∆t→ s∆t.

Beginning with the definition of the averaging procedure:

〈q(t)〉∆t =
1

s∆t

∫ t+∆t/2

t−∆t/2

q(t̃′) (sdt̃′). (B.32)

one may scale the variable of integration, so that the left hand side of the equation is the
same. From the assumption of the scale invariance of q(t), in eqn. (B.31), one may write

〈q(t)〉∆t =
1

s∆t

∫ t+∆t/2

t−∆t/2

[
q(st̃′)

sH

]
d(st̃′). (B.33)

We now extend the limits of the integral, without amplifying the function itself, in order
to perform a further coarse-graining, incorporating s times more points:

〈q(t)〉∆t =
1

s∆t

∫ t+s∆t/2

t−s∆t/2

[
q(st̃′)

sH

]
d(st̃′). (B.34)

By rewriting slightly, we now observe that the function has the form of an average of a
new quantity, over the larger interval s∆t:

〈q(t)〉∆t =
1

s∆t

∫ t+s∆t/2

t−s∆t/2

[
q(st̃′)

sH
s

]
dt̃′. (B.35)

〈q(t)〉∆t =
〈q(st)〉s∆t
sH−1

(B.36)

The same procedure can be applied to the variance, which behaves simply as the
square of the average:

σ2
∆t =

∫
dtdt′〈q(t)q(t′)〉

=

∫
(sdt sdt′)

〈q(t)q(t′)〉
s2H

(B.37)

σ2
∆t =

σ2
2∆t

s2H−2
. (B.38)

APPENDIX C

PERCOLATION CONDITIONS

C.1 RANDOM GRAPH CONDITION

We reproduce here the argument of ref. [NSW01] to derive the condition for the probable
existence of a giant cluster for a uni-partite random graph with degree distribution pk,
and correct it for smaller graphs.

The method of generating functions is a powerful way of encapsulating the properties
of a whole graph in a single analytical expression. Let k represent the degree of each
node, and pk be the probability distribution for the occurrence of nodes of degree k
within the graph. We have, ∑

k

pk =
∑
k

nk
N

= 1, (C.1)

where nk is the number of nodes of degree k, and N is the total number of nodes. The
generating function for this distribution is simply the polynomial, in a dummy source
variable J , whose kth power coefficient is pk, i.e.

G(J) =

kmax∑
k=0

pk J
k, (C.2)

so that the probability distribution is recovered by the derivatives:

pk =
1

k!

dkG(J)

dJk

∣∣∣
J=0

, (C.3)

and the average degree of nodes in the graph is

z ≡ 〈k〉 = J
d

dJ
G(J)

∣∣∣
J=0

. (C.4)

410

C.1. RANDOM GRAPH CONDITION 411

[G(J)] = + + + + +

k=0 k=1 k=2

2
+ ...

Figure C.1: Graphical form of the first three terms in the second power of the generating function.
The nth power of G(J) generates the probabilities of finding a total degree of k from a cluster of
n nodes, i.e. the probability that n nodes have k outgoing edges.

Note that kmax is normally taken to be infinite to approximate large graphs. We can use
this generating function to evaluate average (probabilistic) properties of the graph.

If we pick an arbitrary node and follow one of the edges (links) of the graph to
another node, the probability of arriving at a node of degree k′ is proportional to k′,
since a highly connected node is proportionally more likely to be arrived at than a poorly
connected node (there are more ways for it to occur). Thus, in our average picture, the
probability of getting to a node of degree k is

Pk =
k pk∑
k k pk

=
k

〈k〉pk. (C.5)

This distribution is generated by the normalized derivative of G(J), like this:

G1(J) ≡
∑
k k pk J

k−1∑
k k pk

=
1

〈k〉
d

dJ
G(J). (C.6)

Following ref. [NSW01] we note that, if a distribution pk is generated by G(J), then a
number of related generating functions are obtained by taking powers of G(J). Suppose
that there are m independent ways of obtaining the probability Pk′ , from different, but
equivalent, graph configurations pk, then the function that generates the right combina-
torics for pk is the mth power of G(J).

γm(J) ≡ [G(J)]m =
∑
κ

πκJ
κ. (C.7)

This is easy to see when m = 2 (see fig. C.1):

412 APPENDIX C. PERCOLATION CONDITIONS

γ2(J) = [G(J)]2 = [
∑
k

pkJ
k]2

=
∑
i,j

pipjJ
i+j

= p0p0J
0 + (p0p1 + p1p

0)J1 +

(p0p2 + p1p1 + p2p0)J2 + . . .

If we compare the coefficients of Jk in eqns. (C.7) and (C.8), the we see that

π0 = p0p0

π1 = p0p1 + p1p
0

π2 = p0p2 + p1p1 + p2p0

πk = C(i, j, k), (C.8)

where C(pm) is the sum of all combinations such that i+ j = k.
Thus, suppose now that we wish to calculate the average number of nodes within a

connected cluster, i.e. the size of the cluster. We can obtain this result by summing the
nodes that, themselves, have connected neighbours. This can be achieved by using an
effective generating function, of the form:

Wc[J] = J
∑
k

pk [χc(J)]k. (C.9)

Here we postulate the existence of a constrained function χc(J), that pertains to a given
cluster c, within the graph, and generates the distribution of degrees recursively at all
connected sub-nodes of a cluster, starting from some arbitrary point. An additional power
of J is added here, by convention, so that the counting starts from 1. The constraint is
derived using a recursive definition that sums over clusters of connected nodes. Suppose
we define the normalized distribution

χc(J) =
∑
k

ck J
k (C.10)

=

∑
k kpk [χc(J)]k

〈k〉 (C.11)

= JG1(χc(J)). (C.12)

Equation (C.11) is a constraint equation; its right hand side is interpreted as a sum of
probabilities for arriving at a node of degree k, from some arbitrary starting point, that has
a number of k nearest neighbours each with degree distributions generated by χc(J)k.
i.e.

χ(J) ∝
∑
k

Probability of picking a

node of degree k
× Probable ways of connecting

to k nodes from a random node

C.1. RANDOM GRAPH CONDITION 413

The recursive definition indicates that the same average probabilities exist at each node
of the graph; only the limit of total nodes in the cluster stops the iteration. Substituting in
the generic form with coefficients ck leads to an eigenvalue equation for the vector ck,
with a matrix of probabilities. The principal eigenvector gives the appropriate solution
for the largest cluster. Remarkably, we do not need to know the solution of χc(J) in
order to find out when the size of connected clusters becomes dangerously large for
system security. Instead, the constraint can be eliminated.

Differentiation of Wc(J) with respect to the source J gives a quantity that is analo-
gous to the result in eqn. (C.4), but with a new kind of average that includes both nearest
neighbour degrees, next-nearest neighbour degrees, and so on:

〈〈k〉〉 ≡ d

dJ
Wc[J]

= 1 + J
d

dJ
G(χc(J))

= 1 + J
dG(χc)

dχc
· dχc
dJ

∣∣∣∣∣
J=1

. (C.13)

The result is an average estimate of the size of a connected cluster. Using eqn. (C.12),we
find that

dχx
dJ

=

(
1− J dG1(J)

dJ

)−1

, (C.14)

thus the average size of a randomly picked cluster is

〈〈k〉〉 = 1 +
J dG(J)

dJ(
1− J dG1

dJ

) ∣∣∣∣∣
J=1

. (C.15)

Here we note that, self-consistently W [1] = 1, as long as W [J] has no singularities. In
the general case we must define Γc = lnWc and 〈〈k〉〉 = dΓ/dJ at J = 1. A giant
component or cluster is defined to be a cluster that is of order N nodes. If such as cluster
exists, then other smaller clusters of order logN might also exist[MR98]. The condition
for a giant cluster is thus that the denominator in this fraction becomes small, or

dG1(J)

dJ
(1) = 1. (C.16)

Using eqn. (C.6), we find the critical point for the emergence of a giant cluster. The
large-graph condition for the existence of a giant cluster (of infinite size) is simply∑

k

k(k − 2) pk ≥ 0. (C.17)

This provides a simple test that can be applied to a human-computer system, in
order to estimate the possibility of complete failure via percolating damage. If we only

414 APPENDIX C. PERCOLATION CONDITIONS

determine the pk, then we have an immediate machine-testable criterion for the possibility
of a systemwide security breach. The condition is only slightly more complicated than
the simple Cayley tree approximation; but (as we will see below) it tends to give more
realistic answers.

C.2 BI-PARTITIE FORM

Random bi-partite graphs are also discussed in [NSW01] and a corresponding expression
is derived for giant clusters. Here we can let pk be the fraction of users with degree
k (ie, having access to k files), and qk be the fraction of files to which k users have
access. Then, from Ref. [NSW01], the large-graph condition for the appearance of a
giant bi-partite cluster is:∑

jk

jk(jk − j − k) pjqk > 0. (C.18)

This result is still relatively simple, and provides a useful guideline for avoiding the
possibility of systemwide infection—in those cases where such is practical, one seeks to
hold the whole system below the percolation threshold, by not satisfying the inequality
in (C.18). The left hand side of (C.18) can be viewed as a weighted scalar product of the
two vectors of degree distributions:

qTWp = pTWq > 0 , (C.19)

with Wjk = jk(jk− j − k) forming a symmetric, graph-independent weighting matrix.

C.3 SMALL GRAPH CORRECTIONS

The problem with the above expressions is clearly that they are derived under the
assumption of there being a smooth differentiable structure to the average properties of
the graphs. For a small graph with N nodes (either uni-partite or bi-partite), the criterion
for a giant cluster becomes inaccurate. Clusters do not grow to infinity, they can only
grow to size N at the most, hence we must be more precise and use a dimensionful scale
rather than infinity as a reference point. The correction is not hard to identify; we require

J dG(J)
dJ(

1− J dG1
dJ

) ∣∣∣∣∣
J=1

� 1, (C.20)

for the uni-partite case. This more precise percolation criterion states that, at percolation,
the average size of clusters is of the same order of magnitude as the number of nodes.

C.3. SMALL GRAPH CORRECTIONS 415

However for a small graph the size of a giant cluster and of below-threshold clusters [N
and log(N), respectively] are not that different[MR98]. The above criterion translates
into:

〈k〉2

−
∑
k k(k − 2) pk

� 1. (C.21)

Thus the threshold point can be taken to be as follows. The small-graph condition for
widespread percolation in a uni-partite graph of order N is:

〈k〉2 +
∑
k

k(k − 2) pk > log(N). (C.22)

This can be understood as follows. If a graph contains a giant component, it is of order
N and the size of the next largest component is typically O(logN); thus, according to
the theory of random graphs the margin for error in estimating a giant component is of
order ± logN . In the criterion above, the criterion for a cluster that is much greater than
unity is that the right hand side is greater than zero. To this we now add the magnitude of
the uncertainty in order to reduce the likelihood of an incorrect conclusion.

Similarly, for the bi-partite graph, one has the small-graph condition for widespread
percolation in a bi-partite graph of order N :

〈k〉2〈j〉2 +
∑
jk

jk(jk − j − k) pjpk > log(N/2). (C.23)

These expressions are not much more complex than the large-graph criteria. Moreover,
they remain true in the limit of large N . Hence we expect these small-graph criteria to
be the most reliable choice for testing percolation in small systems. This expectation
is borne out in the examples below. In particular, we find that, since the average
coordination number 〈k〉 enters into the small-graph percolation criteria, the earlier
problem of ignoring isolated nodes in the uni-partite case is now largely remedied.

APPENDIX D

STABLE DISTRIBUTIONS

Define:

Lα(q) =

∫ +∞

−∞

dk

2π
e−iqk Lα(k). (D.1)

Then, L1 is:

L1 =

∫ +∞

−∞

dk

2π
e−iqk−c1|k| (D.2)

=

∫ +∞

0

dk

2π
e−iqk+c1k −

∫ +∞

0

dk

2π
eiqk−c1k (D.3)

=

(
−1

iq + c1
+

1

iq − c1

)
[0− 1

2π
] (D.4)

=
c/π

q2 + c21
, (D.5)

which is the Lorentz-Cauchy distribution, commonly representing signal propagation.
For L2, we have:

L2(q) =

∫ +∞

−∞

dk

2π
e−iqk−c2k

2

(D.6)

=

∫ +∞

−∞

dk

2π
e−i(k−iq/2c2)2c2−q2/4c22 (D.7)

=

√
π

c2

e−q
2/4c22

2π
, (D.8)

which is the Gaussian distribution, also a maximum entropy distribution. The stable
distributions satisfy a central limit theorem.

416

BIBLIOGRAPHY

[AB02] R. Albert and A. Barabási. Statistical mechanics of complex networks.
Reviews of Modern Physics, 74:47, 2002.

[ABC01] E. Anderson, M. Burgess, and A. Couch. Selected Papers in Network
and System Administration. J. Wiley & Sons, Chichester, 2001.

[ABL+95] José Nagib Cotrim Arabé, Adam Beguelin, Bruce Lowecamp, Eric Selig-
man, Mike Starkey, and Peter Stephan. Dome: parallel programming in
a heterogeneous user environment. Technical Report CMU-CS-95-137,
Carnegie Mellon University, 1995.

[AD96] Imtiaz Ahmad and Muhammed K. Dhodhi. Multiprocessor scheduling
in a genetic paradigm. Parallel Computing, 22:395–406, 1996.

[AJB99] R. Albert, H. Jeong, and A.L. Barabási. Diameter of the world-wide
web. Nature, 401:130, 1999.

[ALB99] H. Abdu, H. Lutfiya, and M. Bauer. A model for adaptive monitoring
configurations. Proceedings of the VI IFIP/IEEE IM conference on
network management, page 371, 1999.

[Apt01] R. Apthorpe. A probabilistic approach to estimating computer sys-
tem reliability. Proceedings of the Fifteenth Systems Administration
Conference (LISA XV) (USENIX Association: Berkeley, CA), page 31,
2001.

[Ari12] D. Ariely. The Honest Truth About Dishonest. Harper Collins, New
York, 2012.

[BA99] A.L. Barabási and R. Albert. Emergence of scaling in random networks.
Science, 286:509, 1999.

417

418 BIBLIOGRAPHY

[BAJ00] A.L. Barabási, R. Albert, and H. Jeong. Scale-free characteristics of
random networks: topology of the world-wide web. Physica A, 281:69,
2000.

[Bal97] V.K. Balakrishnan. Graph Theory. Schaum’s Outline Series (McGraw-
Hill), New York, 1997.

[Bar02] A.L. Barabási. Linked. (Perseus, Cambridge, Massachusetts), 2002.

[BB05a] K. Begnum and M. Burgess. Principle components and importance
ranking of distributed anomalies. Machine Learning Journal, 58:217–
230, 2005.

[BB05b] M. Burgess and K. Begnum. Voluntary cooperation in a pervasive
computing environment. Proceedings of the Nineteenth Systems Admin-
istration Conference (LISA XIX) (USENIX Association: Berkeley, CA),
page 143, 2005.

[BB06] J.H. Bjørnstad and M. Burgess. On the reliability of service level estima-
tors in the data centre. In Proc. 17th IFIP/IEEE Integrated Management,
volume submitted. Springer, 2006.

[BB08] R. Badonnel and M. Burgess. Service load balancing with autonomic
servers: Reversing the decision making process. In Resilient Networks
and Services, Second International Conference on Autonomous Infras-
tructure, Management and Security, AIMS 2008, Bremen, Germany, July
1-3, 2008, Proceedings, pages 92–104, 2008.

[BB14] J.A. Bergstra and M. Burgess. Promise Theory: Principles and Applica-
tions. χtAxis Press, 2014.

[BC95] H. Bunke and J. Csirik. Parametric string edit distance and its applica-
tion to pattern recognition. IEEE Transactions on Systems, Man and
Cybernetics, 25:202, 1995.

[BC03] M. Burgess and G. Canright. Scalability of peer configuration manage-
ment in partially reliable and ad hoc networks. Proceedings of the VIII
IFIP/IEEE IM conference on network management, page 293, 2003.

[BC04] M. Burgess and G. Canright. Scaling behaviour of peer configuration in
logically ad hoc networks. IEEE eTransactions on Network and Service
Management, 1:1, 2004.

BIBLIOGRAPHY 419

[BC11] M. Burgess and A. Couch. On system rollback and totalized fields:
An algebraic approach to system change. J. Log. Algebr. Program.,
80(8):427–443, 2011.

[BCE04a] M. Burgess, G. Canright, and K. Engø. A graph theoretical model of
computer security: from file access to social engineering. International
Journal of Information Security, 3:70–85, 2004.

[BCE04b] M. Burgess, G. Canright, and K. Engø. Inportance-ranking functions
from the eigenvectors of directed graphs. Journal of the ACM (Submit-
ted), 2004.

[BCS+03] M. Burgess, G. Canright, T. Hassel Stang, F. Pourbayat, K. Engo, and Å.
Weltzien. Archipelago: A network security analysis tool. Proceedings
of the Seventeenth Systems Administration Conference (LISA XVII)
(USENIX Association: Berkeley, CA), page 153, 2003.

[Ber94] Jan Beran. Statistics for Long-Memory Processes. Chapman &
Hall/CRC, October 1994.

[Ber01] C. Berge. The Theory of Graphs. (Dover, New York), 2001.

[BG99] S. Baase and A. Van Gelder. Computer Algorithms, 3rd edition,. Addi-
son Wesley, Reading, MA, 1999.

[BHRS01] M. Burgess, H. Haugerud, T. Reitan, and S. Straumsnes. Measuring
host normality. ACM Transactions on Computing Systems, 20:125–160,
2001.

[BHS98] M. Burgess, H. Haugerud, and S. Straumsnes. Measuring host normality
i. (Unpublished), 1998.

[Bis02] M. Bishop. Computer Security: Art and Science. Addison Wesley, New
York, 2002.

[BJPM16] B. Beyer, C. Jones, J. Petoff, and N.R. Murphy, editors. Site Reliability
Engineering. O’Reilley, 2016.

[BJR94] G. Box, G. Jenkins, and G. Reinsel. Time Series Analysis. Prentice Hall,
New Jersey, 1994.

[Bon87] P. Bonacich. Power and centrality: a family of measures. American
Journal of Sociology, 92:1170–1182, 1987.

420 BIBLIOGRAPHY

[BR97] M. Burgess and R. Ralston. Distributed resource administration using
cfengine. Software practice and experience, 27:1083, 1997.

[BR00] M. Burgess and T. Reitan. Measuring host normality ii. Unpublished,
2000.

[BR06] M. Burgess and T. Reitan. A risk analysis of disk backup or repository
maintenance. Science of Computer Programming, (to appear), 2006.

[Bre70] A.M. Breipohl. Probabilistic systems analysis. J. Wiley & Sons, New
York, 1970.

[Bre00] E. Brewer. Towards robust distributed systems. In Keynote, Symposium
on Principles of Distributed Computing (PODC)., 2000.

[BS01] M. Burgess and F.E. Sandnes. Predictable configuration management
in a randomized scheduling framework. Proceedings of the 12th inter-
nation workshop on Distributed System Operation and Management
(IFIP/IEEE)., INRIA Press:293, 2001.

[BU06a] M. Burgess and S.I. Ulland. Uncertainty in global application services
with load sharing. In Lecture Notes on Computer Science, Proc. 17th
IFIP/IEEE Distributed Systems: Operations and Management (DSOM
2006), volume 4269, pages 37–48. Springer, 2006.

[BU06b] M. Burgess and G. Undheim. Predictable scaling behaviour in the data
centre with multiple application servers. In Lecture Notes on Computer
Science, Proc. 17th IFIP/IEEE Distributed Systems: Operations and
Management (DSOM 2006), volume 4269, pages 9–60. Springer, 2006.

[Buc02] M. Buchanan. Nexus: Small Worlds and the Groundbreaking Science of
Networks. (W.W.Norton & Co., New York), 2002.

[Bur93] M. Burgess. Cfengine www site. http://www.cfengine.org, 1993.

[Bur95] M. Burgess. A site configuration engine. Computing systems (MIT
Press: Cambridge MA), 8:309, 1995.

[Bur98a] M. Burgess. Automated system administration with feedback regulation.
Software practice and experience, 28:1519, 1998.

[Bur98b] M. Burgess. Computer immunology. Proceedings of the Twelth Systems
Administration Conference (LISA XII) (USENIX Association: Berkeley,
CA), page 283, 1998.

BIBLIOGRAPHY 421

[Bur00a] M. Burgess. The kinematics of distributed computer transactions. Inter-
national Journal of Modern Physics, C12:759–789, 2000.

[Bur00b] M. Burgess. Principles of Network and System Administration. J. Wiley
& Sons, Chichester, 2000.

[Bur00c] M. Burgess. Theoretical system administration. Proceedings of the
Fourteenth Systems Administration Conference (LISA XIV) (USENIX
Association: Berkeley, CA), page 1, 2000.

[Bur02a] M. Burgess. Classical Covariant Fields. Cambridge University Press,
Cambridge, 2002.

[Bur02b] M. Burgess. Two dimensional time-series for anomaly detection and
regulation in adaptive systems. Lecture Notes in Computer Science,
IFIP/IEEE 13th International Workshop on Distributed Systems: Oper-
ations and Management (DSOM 2002), 2506:169, 2002.

[Bur03] M. Burgess. On the theory of system administration. Science of Com-
puter Programming, 49:1, 2003.

[Bur04] M. Burgess. Configurable immunity model of evolving configuration
management. Science of Computer Programming, 51:197, 2004.

[Bur05] Mark Burgess. An approach to understanding policy based on autonomy
and voluntary cooperation. In IFIP/IEEE 16th international workshop
on distributed systems operations and management (DSOM), in LNCS
3775, pages 97–108, 2005.

[Bur06] M. Burgess. Probabilistic anomaly detection in distributed computer
networks. Science of Computer Programming, 60(1):1–26, 2006.

[Bur13a] M. Burgess. In Search of Certainty: the science of our information
infrastructure. Xtaxis Press, 2013.

[Bur13b] Mark Burgess. In Search of Certainty - The Science of Our Information
Infrastructure. χtAxis Press, November 2013.

[Bur14] M. Burgess. Spacetimes with semantics (i).
http://arxiv.org/abs/1411.5563, 2014.

[Bur15] M. Burgess. Spacetimes with semantics (ii).
http://arxiv.org/abs/1505.01716, 2015.

422 BIBLIOGRAPHY

[Bur16a] M. Burgess. On the scaling of functional spaces, from smart cities to
cloud computing. arXiv:1602.06091 [cs.CY], 2016.

[Bur16b] M. Burgess. Spacetimes with semantics (iii).
http://arxiv.org/abs/1608.02193, 2016.

[Buz73] J.P. Buzen. Computational algorithms for closed queueing networks
with exponential servers. Communications of the ACM, 16:527, 1973.

[Buz76] J.P. Buzen. Fundamental laws of computer system performance. Pro-
ceedings of SIGMETRICS’76, page 200, 1976.

[CD01] A. Couch and N. Daniels. The maelstrom: Network service debugging
via ”ineffective procedures”. Proceedings of the Fifteenth Systems
Administration Conference (LISA XV) (USENIX Association: Berkeley,
CA), page 63, 2001.

[CEM04] G. Canright and K. Engø-Monsen. A natural definition of clusters and
roles in undirected graphs. Science of Computer Programming, 53:195,
2004.

[CG99] A. Couch and M. Gilfix. It’s elementary, dear watson: Applying logic
programming to convergent system management processes. Proceed-
ings of the Thirteenth Systems Administration Conference (LISA XIII)
(USENIX Association: Berkeley, CA), page 123, 1999.

[CHC+11] J. Choi, J. Han, E. Cho, T. Kwon, and Y. Choi. A survey on content-
oriented networking for efficient content delivery. IEEE Communica-
tions Magazine, 49(3):121–127, March 2011.

[CHIK03] A. Couch, J. Hart, E.G. Idhaw, and D. Kallas. Seeking closure in an open
world: A behavioural agent approach to configuration management.
Proceedings of the Seventeenth Systems Administration Conference
(LISA XVII) (USENIX Association: Berkeley, CA), page 129, 2003.

[Chu97] F.R.K. Chung. Spectral graph theory. Regional Conference Series in
Mathematics, American Mathematical Society, 92:1–212, 1997.

[CK96] S.C. Cheung and J. Kramer. Checking subsystem safety properties in
compositional reachability analysis. 18th International Conference on
Software Engineering (ICSE’18), Berlin, Germany., 1996.

[CLRS01] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to
Algorithms. MIT Press, Cambridge, MA,, 2001.

BIBLIOGRAPHY 423

[Coo90] R.B. Cooper. Stochastic Models, volume 2 of Handbooks in Operations
Research and Management Science, chapter Queueing Theory. Elsevier,
1990.

[Cou00] A. Couch. An expectant chat about script maturity. Proceedings of the
Fourteenth Systems Administration Conference (LISA XIV) (USENIX
Association: Berkeley, CA), page 15, 2000.

[CS03] A. Couch and Y. Sun. On the algebraic structure of convergence. Sub-
mitted to DSOM 2003, 2003.

[CT91] T.M. Cover and J.A. Thomas. Elements of Information Theory. (J.Wiley
& Sons., New York), 1991.

[DA94] R. David and H. Alla. Petri nets for modelling of dynamic systems — a
survey. Automatica, 30:175–202, 1994.

[Dat99] C.J. Date. Introduction to Database Systems (7th edition). Addison
Wesley, Reading, MA, 1999.

[DDLS00] N. Damianou, N. Dulay, E.C. Lupu, and M. Sloman. Ponder: a language
for specifying security and management policies for distributed systems.
Imperial College Research Report DoC 2000/1, 2000.

[DEKM98] R. Durbin, S. Eddy, A. Krigh, and G. Mitcheson. Biological Sequence
Analysis. Cambridge, Cambridge, 1998.

[DHP02] Y. Diao, J.L. Hellerstein, and S. Parekh. Optimizing quality of service
using fuzzy control. IFIP/IEEE 13th International Workshop on Dis-
tributed Systems: Operations and Management (DSOM 2002), page 42,
2002.

[DHS01] R.O. Duda, P.E. Hart, and D.G. Stork. Pattern classification. Wiley
Interscience, New York, 2001.

[Dre61] M. Dresher. The mathematics of games of strategy. Dover, New York,
1961.

[Dun96] R. Dunbar. Grooming, Gossip and the Evolution of Language. Faber
and Faber, London, 1996.

[ea] C. Cowan et al. Stackguard project.
http://www.cse.ogi.edu/DISC/projects/immunix/StackGuard/.

424 BIBLIOGRAPHY

[End95] M.R. Endsley. Towards a theory of situation awareness in dynamic
systems. Human Factors, page 32, 1995.

[EPB+98] R. Engel, V. Peris, E. Basturk, V. Peris, and D. Saha. Using ip anycast
for load distribution and server location. In 3rd IEEE Globecom Global
Internet Mini-Conference, November 1998.

[Gam] Gambit. Game theory analyser. http://econweb.tamu.edu/gambit.

[GC00] M. Gilfix and A. Couch. Peep (the network aualizer): Monitoring your
network with sound. Proceedings of the Fourteenth Systems Administra-
tion Conference (LISA XIV) (USENIX Association: Berkeley, CA), page
109, 2000.

[GH98] Donald Gross and Carl M. Harris. Fundamentals of queueing theory.
John Wiley & Sons, Inc., New York, NY, USA, 3 edition, 1998.

[GHH91] N. Glance, T. Hogg, and B.A. Huberman. Computational ecosystems
in a changing environment. International Journal of Modern Physics,
C2:735, 1991.

[GK96] K.M. Goudarzi and J. Kramer. Maintaining node consistency in the
face of dynamic change. Proc. of 3rd International Conference on
Configurable Distributed Systems (CDS ’96), Annapolis, Maryland,
USA, IEEE Computer Society Press:62, 1996.

[GK00] P. Gupta and P.R. Kumar. The capacity of wireless networks. IEEE
Trans. Info. Theory, 46(2):388–404, 2000.

[GPT15] N.J. Gunther, P. Puglia, and K. Tomasette. Hadoop superlinear scalabil-
ity: The perpetual motion of parallel performance. ACM Queue, 13(5),
2015.

[GS01] G.R. Grimmett and D.R. Stirzaker. Probability and random processes
(3rd edition). Oxford scientific publications, Oxford, 2001.

[Gun93] N. J. Gunther. A simple capacity model of massively parallel transaction
systems. In CMG National Conference, 1993.

[Gun08] N.J. Gunther. A general theory of computational scalability based on
rational functions. Technical report, arXiv:0808.1431, 2008.

[GW02] T.G. Griffin and G. Wilfong. On the correctness of ibgp configuration.
ACM SIGCOMM’02), 2002.

BIBLIOGRAPHY 425

[Her94] U. Herzog. Network planning and performance engineering. in Network
and Dsitributed Systems Management (Edited by M. Sloman), page 349,
1994.

[HL93] P. Hoogenboom and J. Lepreau. Computer system performance prob-
lem detection using time series models. Proceedings of the USENIX
Technical Conference, (USENIX Association: Berkeley, CA), page 15,
1993.

[Hof81] D. Hofstadter. Gödel, Escher, Bach: an eternal golden braid. Penguin
books., Middlesex, England, 1979/1981.

[Hor96] J. Horgan. The End of Science. Addison Wesley, New York, 1996.

[HP01] M. Holgate and W. Partain. The arushra project: A framework for
collaborative unix system administration. Proceedings of the Fifteenth
Systems Administration Conference (LISA XV) (USENIX Association:
Berkeley, CA), page 187, 2001.

[HR94] A. Høyland and M. Rausand. System Reliability Theory: Models and
Statistical Methods. J. Wiley & Sons, New York, 1994.

[Hug95] B.D. Hughes. Random Walks and Random Environments (Volume 1:
Random Walks). Oxford Science Publications, Oxford, 1995.

[HZS99] J.L. Hellerstein, F. Zhang, and P. Shahabuddin. An approach to predic-
tive detection for service management. Proceedings of IFIP/IEEE IM
VI, page 309, 1999.

[IEE] IEEE. A standard classification for software anomalies. IEEE Computer
Society Press, 1992.

[Jac75] M.A. Jackson. Principles of Program Design. Academic Press, New
York, 1975.

[Jai91] R. Jain. The art of computer systems performance analysis. Wiley
Interscience, New York, 1991.

[Jer64] N.K. Jerne. The generative grammar of the immune system. Nobel
lecture, 1964.

[Kah11] D. Kahneman. Thinking, Fast and Slow. Penguin, London, 2011.

[Kle76] Leonard Kleinrock. Queueing Systems: Computer Applications, vol-
ume 2. John Wiley & Sons, Inc., 1976.

426 BIBLIOGRAPHY

[Kle99] J.M. Kleinberg. Authoritative sources in a hyperlinked environment.
Journal of the ACM, 46:604, 1999.

[KN84] Hironori Kasahara and Seinosuke Narita. Practical multiprocessor
scheduling algorithms for efficient parallel processing. IEEE Transac-
tions on Computers, C-33, no 11:1023–1029, 1984.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 21(7):558–565, July 1978.

[Lam01] Leslie Lamport. Paxos Made Simple. SIGACT News, 32(4):51–58,
December 2001.

[Lib90] D. Libes. Using expect to automate system administration tasks. Pro-
ceedings of the Fourth Large Installation System Administrator’s Con-
ference (LISA IV) (USENIX Association: Berkeley, CA, 1990), page 107,
1990.

[LNP90] Kai Li, Jeffrey Naughton, and James Plank. Real-time concurrent
checkpoint for parallel programs. In Proceedings of the second ACM
SIGPLAN Symposium on principles and practice of parallel program-
ming, pages 79–88. Association for Computing Machinery, 1990.

[LNP91] Kai Li, Jeffrey Naughton, and James Plank. Checkpointing multicom-
puter applications. In Proceedings of the tenth symposium on reliable
distributed systems, pages 2–11. IEEE Computer Society Press, 1991.

[Log] Logic. Mathematical logic around the world. http:///www.uni-
bonn.de/logic/world.html.

[LP97] H. Lewis and C. Papadimitriou. Elements of the Theory of Computation,
Second edition. Prentice Hall, New York, 1997.

[LSZ06] X. Li, L. Sha, and X. Zhu. Adaptive control of multi-tiered web applica-
tions using queueing predictor. In Proceedings of the 10th IEEE/IFIP
Network Operations and Management Symposium (NOMS 2006), pages
106–114. IEEE Press, 2006.

[LTWW94] W.E. Leland, M. Taqqu, W. Willinger, and D. Wilson. On the self-similar
nature of ethernet traffic. IEEE/ACM Transactions on Networking, pages
1–15, 1994.

[McR80] D. McRuer. Human dynamics in man-machine systems. Automata,
16:237, 1980.

BIBLIOGRAPHY 427

[Mic] Sun Microsystems. Java programming language.
http://java.sun.com/aboutJava/.

[Mir89] P. Mirowski. More Heat than Light. Cambridge, 1989.

[MK05] Mark Burgess and Kyrre Begnum. Voluntary cooperation in pervasive
computing services. In LISA’05, 2005.

[MMS85] J.F. Meyer, A. Movaghar, and W.H. Sanders. Stochastic activity net-
works: structure, behavior and application. Proceedings of the Interna-
tional Conference on Timed Petri Nets, page 106, 1985.

[MR98] M. Molloy and B. Reed. The size of the giant component of a random
graph with a given degree sequence. Combinatorics, Probability and
Computing, 7:295, 1998.

[Mye91] R.B. Myerson. Game theory: Analysis of Conflict. (Harvard University
Press, Cambridge, MA), 1991.

[Nas96] J.F. Nash. Essays on Game Theory. Edward Elgar, Cheltenham, 1996.

[Nat98] B. Natvig. Pålitelighetsanalyse med teknologiske anvendelser. Univer-
sity of Oslo Compendium, Oslo, Norway, 1998.

[NM44] J.V. Neumann and O. Morgenstern. Theory of games and economic
behaviour. Princeton University Press, Princeton, 1944.

[NRC81] U.S. Nuclear Regulatory Commission NRC. Fault Tree Handbook.
NUREG-0492, Springfield, 1981.

[NSW01] M. E. J. Newman, S.H. Strogatz, and D.J. Watts. Random graphs with
arbitrary degree distributions and their applications. Physical Review E,
64:026118, 2001.

[OBC99] S. Omari, R. Boutaba, and O. Cherakaoui. Policies in snmpv3-based
management. Proceedings of the VI IFIP/IEEE IM conference on
network management, page 797, 1999.

[OK98] B.J. Oommen and R.L. Kashyap. A formal theory for optimal and
information theoretic syntactic pattern recognition. Patter Recognition,
31:1159, 1998.

[OO14] Diego Ongaro and John Ousterhout. In search of an understandable
consensus algorithm. In Proceedings of the 2014 USENIX Conference
on USENIX Annual Technical Conference, USENIX ATC’14, pages
305–320, Berkeley, CA, USA, 2014. USENIX Association.

428 BIBLIOGRAPHY

[PBMW98] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank cita-
tion ranking: Bringing order to the web. Technical report, Stanford
University, Stanford, CA, 1998.

[Pea88] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgen Kaufmann, San Francisco, 1988.

[Pea00] J. Pearl. Causality. Cambridge University Press, Cambridge, 2000.

[PF95] V. Paxson and S. Floyd. Wide area traffic: the failure of poisson mod-
elling. IEEE/ACM Transactions on networking, 3(3):226, 1995.

[PFH96] P.D’haeseleer, S. Forrest, and P. Helman. An immunological approach to
change detection: algorithms, analysis, and implications. In Proceedings
of the 1996 IEEE Symposium on Computer Security and Privacy, 1996.

[PKD97] James S. Plank, Youngbae Kim, and Jack J. Dongarra. Fault-tolerant
matrix operations for networks of workstations using diskless check-
pointing. Journal of Parallel and Distributed Computing, 43(2):12–138,
1997.

[PT01] J. S. Plank and M. G. Thomason. Processor allocation and checkpoint
interval selection in cluster computing systems. volume 61, pages
1570–1590. Academic Press, November 2001.

[PW97] A.S. Perelson and G. Weisbuch. Immunology for physicists. Reviews of
Modern Physics, 69:1219, 1997.

[QN03] X. Qie and S. Narain. Using service grammar to diagnose bgp configu-
ration errors. Proceedings of the Seventeenth Systems Administration
Conference (LISA XVII) (USENIX Association: Berkeley, CA), page 243,
2003.

[Rap70] A. Rapoport. N-Person Game Theory: Concepts and Applications.
Dover, New York, 1970.

[Ras83] J. Rasmussen. Skills, rules, and knowledge; signals, signs and symbols,
and other distinctions in humans performance models. IEEE Transac-
tions on Systems, Man and Cybernetics, 13:257, 1983.

[Ras01] E. Rasmusen. Games and Information (Third edition). Blackwell
publishing, Oxford, 2001.

BIBLIOGRAPHY 429

[Rou89] W.B. Rouse. On capturing human skills and knowledge: Algorithmic
approaches to model identification. IEEE Transactions on Systems, Man
and Cybernetics, 19:558, 1989.

[RS87] Lawrence A. Rowe and Michael R. Stonebraker. The postgres data
model. In Proceedings of the 13th International Conference on Very
Large Databases (VLDB), 1987.

[San01] F.E. Sandnes. Scheduling partially ordered events in a randomized
framework - empirical results and implications for automatic configura-
tion management. Proceedings of the Fifteenth Systems Administration
Conference (LISA XV) (USENIX Association: Berkeley, CA), page 47,
2001.

[Sat99] K.I. Sato. Levy Processes and Infinitely Divisible Distributions. Cam-
bridge studies in advanced mathematics, Cambridge, 1999.

[Sch67] A. Scherr. An analysis of timeshared computer systems. MIT Press,
Cambridge, MA, 1967.

[Sea] J. Sauvé and et al. Sla design from a business perspective. In IFIP/IEEE
16th international workshop on distributed systems operations and
management (DSOM), in LNCS 3775.

[SF00] A. Somayaji and S. Forrest. Automated response using system-call
delays. Proceedings of the 9th USENIX Security Symposium (USENIX
Association; Berkeley, CA), page 185, 2000.

[She96] T.B. Sheridan. Allocating functions among humans and machines.
In D. Beevis, P. Essens and H. Schuffel (Eds.), Improving Function
Allocation for Integrated Systems Design, Wright-Patterson Airforce
Base, CSERIAC State-of-the-Art Report:179–198, 1996.

[SKAEMW13] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes.
Omega: Flexible, scalable schedulers for large compute clusters. In Pro-
ceedings of the 8th ACM European Conference on Computer Systems,
EuroSys ’13, pages 351–364, New York, NY, USA, 2013. ACM.

[SNO71] M. Sakata, S. Noguchi, and J. Oizumi. An analysis of the m/g/1 queue
under round-robin scheduling. Operations Research, 19(2):371–385,
March - April 1971.

[Som00] I. Sommerville. Software Engineering (6th edition). Addison Wesley,
New York, 2000.

430 BIBLIOGRAPHY

[SS97] M.I. Seltzer and C. Small. Self-monitoring and self-adapting operating
systems. Proceedings of the Sixth workshop on Hot Topics in Operating
Systems,Cape Cod, Massachusetts, USA. IEEE Computer Society Press,
1997.

[SS02] M. Steinder and A. Sethi. Distributed fault localization in hierarchically
routed networks. IFIP/IEEE 13th International Workshop on Distributed
Systems: Operations and Management (DSOM 2002), page 195, 2002.

[SS03] M. Steinder and A. Sethi. A survey of fault localization techniques in
computer networks. Science of Computer Programming, 53:165, 2003.

[Sti90] S.M. Stigler. The History of Statistics: The Measurement of Uncertainty
before 1900. Harvard University Press, Cambridge, 1990.

[SW49] C.E. Shannon and W. Weaver. The mathematical theory of communica-
tion. University of Illinois Press, Urbana, 1949.

[TM95] D. Tapscott and R. McQueen. Digital Economy: Competing in the New
Networked Economy. McGraw-Hill Education, Boston, 1995.

[TM96] A. Tridgell and P. Mackerras. The rsync algorithm. Technical report of
the Australiean National University), 1996.

[Tra02] S. Traugott. Why order matters: Turing equivalence in automated
systems administration. Proceedings of the Sixteenth Systems Admin-
istration Conference (LISA XVI) (USENIX Association: Berkeley, CA),
page 99, 2002.

[VP03] A. Vakali and G. Pallis. Content delivery networks: status and trends.
IEEE Internet Computing, 7(6):68–74, 2003.

[Wal90] J. Walrand. Stochastic Models, volume 2 of Handbooks in Operations
Research and Management Science, chapter Queueing Networks. Else-
vier, 1990.

[Wat91] D. Watt. Programming language syntax and semantics. Prentice Hall,
New York, 1991.

[WP98] W. Willinger and V. Paxson. Where mathematics meets the internet.
Notices of the Am. Math. Soc., 45(8):961, 1998.

[WPT96] W. Willinger, V. Paxson, and M.S. Taqqu. Self-similarity and heavy
tails: structural modelling of network traffic. in A practical guide to
heavy tails: statistical techniques and applications, pages 27–53, 1996.

BIBLIOGRAPHY 431

[WR29] E.T. Whittaker and G. Robinson. Calculus of observations. Blackie and
Son Ltd., London, 1929.

[WV01] Gerhard Weikum and Gottfried Vossen. Transactional information
systems: theory, algorithms, and the practice of concurrency control
and recovery. Number ISBN 1558605088. Morgan Kaufmann, 2001.

[XR] XML-RPC. Internet remote procedure call.
http://www.xmlrpc.com/spec.

[XZSW06] W. Xu, X. Zhu, S. Singhal, and Z. Wang. Predictive control for dynamic
resource allocation in enterprise data centers. In Proceedings of the 10th
IEEE/IFIP Network Operations and Management Symposium (NOMS
2006), pages 115–126. IEEE Press, 2006.

[Zad73] L.A. Zadeh. Outline of a new approach to the analysis of complex
systems and decision process. IEEE Transactions on Systems, Man and
Cybernetics, 3:28–44, 1973.

[Zwi89] E.D. Zwicky. Disk space management without quotas. Proceedings of
the Workshop on Large Installation Systems Administration III (USENIX
Association: Berkeley, CA, 1989), page 41, 1989.

432 BIBLIOGRAPHY

INDEX

M/M/1 queue, 211
M/M/5 queue, 220
/etc/passwd, 258
2 person game, 357

A backup method, 11
A postiori belief, 303
A priori belief, 303
A. Turing, 131
Absolute time, 191
Action principle, 351
Active process, 51
Ad hoc adjacency matrix

Defined, 330
Ad hoc network, 329, 330
Ad hoc networks

Percolation, 197
Ad hoc system

Defined, 231
Ad hoc systems, 231
Addresses, 71, 110
Adjacency matrix, 88, 97, 176, 177, 200,

330
Ad hoc, 330
Defined, 89

Administration, 2
System, 2

Agent
Defined, 90

Agents, 232

Scaling, 250
Aim of science, 14
Algorithm, 59

Defined, 59
Algorithmic flow

Defined, 229
Algorithmic information

Defined, 52
Alphabet, 137, 264

DNA, 271
English, 136

Anomaly detection, 311
Approximation

Continuum, 76
Gaussian continuum, 275
Stirling, 149

Architecture, 228
Arrivals

Network, 112
Assets, 187
Associations, 111
Asynchronous Transfer Mode, 129
ATM, 129
Attractors, 391
Authority, 100, 230
Automata, 77
Average

State, 181
Average constancy, 162
Average policy

433

434 INDEX

Defined, 286
Average time before failure, 326

Backup of systems, 291
Backup schedule, 295
Bandwidth, 276
Bayes formula, 303, 400
Bayesian distributions, 304
Bayesian statistics, 300
Behaviour

Collective, 2
Belief and science, 305
BGP configuration, 248
Bi-partite graph percolation, 414
Binary information, 139
Birnbaum importance

Defined, 323
Birnbaum measure, 323
Birth-death process, 209
Boolean algebra, 401
Boolean logic, 347, 399
Bottom up, 235, 236
Bridges, 200
Brouwer fixed point, 181
Bureaucracy, 2
Burst, 42
Bursty traffice, 213
Bus routes, 58

C. Shannon, 131
Car

As components, 235
Cascade failure

Defined, 252
Cascase failure, 252
Causality, 18, 62, 250, 341, 352

Identification, 30
Causation, 2
Cause trees, 341

Central limit theorem, 33
Central Server Model, 211
Centrality, 95, 167, 198, 323, 340

Defined, 97
CFEngine, 266

Maintenance, 206
Operator, 266
Server management, 113
Strategies, 353
Strategy, 390

Chains, 72, 163
Checksums, 247
Chomsky hierarchy, 81
Circuit diagrams, 86
Circular dependence, 162
Clark-Wilson security model, 239
Classification, 31
Classification as knowledge, 301
Client-Server description, 57
Closed system, 64, 65, 283
Cloud computing, 191, 208
Clouds of information, 390
Cluster, 42, 196
Clustering and percolation, 155
Clusters in graphs, 196
Coarse graining, 134, 403
Code book, 137
Coherent system

Defined, 319
Coherent systems, 319
Collaboration, 2
Collaborative network, 340
Collective

Behaviour, 2
Command structure, 230
Commutation of operations, 267
Commuting operations

Defined, 267

INDEX 435

Comparison
Digital, 114

Competition or Cooperation, 364
Competition or cooperation for service?,

364
Complexity, 232
Compression of data, 150
Computer

Degrees of freedom, 56
Computer constraints, 56
Computer variables, 54
Configuration, 74, 189, 279

Defined, 74
Generation, 267
Secure, 75

Configuration error, 291
Configuration files, 52
Configuration management, 11, 331
Configuration space, 189
Configuration state, 74
Congruence, 140, 392
Congruent state, 392
Connectivity, 95, 329

Defined, 95
Consensus, 83
Conservation law, 76, 191
Conserved quantities, 76
Constancy, 161
Constraint, 56

Defined, 56
Constraints, 235
Consumed resource

Defined, 191
Contention, 213
Continuous time, 406
Continuum approximation, 76
Continuum approximation, 123, 125
Contractor, 240

Control
Principle, 239
Requirements for, 133

Controlled environment, 22
Convergence, 262, 268, 285

Coherence, 319
Geometric series, 311
Monotonicity, 319

Convergence of learning, 312
Convergent operator

Defined, 268
Convergent policy

Defined, 286
Cooperation or competition, 364
Copy on Write, 293
Copy on write, 293
Cost of ownership, 373
Countermeasure, 163, 281
Covert channels, 195
Critical dependency, 350
Crypto hashes, 247
Currency, 189, 356
Cut set, 321
Cut sets, 321
Cutset, fault tree, 350

Damped oscillation, 163
Data compression, 150
Data plots, 28
Data structure, 51

Defined, 50
Database

LDAP, 258
NoSQL, 259
Password, 184, 258
SAM, 258
Server, 242

Database models, 252
Datacentre racks, 258

436 INDEX

De-multiplexing, 326
Decision theory, 351
Decisions, 245, 306, 353

As games, 353
Classifiers, 353

Definition
Ad hoc adjacency matrix, 330
Ad hoc system, 231
Adjacency matrix, 89
Agent, 90
Algorithm, 59
Algorithmic flow, 229
Algorithmic information, 52
Average policy, 286
Birnbaum importance, 323
Cascade failure, 252
Centrality, 97
Coherent system, 319
Commuting operations, 267
Configuration, 74
Connectivity, 95
Constraint, 56
Consumed resource, 191
Convergent operator, 268
Convergent policy, 286
Data structure, 50
Degree of freedom, 56, 189
Degree of node, 88
Dependence, 232
Dual structure, 318
Eigenvector centrality, 97
External stability, 165
Fluctuation, 122
Fluctuation spectrum, 157
Freedom, 189
Gaussian signal power, 36
Graph, 87
Group symmetry, 283

Heuristic policy, 5
Idempotent operator, 268
Importance function, 323
Internal stability, 165
Kernel, 166
Knowledge, 301
Load Average, 213
Macrostate, 74
Maintenance, 280
Martingale, 271
Matrix, 89
Maxent, 155
Maximum entropy distribution, 155
Maximum local, 164
Monotonic system, 319
Open system, 282
Operand, 80
Operator, 80
Orthogonal operators, 268
Percolation transition, 194
Persistent state, 287
Point of failure, 244
Policy, 5, 286
Power, 36
Probability (frequency), 37
Process, 32
Promise, 90
Protocol, 59
Random process, 32
Redundancy, 233
Relay, 98
Relevant components, 319
Reliable system, 67
Resource, 191
Resource allocation, 192
Resource flow, 230
Resource information, 52
Resource variable, 188

INDEX 437

Reusable resource, 191
Secure, 7
Secure system, 7
Security, 6
Semi-group, 270
Sink, 98
Source, 98
Stability, 161, 165
State, 72
State (persistent), 287
Steady state, 153
Strong dependence, 232
Structure function, 317
Symmetry group, 283
System, 55, 231
Task, 280
Transformation, 284
Unreliable system, 67
Utilization, 213
Weak dependence, 232
Worst case scenario, 355

Degeneracy, 151
Degree of a node, 88
Degree of freedom, 56

Defined, 56, 189
Degree of node

Defined, 88
Delta distribution, 38
Dependence, 250

Critical, 233
Defined, 232
Fuel, 232
Strong, 232
Weak, 232

Dependencies, 58, 71
In games, 385

Dependency, 71, 232, 341
Component faults, 325

Critical, 350
Normalization, 250
Parametric, 114
Principle of minimum, 244
Serial, 318

Dependency diagrams, 104
Dependency problems, 344
Derivative, 124
Design

Functional, 236
System, 4

Determinism, 74
Deterministic, 119
Deterministic system, 64
DFS, 293
Diagnostic trees, 341
Diagram

Dependency, 104
Entity-relation, 106
Flow, 102
Functional structure, 103
Mind map, 102
Transition, 103

Diagrams, 85
Circuit, 86

Digitization, 134
Dijkstra shortest path, 195
Disaster response, 60
Discrete time, 125, 404
Distance function, 115
Distributed

System, 3
Distributed Computing Environment, 293
Distribution, measurements, 36
Diversity, 255
DNA, 151, 271
Domination of strategy, 363
Downtime, 326

438 INDEX

Duality of description, 329
Duplication of effort, 257
Dynamical system, 51
Dynamics

Of system, 1

Eigencentre, 97, 199
Eigenstates, 176
Eigenvalues, 176
Eigenvector centrality, 95

Defined, 97
Energy, 61
Enterprise, 236
Entities, 253
Entity-relation diagram, 106
Entropy, 74, 139, 281

Common, 145
Conditional, 143
Distribution of maximum, 176
Geometrical interpretation, 146
Joint, 143
Principle of maximum, 153, 224
Properties, 141
Relative, 145
State, 152

Entropy avoidance, 136
Environment

Constant, 29
Equilibrium, 83, 167

Dynamical, 169
Nash, 363
Parking example, 169

Error correction, 234, 273
Error law, 39
Errors

Experimental, 15
Human, 315
Of observation, 33
Random, 33, 331

Systematic, 34
Ethernet protocol, 91
Ethernet traffic, 127
Event driven systems, 242
Event handling, 206
Event tree analysis, 341
Events, 117
Example

M/M/1 queue, 211
2 person game, 357
A backup method, 11
Absolute time, 191
Active process, 51
Ad hoc network, 329
Adjacency matrix, 97, 176
Allocation of space in 2D, 197
Alphabet, 75
Alphabet DNA, 271
Anomaly detection, 311
Average state, 181
Backup schedule, 295
Bayesian distributions, 304
BGP configuration, 248
Binary information, 139
Book as data structure, 251
Bottom up system, 236
Bus queue, 192
Bus routes, 58
Car as components, 235
CD sampling rate, 135
Central Server, 211
CFEngine maintenance, 206
CFEngine operator, 266
CFEngine server management, 113
CFEngine strategies, 353
Circuit diagrams, 86
Circular dependence, 162
Client-Server description, 57

INDEX 439

Closed system, 283
Cloud computing, 208
Cloud computing symmetries, 58
Clustering and percolation, 155
Code book, 137
Collaborative network, 340
Command structure, 230
Common sets, 69
Comparing configurations, 114
Competition or cooperation for ser-

vice?, 364
Computer constraints, 56
Computer degrees of freedom, 56
Computer diversity, 255
Computer variables, 54
Configuration files, 52
Configuration management, 11
Configuration management CFEngine,

390
Configuration state, 74
Contextual grammar, 78
Contractor, 240
Copy on Write, 293
Crypto hashes, 247
Cut set, 321
Database server, 242
Datacentre racks, 258
Dependency, 71
Determinism, 74
Digital compariso, 114
DNA alphabet, 271
Duplication of effort, 257
Energy requirements, 61
English alphabet, 136
Entropy, 139
Entropy avoidance, 136
Error correction, 234
Ethernet protocol, 91

Event driven system, 118
Fail over server, 320
Fault model, 317
File copy experiment, 31
File permission, 265
Fixed data formats, 51
Fluctuation, 280
Forgetting, 361
Fuel dependence, 232
Functional discrimination, 257
Functional mappings, 71
Functional structure, 230
Garbage collection, 169, 361
Grading papers, 128
Grammar, 78
Graph variables, 112
Help desk, 204, 242
Hierarchy, 244
HTTP states, 78
Hubs, 233
Hypothesis testing, 307
Immune system, 316
Innovation timescale, 242
Input distribution, 225
Intellectual capital, 189
Internet Protocol, 67
Internet protocol, 93
ISP bandwidth, 276
Job queue, 288
Kernel montoring, 158
Lack of policy, 240
Load balancing, 222
Load sharing, 177
Machine Repair-man, 211
Maintenance schedule, 205
MANET, 231
Measuring changes the system, 34
Measuring Computer load, 35

440 INDEX

Memory pattern, 112
Metropolitan scaling, 232
Minima and attractors, 391
Minimax theorem, 362
Mobile ad hoc network, 231
Money, 110
Monitor resources, 194
Monitor topology resources, 194
Monitoring, 151
Montoring, 158
Morse Code, 110
Morse code, 132
Network arrivals, 112
Network intrusion detection, 306
Network protocol, 59
Network services become unavailable,

341
NoSQL databases, 259
Number of servers, 56
Orchestra, 246
Organizational records, 52
OSI model, 247
Parallel components, 323
Parametric dependence, 114
Parking, 191
Parking equilibrium, 169
Passive data, 52
Password database, 184, 258
Pattern detection, 11
Pattern scale, 301
Pendulum, 54
Performance analysis, 15
Performance variables, 113
Planck spectrum, 157
Policy stability, 183
Privilege, 63
Process reclamation, 192
Process resources, 192

Qualitative and quantitative, 27
Quantification, 18
RAID, 320
Random arrival process, 120
Rate uncertainty, 128
Recipe book, 53
Regular expressions, 82
Relabelling symmetry, 284
Relational database, 252
Relationship, 17
Resource management, 11
Response time, 218
River scaling, 233
Rollback, 118
Sampling rate, 135
Scaling servers, 220
Scheduling game, 367
Security configuration, 75
Security monitoring, 246
Security payoff, 190
Security response, 60
Serial components, 322
Sets and days, 68
Sets and policy, 69
Shannon Entropy, 150
Shannon error correction, 234
Shared infrastructure, 191
Shared workstation, 217
Sharing and contention, 213
Signal as set of states, 75
Signalling, 120
SLAs, 128
Snapshotting, 295
SNMP, 137, 211
Software set, 71
Software Testing, 235
Software variables, 112
Source code, 53

INDEX 441

Specialized operator, 265
State space, 75
Static data structure, 50
Storage consumption, 191
Storage representation, 75
Structural importance, 324
Support desk, 230
Symbols, states, and operations, 70
Symmetry of relabelling, 58
Symmetry of usage, 58
Symmetry of workers, 58
Task, 280
Temporary files, 163
Time is money, 189
Time series, 173
Timescale Uncertainty, 127
Timescales, 208
Tit for tat, 163
Top down system, 236
Transport resources, 55
Uncertainty and SLAs, 128
Uncertainty and time, 127
Uncertainty in rates, 43
Unix attention signal, 132
Unstructured communication, 233
Unused resources, 215
Upgrading strategy, 359
Utility infrastructure, 233
VPN fault, 308
Weakest link, 324
Web server, 56
Web traffic, 122
Web utilization, 215
Zero sum game, 362

Expectation value, 32
Experiment

Design, 31
Experimental uncertainty, 15

Expert operators, 265
Experts, 300
Exponent

Hurst, 173
Extensive form of game, 360
Extensive instruction, 264
External stability, 165

Defined, 165

Fail over server, 320
Fail-over, 326
Failure, 244, 252, 345

Cascade, 252
Falsification, 4, 21
Fault

Cascade, 252
Model, 317
Probability, 328

Fault tree analysis, 345
Fault trees, 345
Faults

Birnbaum measure, 323
Cut sets, 321
Dependency, 325
Deterministic model, 317
Emergent, 315
Random, 314
Stochastic model, 321
Systemic, 315

FCFS, 211
Fidelity, 142
FIFO, 211
File

Permission, 265
File copy experiment, 31
Finite state machine, 77
First Come First Served, 211
Fixed point, 163, 179, 285
Fixed points, 119

442 INDEX

Flow
Algorithmic, 230
Resource, 230

Flow diagrams, 102
Floyd shortest path, 195
Fluctuation, 121

Arrival process, 291
Defined, 122
Distribution, 291
Gaussian, 275
Huge, 283
Maximum entropy, 224
Oscillation, 162
Reason for, 282
Scaling, 407
Spectrum, 157
Spectrum defined, 157

Forgetting, 361
Fourier analysis, 44, 45
Freedom, 56

Defined, 189
Frequency histogram, 28
Fuel dependence, 232
Functional design, 236
Functional design and events, 242
Functional discrimination, 257
Functional mappings, 71
Functional structure, 230
Functional structure diagram, 103

Game
Extensive form, 360
Scheduling, 367
Strategic form, 358

Games
As decisions, 353
Zero sum, 362

Garbage collection, 169, 214, 291, 361,
375

Gaussian continuum approximation, 275
Gaussian distribution, 33, 39, 119
Gaussian signal power

Defined, 36
Generating functions, 410
Giant cluster, 196
Giant clusters, 410
Gnutella, 97
Goal

Productivity, 57
Goals, 229
Google, 98
Grammar, 78
Grammar of machine behaviour, 81
Graph, 112

Cluster, 196
Defined, 87
Definition, 87
Directed, 87
Giant component, 196
Kernel, 166
scheduling, 207
Stability, 165
Undirected, 87

Graphs, 163
Bridges, 200

Grid computing, 227
Group symmetry

Defined, 283

Hamming distance, 115, 147
Hash function, 247
Hashes, 247
Hawk-Dove game, 366
Heavy-tailed distribution, 42
Help desk, 242

Scheduling, 204
Heuristic Policy

Defined, 5

INDEX 443

Hidden Markov model, 80
Hidden variables, 32, 167
Hierarchy, 244
Histograms, 28
Homeostasis, 285
Hopelessness, 148
HTTP, 78
Hubs, 233
Human

Welfare, 3
Human error, 315
Human group sizes, 244
Human-computer interaction, 5
Hurst exponent, 171, 173, 174
Hypotheses, 23
Hypothesis testing, 307

IaaS, 58, 191
Idealized representation, 12, 53
Idempotence, 269
Idempotent operator

Defined, 268
IDS, 82
Illusion of control, 239
Immune system, 301, 316
Imperfect information, 300
Importance function

Defined, 323
Importance ranking, 96
Imposition

Fragility, 258
Imputations, 186
Infinite variance, 283
Information, 131

Algorithmic, 52
Geometrical interpretation, 146
Interpretation, 141
Mutual, 145
Partial, 195

Perfect, 195
Representation, 109, 131
Resource, 52
State, 152
Theory of, 260

Information clouds, 390
Information sets, 390
Infrastructure as a Service, 58
Infrastructure as a service, 191
Innovation, 242
Input distribution, 225
Integrity, 260
Intellectual capital, 189
Intermediate value theorem, 180
Internal stability, 165

Defined, 165
Internet

Protocol, 67
Internet protocol, 93
Internet Service Provider, 276
Interpretation of patterns, 81
Interpretation of theory, 15
Interruption, 226
Intrusion, 60

Network detection, 306
Intrusion Detection System, 82
ISP bandwidth, 276

J. Von Neumann, 131
Jitter, 39
Job queue, 288
Joint probability, 141
JSON, 259
Junk mail, 308
Junk mail filter, 307

Kakutani fixed point, 182
Kendall notation, 211
Kernel, 166

444 INDEX

Defined, 166
Kernel montoring, 158
Keys, 110
Knowledge, 299

Defined, 301
Knowledge as classification, 301
Kubernetes, 208

Lévy distribution, 169, 226
Labels, 110
Lagrange’s method, 154
Language interpretation, 81
Law of errors, 39
Laws of queueing, 214
LDAP, 258
Learning, 299
Limit cycle, 162
Little’s law, 217
Load average

Defined, 213
Load balancing, 222
Load sharing, 177
Local averaging procedure, 45, 279, 403
Local maximum, 164
Lockdown, 60
Logic, 14, 68
Logic, Boolean, 347, 399

Machine Repair-man Model, 211
Macrostate, 74

Defined, 74
Macrostates, 74
Magritte, Rene, 22
Maintenance, 131, 234

Convergent, 285
Defined, 278, 280
Fluctuation, 282
Schedule, 205
Theorem, 289

Makespan, 205
Management

CFEngine, 113
Of system, 1
Server, 113

MANET, 231
Mapping

Fuzzy, 285
Mappings, 71
Markoff process, 125
Markov chain, 74
Martingale, 271

Defined, 271
Matrix

Defined, 89
Example, 97

Maxent
Defined, 155

Maximum, 124, 164
Local, 164

Maximum entropy distribution, 155, 176,
273

Defined, 155
Maximum entropy fluctuation, 224
Maximum entropy principle, 153
Maximum local

Defined, 164
Mean downtime, 326
Mean time before failure, 326
Mean time before failure (MTBF), 327
Mean time to repair (MMTR), 327
Mean value, 35
Measuring

Changes the system, 34
Computer load, 35

Memoryless, 74, 211
Mesh topology, 335
Mesos, 208

INDEX 445

Metric, 115
Metropolitan scaling, 232
Mind maps, 102
Minima and attractors, 391
Minimal dependence, 244
Minimax theorem, 362
Minimum, 124, 164
MMTR, 327
Mobile ad hoc network, 231
Mobile nodes, 337
Model

Central Server, 211
Faul, 317
Machine Repair-man, 211
Mesh with central policy, 335
Star, 332

Money, 61, 110
Time is..., 189

Monitoring, 151
Security, 246

Monotonic system
Defined, 319

Montoring
Kernel, 158

Morse Code, 110
Morse code, 132
MTBF, 327
Mutual information, 145

Nash equilibrium, 363
Network

Ad hoc, 329
Arrivals, 112
Scale free, 168, 340

Network intrusion, 82, 306
Network management

Defined, 2
Network services become unavailable, 341
Networks

As graphs, 89
Node degree, 88

Defined, 88
Node removal, 167
Nodes

Mobile, 337
Noise, 24
Noisy channel, 139
Non-cooperative game, 373
Non-deterministic, 32
Non-linear behaviour, 232
Non-zero sum game, 373
Normal distribution, 39
Normal error law, 39
Normal form

First, 254
Second, 255
Third, 257

Normalization, 250, 319
Protocol, 258

NoSQL, 259
NP complexity, 82
Nyquist

Sampling law, 135
Nyquist theorem, 276

Observation, 15
Open source, 340
Open system, 64, 282

Conservation, 191
Defined, 282

Openstack, 208
Operand, 80

Defined, 80
Operations, 70
Operator, 80

CFEngine, 266
Defined, 80
Expert, 265

446 INDEX

Ordering, 267
Specialized, 265

Operators, 268
Optimization, 355
Orchestra, 246
Organization, 229
Organizational records, 52
Orthogonal operators

Defined, 268
Orthogonality, 268
Oscillation, 121
OSI model, 247

Parallel components, 323
Parallel utilization, 215
Parallelism, 318
Parameterization, 17, 110
Parameters, 29
Parametric dependence, 114
Pareto distribution, 42
Parking, 169
Parking lot, 191
Parsing and automata, 81
Passive data, 52
Password database, 184, 258
Pattern

Scale, 301
Pattern detection, 11
Pattern recognition, 301
Patterns

Interpretation, 81
Paxos, 83
Payoff, 356
Peer to peer, 97, 238
Pendulum, 54
Percolation, 196, 410

Transition, 195
Percolation transition

Defined, 194

Perfect information, 300
Performance

Variables, 113
Performance analysis, 15
Periodic functions, 45
Periodicity, 224
Permission, 265
Persistent state, 74, 287

Defined, 287
Petri net, 106
Philosophy of science, 19
Physics, 5
Pipe painting, 22
Planck distributions, 41
Planck spectrum, 157
Point of failure, 245

Defined, 244
Policy, 83, 183, 206, 229, 274, 278, 331

Alternatives, 185
Autonomy, 337
Average, 286
Backup, 293
Centralized, 335
Coalition, 338
Configuration and, 267
Convergent, 286, 287
Defined, 5, 286
Defined formally, 283
Definition, 6
Definition rigorous, 285
Expressing in variables, 113
Fixed point, 183
Free, 240
Heuristic definition, 5
High level, 229
Low level, 229
Promises, 5
Protocol, 60

INDEX 447

Scheduling, 210
Security, 7
Stability, 183
Time limit, 310

Policy current, 331
Politics, 2
Popper, Karl, 4, 21
Power

Defined, 36
Gaussian, 36

Power law behaviour, 42
Power law distribution, 294
Primary key, 253
Principal eigenvector, 199
Principle

Action, 351
Aim of science, 14
Causality, 18
Causality identification, 30
Control illusion, 239
Controlled environment, 22
Maximum entropy, 153
Policy Confinement, 356
Regulation with imperfect informa-

tion, 391
Separation of management and work

structures, 238
Uncertainty, 34
Verifiability, 21
Weakening dependency (autonomy),

252
Prisoner’s dilemma, 366
Privilege, 63
Probability, 212

Defined, 37
Joint, 141, 271
Tree, 345

Probability distribution, 275

Probability distributions, 36
Process, 51

Defined, 32
Renewal, 291

Productivity, 57
Promise

Defined, 90
Promise Theory

Schemaless data, 259
Promises, 4

Policy, 5
Protocol, 59

Defined, 59
Disaster response, 60
Ethernet, 91
Internet, 67, 93
Network, 59
Policy, 60

Qualitative and quantitative, 27
Qualitative description, 4
Quality of service, 128, 209
Quantification, 18
Quantitative description, 4
Queue

M/M/k, 219
M/M/1, 212
Multiple servers, 219

Queue notation, 211
Queueing, 211

M/M/1, 211
Queues, 209
Quotas, 192

Racks
Datacentre, 258

Raft, 83
RAID, 320
Random arrival process, 120

448 INDEX

Random graph percolation, 410
Random process, 32

Defined, 32
Random variables, 32
Rate

Uncertainty, 128
Rate of change, 123
Rational decisions, 351
Receiver, 132
Recipe book, 53
Reclamation

Resources, 192
Redundancy, 233, 318, 326

Defined, 233
Folk theorem, 320

Regions, 200
Regions of a system, 197
Regular expression, 82
Relabelling, 58
Relabelling symmetry, 284
Relational database, 252
Relationship, 17
Relative entropy, 145
Relay

Defined, 98
Relevant components

Defined, 319
Reliability, 4, 317, 329, 332
Reliable system

Defined, 67
Renewal process, 291
Repair, 234
Representations, 131
Requirements

Energy, 61
Resource

Defined, 191
Resource allocation

Defined, 192
Resource flow

Defined, 230
Resource information

Defined, 52
Resource management, 11
Resource variable

Defined, 188
Resources, 187

Access to, 194
Allocation, 192, 197
Consumable, 191
Currency, 189
Flow, 230
Organization of human, 243
Reclamation, 192
Representation, 188
Reusable, 191
Unused, 215
Using centrality, 198
Where to attach, 193

Response time, 218
Response time law, 218
Responsibility, 63
Reusable resource

Defined, 191
River scaling, 233
Rollback, 118

impossibility of, 118
Root cause analysis, 341
Runtime state

Broken, 51
Running, 51
Stopped, 51
Waiting, 51

Saddle point, 124, 362
SAM database, 258
Sampling law, 135

INDEX 449

Scale
Pattern, 301

Scale free network, 168
Scale invariant, 172
Scaling behaviour, 407
Scaling servers, 220
Scatter, 39
Scheduling, 204
Scheduling game, 367
Scientific approach, 15
Search algorithm, 98
Search problem

Immunology, 302
Secure

Defined, 7
Secure system

Defined, 7
Security

Defined, 6
Monitoring, 246

Security payoff, 190
Security policy, 7
Security response, 60
Self-similar, 173
Self-similarity, 172, 407
Semantics, 52

Of system, 1
Semi-group, 271

Defined, 270
Stochastic, 271

Separation
Of management and work structures,

238
Serial components, 322
Series utilization, 215
Service, 291

Client model, 240
Peer model, 240

Service Level Agreement, 128
Services

Flow, 327
Sets, 68

Examples, 69
Software, 71

Sets and days, 68
Sets and policy, 69
Shakespeare, 314
Shannon, 260
Shannon channel capacity theorem, 290
Shannon Entropy, 150
Shannon error correction, 234
Shannon’s theorem, 273
Shannon-Nyquist theorem, 276
Shared infrastructure, 191
Shared workstation, 217
Sharing, 213
Signal

Analogue, 134
Digital, 134
Set of states, 75

Signalling, 120
Simple Network Management Protocol, 137,

211
Simple system, 54
Single point of failure, 233
Sink

Defined, 98
SLA, 128
Snapshotting, 295
SNMP, 2, 137, 211
Software, 71

Testing, 235
Variables, 112

Source, 132
Defined, 98

Source code, 53

450 INDEX

Spam mail, 308
Spanning tree, 207
Specialization, 2
Specialized operator, 265
Spectrum

Fluctuation, 157
Spectrum of frequencies, 45
Stability, 6, 119, 160

Defined, 161, 165
External, 165
Graph, 165
Internal, 165
Kernel, 166
Multi-, 184
Scaling, 171
Statistical, 162, 169, 283

Stack, 78
Standard deviation, 35
Standard error of the mean, 40, 41
Star models, 332
State

Average, 181
Defined, 72
Ideal, 83
Locally averaged, 287
Persistent, 287
Policy defined, 83
Steady, 153

State machine, 77
State space, 75
States, 68, 70, 72
Static data structure, 50
Statistical equilibrium, 403
Steady state, 153

Defined, 153
Stirling’s approximation, 149
Stochastic network, 106
Stochastic variables, 32

Storage
Consumption, 191
RAID, 320
Representation, 75

Strategic form of a game, 358
Strategic instruction, 264
Strategy, 351

Domination, 363
Mixed, 357
Pure, 356
Sub-optimal, 355
Upgrade, 359

Strong dependence
Defined, 232

Structural importance, 323, 324
Structure

Functional, 230
Structure function, 317

Defined, 317, 318
Sub-optimal strategies, 355
Support desk, 230
Symbols, 70
Symmetry, 58, 284

Bus routes, 58
Cloud computing, 58
Of relabelling, 58
Of usage, 58
Of workers, 58

Symmetry breaking, 184
Symmetry group

Defined, 283
Symmetry, enemies of, 58
Syntax in machine behaviour, 81
System

Backup, 291
Defined, 2, 49, 55, 231
Design, 4
Distributed, 3

INDEX 451

Dynamical, 51
Dynamics, 1
Management, 1
Open, 282
Regions, 197
Semantics, 1
Simple, 54
Static, 51

System administration, 2
Defined, 1

System monitoring, 151
System verification, 247

Task
Defined, 280

Task management, 204
TCP, 67
Technology’s value, 23
Temporary files, 163
Theoretical studies, 7
Thrashing, 159
Time, 117, 125

Absolute, 191
Time management

Human, 226
Time scales, 126, 281
Time series, 28, 118, 173
Timescale

SLA, 128
Uncertainty, 127

Timescales, 208
Innovation, 242

Top down, 235, 236
Traffic

Bursty, 213
Traffic analysis, 42
Transformation

Defined, 284
Transient, 74

Transition diagram, 103
Transition function, 163
Transition matrix, 73, 163
Transitions, 118
Translation invariance, 76
Transport resources, 55
Trend, 162
Truth tables, 401
Turing machine, 78
Turning point, 124
Two dimensional time, 311
Two person game, 357

UDP, 67
UML, 107
Uncertainty, 34, 43, 129

Communication, 141
Conditional, 144
Continuum approximation, 127
In rates, 43
Management, 12
Statistical, 136

Uncertainty and SLAs, 128
Uncertainty principle, 34
Unified Modelling Language, 107
Unix

Symbols, 132
Unreliable system

Defined, 67
Unstructured communication, 233
Unused resources, 215
Upgrading, 359
Utility, 356
Utility infrastructure, 233
Utilization

Defined, 213
Utilization law, 214

Value, 61

452 INDEX

Value of a game, 357
Variables, 109

Graph, 112
Verifiability, 21
Verification of a system, 247
Virtualization, 58
VPN

Fault, 308

Weak dependence
Defined, 232

Weakest link, 324
Web server, 56
Web traffic, 122
Web utilization, 215
Welfare, 3
World Wide Web, 98
Worst case scenario, 355

Defined, 355

XML, 259

YAML, 259
YANG, 259

Zero sum game, 362

ABOUT THE AUTHOR

Mark Burgess is a British theoretical physicist, turned computer scientist, living in Oslo,
Norway. After authoring and consulting for the IT industry and holding a number of
research and teaching positions, he was appointed full Professor in the field of Networks
and Systems at Oslo University College in 2005, which he held until resigning in 2011
to found the CFEngine company. He is the originator of the globally used CFEngine
software as well as founder of CFEngine AS, Inc. He is the author of many books
and scientific publications, and is a frequent speaker at international events. Mark
Burgess may be found at www.markburgess.org, and on Twitter under the name
@markburgess_osl.

453

