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Abstract

In system operations the term rollback is often used to imply that arbitrary changes can be
reversed i.e. ‘rolled back’ from an erroneous state to a previously known acceptable state. We
show that this assumption is flawed and discuss error-correction schemes based on absolute
rather than relative change.

Insight may be gained by relating change management to the theory of computation. To
this end, we reformulate previously-defined ‘convergent change operators’ of Burgess into the
language of groups and rings. We show that, in this form, the problem of rollback from a
convergent operation becomes equivalent to that of ‘division by zero’ in computation. Hence,
we discuss how recent work by Bergstra and Tucker on zero-totalised fields helps to clear up
long-standing confusion about the options for ‘rollback’ in change management.

1 Introduction

The assumption that it is possible to reverse changes, or create generic ‘undo’ buttons in arbitrary
software systems, remains a persistent myth amongst software developers, system designers, and
system administrators in all areas of computing. The term ‘rollback’ is often used to describe
this form of repair, usurped from its original usage in database transaction theory[1, 2]. In cur-
rent usage, rollback refers to the act of undoing what has been done; it is intimately related to
checkpointing[3, 4, 5, 6, 7], version control and release management.

In single-threaded and parallel software applications, many authors have developed a ‘journal-
ing’ approach to reversibility and rollback (see foregoing references on checkpointing). A stack
of state-history can be kept to arbitrary accuracy (and at proportional cost), provided there is suf-
ficient memory to document changes. In more general ‘open’ (or incompletely specified) systems
the cost of maintaining history increases without bound as system complexity increases. We shall
show that arbitrary choices — which we refer to as policy decisions — are required to choose reme-
dies for incomplete specifications.

A model of change that includes the idea of maintenance of an absolute intended state was
introduced in [8, 9]. This model has been realized in the software Cfengine[10], and was further
elaborated upon using an alternative formulation in [11]. The crux of this approach is to bring
about a certainty of outcome, even in an incompletely specified (or so-called ‘open’) system, and
has proved to have several advantages over traditional relativistic approaches to change, including
that it allows autonomic repair of developing problems. However, this certainty is brought at the
expense of a loss of history that would enable the reversal of certain kinds of changes.




In this paper we discuss a formulation of policy-based change management from an unorthodox
perspective: that of computation with data-types. In particular, we note the relationships to recent
work by Bergstra and Tucker on division-safe calculation in algebraic computation[12, 13]. We
show that reversibility in system management and totalization of rational fields are, in fact, closely
related.

The discussion is potentially large, so we set modest goals. We begin by reviewing basic ideas
about reversibility, and then recall the notion of ‘convergent’ or ‘desired-state’ operations. We
explain the relationship of these abstract operators to the zeros of rings and fields and we show
how the inverse zero operation 0~! can be viewed as an attempt to ‘roll back’ state from such a
convergent operation, in one interpretation of configuration management. This makes a connection
between ‘calculation’ and system configuration, implicit in the encoding of data into types. Finally,
noting that zero plays two roles for +, - in ring computation, we compare the remedies for division-
safe calculation with options for reversal in change management.

2 Notation

We follow the notation of [8] in writing a generic operators as letters with carets over them, e.g.
Oy, O,, etc, while non careted operators are specific representations, usually matrices, e.g. A, u, C.
Generic states on which these operators act are written in Dirac notation |¢), with its distinctive
typography that distinguishes it from particular representations, and ¢ here is a label that selects a
particular state from the available set. Operators without carets are assumed to be specific realiza-
tions, usually matrices or vectors. A resulting state after applying an operator O toa system in the
state |¢) is written as O, |¢). The symbol ¢ will represent a time, and 8t is a time increment. Simi-
larly 6 X will imply a relative change in quantity X. S will denote a general set, R aring and F' a
field. GG is a group with elements g1, g; 1 .., I, where I is the identity element. When discussing
rings and fields and division-safe calculation, we shall stay close to the notation of Bergstra and
Tucker[12, 13].

3 Conceptual overview

Given that our goal is to bridge several somewhat-disparate scientific cultures, let us begin by
painting the larger picture as we see it. We ask the forebearance of readers as we attempt to
straddle unfamiliar disciplines to give this account. Our train of thought is as follows:

e We model system configurations as data types, including numbers and strings in such a way
as to allow algebraic structures that are ‘isomorphic representations’ of state spaces. This
work was originally formulated for a different audience, and in a different language, in order
to define the concept of maintenance of high level systems[8, 14].

e The algebra of the configurations can therefore be modelled by the algebra of the represen-
tations. In particular groups, rings and fields come into play, which emphasizes that changes
may be viewed as computations[9, 15].

e The familiar structure of rings and fields bring a great deal of algebraic knowledge and
methodology, including matrix algebra, and recent work on totalisation of fields[12, 13, 16].

e The less orthodox matters of division by zero in totalised fields enter when attempting to
define reversibility and error correction in this high-level model of change, by reversal by
policy. This offers some guidance for resolving a problem of incomplete information in a
framework of absolute change.




The associations we introduce have interesting things to say about error correction. We begin
by explaining the issues of change management by making an identification between change and
computation, using rings and fields. We then show how an operator formalism can be used to track
changes of state, before moving to discuss the inverse of such change operations.

4 Modelling configuration parameters

Configuration management is largely viewed as a process of setting and maintaining the values
of configuration parameters that control or influence software behavior. A parameter is usually
a number or string having a finite (though potentially large) set of useful values. For example,
one parameter might be the number of threads to use in a web server, with a typical value of 10.
Another might be a ‘yes’ or ‘no’ string determining whether a web server should be started at boot
time.

Although this view of a computer is often presented as being orthogonal to matters of computa-
tion, there are plenty of reasons to remove any such distinction. There are, indeed, multiple senses
in which any machine or even physical process may be considered to participate in a computation
as it evolves in time from some initial state. Indeed, the construction of computation from automata
theory demonstrates this. For the purposes of this work, we find it useful to view arbitrary changes
of state as computations for two reasons:

1. Because numerical descriptions of dynamical systems abound in the natural sciences, and
there is a wealth of cross-disciplinary techniques based on rings and fields that can be em-
ployed to model them in a convenient framework.

2. Because this allows us to make contact with an important argument concerning inverses and
the totality of functions based on rational numbers.

Ultimately the desire for alternative descriptions of computer behaviour has to do with understand-
ing the trends and statistical behaviours inherent in non-deterministic systems.

Given that configuration parameters can be viewed as numbers and strings, we propose a model
for these bsaed on a field structure for each configuration parameter X by injectively mapping its
possible values (as a set Gx) to a subset of some field (Fx,+,-), by an injection ¢ : Gx —
Fx. There are three possible structures for G'x, including sets of rational numbers, finite sets of
numbers, and sets of strings. If Gx = Q is the set of rational numbers, G'x maps to itself. Finite
sets of integers Gy C Z containing n possible values can be mapped to the first n integers in Q,
starting from 0. String parameter sets containing a finite number of values can be likewise mapped
to the first n integers in Q. For example, a string parameter taking the values ‘yes’ and ‘no’ might
be mapped via:

3 2

yes’ — 1
‘no” — 0 @))

The purpose of ¢ : Gx — Q is to impart meaning to the field operations + and - for parameter
values in Gx. We may extend G'x to a set G’y by adding potentially meaningless values, and
extend ¢ to a bijection ¢’ : G’y — Fx. The exact structure of this mapping does not matter. We
may thus define

qg+r = ¢ NI (q) +¢(r))
q-r ¢ (¢ (q) - &'(r)) 2)




whenever ¢/~ exists. Since Fx is a field, G’y satisfy the usual field signature:

signature
sorts Gy
constants
0 : — Gy
1 =Gy
operations
+ G x Gy — G,
— . Gy x Gy — G,
Gy x Gy = Gy,
end 3)
“)
with properties:
equations
z+0 = 042z =ux,
lz = z-1=x
Vo, -2z €G%) z+(—x) = (—x)+2=0
(Vo e Gy, v #0, 271 €Gy) wx-a7* =1
r+y = y+«x
Ty = y-x
(x-y)-z = z-(y-2)
(x+y)+z = 2+ (y+2)
(+y) 2 (z-2)+(y-2)
end ®))

The point of this introductory discussion is to be able to propose the following point of departure
in the discussion[8]:

Proposition 1 Without loss of generality, we may consider the range of values Gx of any con-
figuration parameter X to have a field structure (G'x,+,-) for some Gy O Gx, where G'y is
isomorphic to a field (Fx,+, -).

Usually, the structure of ¢’ is simple. For example, via the mapping in 1,

[3

‘yes’ + ‘no’ yes’
‘no’ + ‘no” = ‘no’
6yes’ . Gyes9 — 6yes?
‘yes’ - ‘no’ = ‘no’ 6)

Thus ‘yes’ is the multiplicative unit and ‘no’ is the additive unit of Gy, respectively.

In the rest of this paper, we will not consider the semantics of Gy, so there is no need to
distinguish between the base field (Fx, +, -) and its image (G'y, +, -) in parameter space. We will
use (F'x, +, -) to refer both to the base field and its isomorphic image in parameter space.

We now have a basis from which to develop possible multiple approaches to studying computer
behaviour in non-programmatic, rule-based frameworks. Philosophically this sets us on a par with
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other areas of natural science where one begins by describing actual observed phenomena that may
differ from the scope of programmatic expectations. From the low level view of symbolic change,
we shall progress up the abstraction ladder to encompass arbitrary data types. In particular, to
make contact with [8], we want to think of a calculus of state changes | X) — |X + JX) over an
interval ¢ 4 0t. To speak of a reversal of this change, we need also ‘—’, thus we are led to groups.
These + translational operations are usually commutative and quickly lead us to the well-known
concept of rings R = (S, +, ).

It is worth reminding readers that the symbolic form of the binary operators + and - can always
be written as a multiplication by a different kind of object by raising the dimensionality of the
symbols by one, i.e. by going to a tuple formulation[17] (though the reverse is not true). Thus
X — X + 6X may be written

X 5 AX-X (7

where AX is a matrix. A simple realization of this may be given in terms of linear functions or

matrices as follows:
1 60X ~ X
AX—(O 1)andX—(1) (8)

Hence, at the expense of one additional point in an extra tuple dimension, we may write a group
translation as a group multiplication and simplify notation to cover ring operations for a multiple
data types in the manner of multiplicative forms. This is an elementary fact of representation
theory which we shall use repeatedly in the following sections.

5 Modelling parameter changes

Viewing parameter values as a subset of a field (e.g., the rational numbers), opens up a more hu-
manly familiar way of thinking about system configuration changes, with a corresponding intuitive
algebraic structure in which one can make use of intuitions like ‘increasing’ and ‘decreasing’ to
discuss machine behaviours over time. So, quite apart from the specific subject of system rollback,
the manifesto of relating state and computation is of basic value to understanding actual computer
behaviour in broader scientific terms. However, we shall focus mainly on the question of change
and reversals here.

Technically, our transformations allow us to distinguish three approaches to change in the value
of a parameter, making precise the notion of change ¢ — ¢ + dq, used in [8]. We call the three
approaches relative (A), convergent or absolute (C'), and multiplicative (1) or scale change, and
we now wish to separate these, so as to distinguish their properties more clearly.

We partition the field algebra into partial functions using the trick from representation theory
to write binary addition in the form of a parameterized unary group multiplication by introducing
a tuple form with one extra dimension[17]. We write the parameter X as a vector | X):

=) ©

and use standard matrix algebra to express changes, building on + and - for elements of Fx.

o A multiplicative change in a parameter X is the result of a matrix operation of the form:

1 X7) = plg) 1X) =g X) (10)




where ¢ is an element of the field (F'y, +, -) and u(q) is defined as:

o= (57 an

This has the effect of setting X’ = ¢ - X, and semantically, is a scaling operation.

e An absolute change has the form:
[X") = C(q) 1X) = |g) (12)

where C(q) is defined as

cw=(g4) (13)

An absolute change is the equivalent of setting X = ¢ for some ¢ € Fx.

e A relative change in a parameter X takes the form X' = X 4 §X where + is the field
addition operation for F'y and 6 X € F'x. We can write a relative change as

| X"y = A(6X) | X) =|X +6X) (14)

where A(q) is defined as

sw=(y 1) (15)

Any relative change is a linear change. The converse is not true; the linear operators /()
and C'(z) are not equivalent to relative operators.

Composing combinations of 1(¢q), C(q), and A(q) by matrix multiplication always results in a
linear operator of the form:
a b
( o b ) (16)
where ¢ and b are elements of F'x.
Note that u(Fx \ {0}) = {u(q) | ¢ € Fx \ {0}} is a (multiplicative) Abelian group, because
1(q) has multiplicative inverse u(q~') for ¢ # 0. Likewise A(Fx) = {A(q) | ¢ € Fx} is a

(multiplicative) Abelian group, where A(g) has multiplicative inverse A(—¢q). C(q), by contrast,
is always singular and has no multiplicative inverse, so that C(Fyx) = {C(q) | ¢ € Fx} isnot a

group.
a b c d ac ad—+b
< 01 ) ( 01 > ( 0 1 ) a7

Also note that
c d a b\ [ ac bc+d
(6 ) (5 0)=(5 ") as)

so multiplication of elements in the span of u(Fx) U A(Fy) U C(Fx) is only commutative if
ad + b = bc+d.

while




Finally, note that the vectors |¢) can still be thought of as a field with operations:

!q>+lr>=<‘f)+<§)E(q?)zlqm (19)
- =(4)-(7)=(%") =lan 0)

Thus it is reasonable to write things like ¢ = |¢1) — |¢2) and |g2) = |¢q1) + d¢g. We will often
write the latter as |¢; + d¢) without confusion, and will often switch between additive (|q + dq))
and multiplicative (A(dq) |¢)) representations of addition.

and

6 Modelling changes over time

So far we have a non-temporal model of change; however, since change operators C'(q) do not
commute, partial orderings of operations are important and some independent time becomes the
natural expression of sequence at our system level of abstraction. Using our framework we shall
now say that between any two times ¢ and ¢ + Jt, a system state |¢) might change from |g) to
lg + 0q)[8].

Let us digress slightly for a moment to explain time. Time can only be measured by changes of
state; thus to mark time absolutely, one would need a standard external clock or reference change
marker with sufficient resolution to calibrate system changes. However, current state is not usually
archived when unintended changes occur, say as a result of environmental errors or influences, so
clocks get muddled when there are overlapping sources of change. This is one way to see why
rollback goes wrong. We shall formalize this below using automata as a familiar model to many
readers.

Starting at a low level, change can be modelled by a finite automaton, in which the transitions
are operators O as above. The changes applied after a finite series of steps can be represented as a
matrix product of the form Ol e On

In automaton theory, one makes the distinction between deterministic and non-deterministic
automata[18]. A deterministic automaton is a 5-tuple

MD = <Q7A7 |Qi>)Qf7AD)7 (21)

where () is a set of states, A is an alphabet of input instructions, ¢; is an initial state, Qy € @) a
set of possible final states and A p: @ x A — (@ is a transition function that takes the automaton
from a current state to its next state, deterministically in response to a single input symbol from the
alphabet. Such a string of operational symbols is the basis for a ‘journal’ that is intended to track
the changes made. In automata which form ‘sufficiently dense’ graphs, the transition function’s
effect may also be seen as an evolution operator, driving the system through a path of states

Ap(I) : |q) = |qg+6:q) (22)

This mapping might or might not be a bijection; it might or might not possess an inverse. Al-
though automata are considered to be a model for computation (as well as for parsing patterns or
grammatical structures), they can be used to describe change at any ‘black box’ level of system
description, as the model is entirely general.

A non-deterministic automation is almost the same as a deterministic one, except that its tran-
sition function Ay : Q x {AU 0.} — @, accepts one more pseudo-symbol, 0, which is the
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empty input string. Thus, a non-deterministic automaton can make transitions spontaneously, un-
prompted by input. In the language of [8], a deterministic automation is a closed system (one
that is self-determined, with complete information) and a non-deterministic one is an open system
(one that is only partially self-determined, with incomplete information and experiences ‘ghostly’
external influences).

Observe that automata can measure time (a clock is merely a simple deterministic automaton
whose ticks are changes of state), but that such an automaton can miss events that happen between
its ticks (this point will actually be key to understanding why rollback cannot be guaranteed). Thus
to be able to speak of times in the following arguments, we shall assume the existence of a clock
that makes transitions as fast or faster than any other transitions in the system. Such a clock exists
in all human-built digital computer systems, of course.

Proposition 2 (Identification of time) Iz is possible to meaure the time at which any change, de-
terministic or non-deterministic, occurs by means of an external deterministic automaton, called
a clock.

We shall henceforth assume that we can attach times to any change of state of the system. Non-
deterministic changes are, of course, common in real systems; here are some examples:

e Interruption of a system by a key press or mouse movement.
e Deletion of all files from a computer.

e Removal of a firewall: system is infected by virus, replace firewall, system is still infected
by virus.

e Checkpointing: erase state and replace with a stored image from time ¢, all history is lost
between t; and now.

In each of these cases absolute change (overwriting) is a key theme: like zeroing out the registers
in a computation. There is a one-to-one correspondence between input and output only in the
deterministic case.

Proposition 3 (A computer system) For the remainder of the discussion, we shall assume that
a ‘computer system’ is a non-deterministic automaton, represented as a set of states, classified
into categories of representation (i.e. data types) based on fields, and that these are isomorphic,
through extension, to the rational numbers.

We thus assume non-determinism of all systems, because modern, preemptive operating systems
exhibit high level changes to observable data objects that cannot be traced to an alphabet of in-
tentionally applied and documented operations. Thus there are apparent transitions that cannot be
explained by any ‘journal’.

7 Journals and histories of change

In this section we discuss how intended change and unintended system change can be tracked and
recorded in order to maintain complete information about a system’s states over time. We shall
distinguish a the concept of a journal (intended change) from that of a history (which includes all
changes intended and unintended). We begin by discussing relative increments.




In any solution generated by a difference equation (or transition function), the conversion of
small increments or ‘deltas’ into an absolute state requires the specification of end-points, analo-
gous to the limits of a contour integral in calculus along a well-defined path P:

ay
ar — @ = P/ dq, (23)
qi

where ¢; is the initial-state and ¢ is the final state. This path corresponds to a sequence of input
symbols for an automaton, corresponding — in our case — to operators to be applied. The analogue
in terms of group transformations is to start from an origin state, or ‘ground state’ |0) (often called a
baseline state in system operations), and to apply relative changes sequentially from this to achieve
a final desired outcome.

The choice of the baseline state lies outside of the specification of the change calculus. The
origin or baseline state is an ad hoc fixed point of the system, by virtue of an external specification
alone. It is arbitrary, but usually plays a prominent role in system operators’ model of system
change. In this work, the choice of a baseline state is part of what we shall refer to as a calibration
of the system, but counter to tradition we shall advocate calibration of the end state rather than the
ad hoc initial state.

To model intended versus actual change, we introduce the notion of a journal, inspired by the
notion of journaling in filesystems. A journal is a documentation of changes applied to a system
intentionally, noting and remembering that — in real systems — this can be different from what
actually takes place.

Definition 1 (Journal J) A complete, ordered sequence of all input symbols passed to an automa-
ton o from an initial time t; to a final time t; is called the automaton’s journal J = (a*, t;, ty).
Each symbol o corresponds to a change in system state ),q. A journal has a scope that is known
to the user or process that writes the journal. A journal change 0J involves adding or removing
symbols in o to J, and adjusting the times. For brevity, we shall use the notation J (ti,ty) for the
Journal for a single automation starting at time t; and ending at 4.

Note that, in the interests of notational simplicity, we suppress all labels relating to automata in
writing .J(t1, ), assuming that all changes are relative to the same automaton. We use the times
at which the journal began and ended, as measured by some hypothetical external clock, and the
record of all known transitions is the journal itself.

Two journals J; and J, may be called congruent if they have the same number of symbols
|J1| = |.J5| and every symbol is identically present and in the same order[19].

Lemma 1 The final state |qs) obtained by applying congruent journals of transitions jl, Jy to
identical automata M, M is identical, iff the initial states |q;) are identical, and M, and M, are
deterministic.

This follows from the definitions of (non-)deterministic automata which allows spontaneous changes
do, q.- To record all changes in a non-deterministic system we need to record absolute state even
when no input change is made. This brings us to:

Definition 2 (History) A complete, ordered stack of all intermediate snapshots of a system’s total
state |qz)(t)* output by an automaton at all times t between an initial time t; to a final time ts is
called the automaton’s history H. A change 6 H involves pushing or popping the complete current
state onto the stack H, and adjusting the times.

The history H is capable of including states that were not directly affected by the journal transi-
tions d,q. We use a stack as a convenient structure to model histories; see for instance [20] and
references for a discussion of stacks. The ability to model system configuration by relative changes
is affected by the following lemma:




Hyl| > ]jM, and |Hy| = |jM\ iff M is a deterministic

Lemma 2 For any automaton M,
automaton (closed system).

The proof follows from the form of the transition functions for automata, and the possibility of one
or more occurrences of 0 in the input of a non-deterministic automaton. In a deterministic system
each « leads to a unique labeled transition d,q, and vice versa. In the non-deterministic case, the
history can contain any number of changes dy, in addition to the «, thus the length of the history
is greater than or equal to the length of the journal.

A journal is thus a sequence of intended changes, whereas a history is a sequence of actual
changes.

Definition 3 (Roll-back operation J=Y) The inverse application of a string of inverse journal op-
erations is called a roll-back operation, such that J~"(ts, t5).J (t2,t1) = I, with no intermediate
symbols allowed, and [; = J (t,t) = (0,t,t). The inverse is said to exist iff every operation symbol
in the journal has a unique inverse.

For example, for relative change:

~

J(tgty) 2 lg) — g+ g1+ 0ge + 0q3) = |¢') (24)
and
T Ntgty) : |d) — |d —dq3 — dgz — daqn) = |q) (25)

Lemma 3 A roll-back journal J='(t;,ts), for automaton M, starting from state |qs) will result in
a final state |q;) iff M is deterministic and J =" exists.

Proof 1 Assume that M is non-deterministic; then the transition to state qy is only a partial func-
tion of the journal J, hence J~ has more than one candidate value and thus cannot exist. If M is
deterministic then the inverse exists trivially by construction, provided that each operation in the
journal exists.

Setting aside technical terminology, the reason for a failure to roll-back is clearly the loss of corre-
spondence between journal and history caused by changes that happen outside the scope of the in-
tended specification. This loss of correspondence can happen in a number of ways, and (crucially)
it is likely to happen because today’s computer systems are fundamentally non-deterministic!.

Definition 4 (Commit and Restore operations) A commit operation at time t is a system change
g followed by a push of current history state onto a stack as consecutive operations:

commit(t) : (g, push(lq)(t))) (26)

A restore operation is a sequence of one or more operations:

restore(t) : pop(|q)) (27)

These operations are typical of version control schemes, for example. The importance of this
construction is that previous states can be recaptured regardless of whether the operation ¢ is
invertible or not.

n [8], it was pointed out that this mirrors results in information theory[21] about transmission of data over noisy
channels, for which one has the fundamental theorem of channel coding due to Shannon[22] that enables the re-
assertion of correspondence between a journal (transmitted data) and actual history (received data) over some time
interval. However, we shall not mix metaphors by pursuing this point here.

10




Lemma 4 For automaton M, n consecutive restore operations starting from ty, are the inverse of
n consecutive 'commit ope'rc%ti(‘)ns ending at t';, iff the journal of changes between t; > t’f and t’f is
empty and M is a deterministic automaton.

The proof, once again, follows from the absence of uncaptured changes. If t’; > ¢ and the journal
is empty then the only changes that can have occurred come from symbols 0, but these only occur
for non-deterministic M. We add the following to this:

Lemma 5 A system journal J cannot be used to restore system state for arbitrary changes g.

This result is clear from the independence of the restore operation on ¢, and the lack of a stack of
actual state in a journal J.

What the foregoing discussion tells us is that there is no predictable outcome, either in a for-
ward or a reverse direction, in an open (non-deterministic) system using relative change, and that
a journal is quite useless for undoing changes that have no inverse. System configuration is anal-
ogous to making calculations in which variables change value spontaneously (as in fact they do
without error correction at the hardware level). To make change computation predictable, we
need to fix the outcomes rather than the sequences of operations, using ‘singular change opera-
tions’ for computing the final state. This was the main observation learned in the development of
Cfengine[9, 10, 15].

8 Singular transitions and absolute change (overwriting)

In the foregoing cases, the initial choice of state |g;) was external to the specification of the change,
and was the ‘origin’ of a sequence of changes in a journey from start to finish. This relative (‘se-
quential process’) approach to change is deeply in-grained in management and computing culture,
but it fails to bring the require predictability due to underlying system indeterminism. The problem
is the reliance on the + operation to navigate the state space, so our next step is to suppress it.

Now consider a class of transitions that are not usually considered in classic finite state ma-
chines. These are (non-invertible) elements p with the property that p|q) = |qo), for any ¢q. The
final states are ‘eigenstates’ of these singular group operations: p|qo) = |qo). These effectively
demote the explicit reliance on + and replace it with a linear function.

Definition 5 A singular transition function é|q0> is a transition from any state |q) to a unique
absorbing state |qo). It is a many-to-one transition, and is hence non-invertible without a history.

Such transition functions (operators) were introduced in [10] and described in [9], as an alter-
native to relative change to restore the predictability of outcome. These ‘convergent operations’
are based on fixed points or eigenstates of a graph. They harness the property of zero elements
to ignore the current and historical states and to install a unique state regardless of the history or
the determinism of the system. Such parameterized operators form a semi-group CA"%) with the
abstract property:

Clanle) = l4o)
Claoy|20) = |a0)- (28)
For ease of notation in the following, we drop the |go) subscript and write C for (;”‘qO)

The price one pays for this restoration of predictability is an inability to reverse the change.
Let us suppose that an object C~ exists such that C~1C = I, satisfying the latter equation. Then
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operating on the left, we may write using (28):

Clao) = lgo)
Clao) = Clao)
CTClao) = €7 o) (29)
Thus, at |¢y) we have idempotence and a constraint:
Clao) = € o) (30)
Clao) = C*lao). (31)

The latter result (31) is independent of the existence of an inverse. For a ring, this condition is
equivalent to the ‘restricted inverse law’ used in [12, 13], and it tells us that the inverse would have
to be either O or 1.

Lemma 6 The operators C’|q0> are idempotent and converge on a fixed point final state |qq).

This follows immediately from eqn (31). The value of these operations is that they can be iterated
endlessly, with predictable outcome, in the manner of a highly compressed system error-correction
process.

Example 1: One can view the state |¢) as embodied in the operator é|q> and thus view Cy, |q),
and |qo) as elements of the same semigroup. Then we may write:

Cola) = ao) (32)
Colgo) = |qo0)- (33)

Assuming an additive inverse for each element (in the statespace), and subtracting these equations
for arbitrary ¢ leads to the conclusion that Cy = |go) = |0), thus there is only a single object with
this ability to take an arbitrary initial state and render a predictable outcome. Note that, in this
representation, C' and |¢) belong to the same semigroup of scalars. So, choosing |z) = Cjy = |go),
we service

(7' 2)r=2x (34)

using (33). This is the restricted inverse law for fields[12, 13].

The zero plays a fundamental role as an eraser. The uniqueness of zero is not an impediment
to using the zero element as a ‘policy operator’ which sets an intended state, as we are free to
construct a homomorphism h(|g)) which calibrates or shifts the absolute location of the solution:

e.g.

Coh(la) = hlla))
Coh(lgo)) = N(lgo)) 35)
where ¢ represents a new calibration point, and h(|q)) = |¢ — ¢}), yielding the solution Cy =

Oa do = qs
Example 2: Consider the tuple form used earlier, and let

- (07)
q0) (qf ) (36)

Subtracting the equations using this representation for Cj and ¢ leads to a result that is identically
true, hence we are free to choose the value of ¢, as a matter of policy. However, one observes that
() does not possess a defined inverse according to the normal rules of fields.
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Lemma 7 Any inverse representation of a linear operator, taking values in a field I’ and satisfying
C~1C = I and (28) must involve division by zero.

Proof 2 Let C be a linear function of an underlying field, then C has the form C(c)||q) — |mg+c),
and thus the inverse is C~1(c)|q') — |(¢' — ¢)/m). In order to satisfy (28) for all q, we must have
m = 0.

This shows that the ‘rollback’ of an absolute state change is directly analogous to a division by zero
in a ring computation. The reason is clear: both are attempts to reverse a transition after dumping
all history of initial state. We must therefore conclude that either such operations are irreversible,
or that an inverse must be constructed for completeness, subject to other limitations.

9 Computing and reversing absolute states

Fields have only one element with singular properties: the zero element. It plays two distinct roles:
as an identity element for the + operation, and as a fixed point in scaling under -. As a fixed point,
zero annihilates state, since Og = 0 for any ¢q. The zero element thus ignores and deletes any
history that led us to the state q.

It is useful to think of the C operators in the above as a kind of zero-element: they annihilate
state in a similar way. The utility of the convergent operations for bringing about absolute change
is such that it is useful to embed them in the formalism of a general field structure for computation.
One motivation for this is the recent work by Bergstra and Tucker of totalization of fields, and
‘Meadows’, in which they replace the partial function (excluding 0 for division) at the heart of
field computation with one that is total, up to constraints. We find their construction intriguing and
highly relevant to the matter of reversibility of state. As in Bergstra and Tucker, we reason by first
defining the algebraic signatures of structures.

We construct an image Alg(Xq, Fg) of a field F', with initial algebra Alg(Xr, Er) (as yet a
regular field), by introducing a map in three piecewise partial representations ¢ = {S¢, Sa, S, },
where S¢ is a set of linear partial-functions C'(F), and S, is a set of linear functions i (F" # 0), etc,
to be explained below. The signature then contains only product explicitly, as addition is concealed
as multiplication as described in section 5.

signature X

sorts : Sc,Sa, 5,

constants
In @ — Sa
I, « =5,
operations
SA X Sa — Sa
Sy xS, — S,
- Sex Se— Se.
end (37)

We define Fg¢ as the image of E for the field by,

equations ¢
(VX € Sa) XX = I,
(VY eS,) Yl'y = 1,
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(VX1, X3 € Sa) XX, = XXy
(VX1, X0, X3 € Sa) X1(XoX3) = (X1X2)X;

(VY1,Y2, Y3 €8,) Yi(YaY3) = (ViYa)Ys
(VZ1,Z5 € So) Wy = Zy
(VZy, 2y, Z3 € S¢)  Z1(ZyZs) = (Z125)Zs.
end (38)

An example of the linear functions in the matrix representation is given by:

Alz) = (é ”f) (39)
nly) = (g ?) (40)
Clz) = (8 f) @1)

where A~ (z) = A(—xz), p= ' (y) = u(1/y), y # 0, and we may note that In = A(0), [, = u(1),
and 1(0) ¢ p in matrix terms. The function C, in any representation, gives us a way of representing
absolute, not relative, changes of state, and contains the equivalent of ‘zero’. This is an important
ability in maintaining order in a system, and it is the basis on which Cfengine[10] operates on
millions of computers around the world today. Each operation is a function of a field, in which
the zero element is mapped to a desired state. The set of all possible parameterized C'(F’) must
therefore span a field, and yet it contains no (multiplicative) inverses at all. This is the interesting
paradox which plays into the work of Bergstra and Tucker. The restriction z # 0 € F'is prominent.

It is not our intention to reiterate the arguments for totalizing fields, presented by Bergstra and
Tucker[13]. As they point out, there is a number of ways to restore ‘faith’ in the connection be-
tween state and history of change after a zero operation, using proof systems, axioms and algebraic
properties. Each brings a different kind of merit. As they remark, the issue is not so much about
going backwards (reversal) as about going forwards in a way that is unaffected by an ill-defined
attempt at reversal.

One remedy relies on proving the outcome of a change was not affected by the result of 071,
i.e. the final state is independent of the path taken to evaluate it. Another involves changing the
definitions of computation (change) to disallow unsafe operations. Finally one might simply give
up on certain requirements so that the outcome satisfies a well defined set of equations (policies)
in order to prove that the result is well-defined. Here, we observe by analogy that one may:

e Introduce a stack of history-snapshots to some maximum depth[20]. (This is difficult to do
in arithmetic but it is plausible for some system changes.)

Modern filesystems have the capability to take snapshots of disk media. But this does not
cover the dynamic, runtime state of a system, so this is only a partial snapshot. Virtual ma-
chines can also be snapshotted for restoration with certain limitations. In practice, snapshot-
ting a system in isolation is a meaningless remedy because the remainder of the environment
around it has already moved on, and therefore one risks the system becoming unsynchronised
with its environment, e.g. in relation to protocol communications and stateful channels.

e Totalize the data type, using the notion of a totalized field, e.g. set 0~ = 0, or equivalently,
cl=cC.

In systems, this corresponds to defining a policy for the proper state of the system, e.g. as
with Cfengine. Defining a policy is analogous to defining the ‘zero’ of the entire system.
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Undoing a zero requires itself a policy, which is just another zero (either the same of trans-
formed by recalibration — see below).

e Perform a naive reversal and then apply some policy equational specification to clean up the
result.

In system terms, this corresponds to restoring a previous snapshot from memory and then
testing the system to see if it complies with a number of constraints. These might include
answering the question: are all my communications with external agents synchronized and
in a consistent state?

e Abandon the attempt to introduce reversals altogether (“rollback does not exist”).

In this final, more fatalistic, approach one does not attempt to perform any inverse operations
on discovering a problem, but merely recalibrates the system to a new desired state, either
by relative or absolute change.

Given that relative change is fragile to incomplete specifications of a system, the above suggests
that greater certainty can be achieved by adopting an absolute approach to configuration: i.e. by
embracing zero.

10 Calibration of absolute states

Let us complete the formalization of the operators for absolute change. We build linear functions
on top of the (totalized) field and end with a vector space. We no longer care about A and u, but
want to embrace the properties of the zero operators to bring predictability in a non-deterministic
environment. We start with a signature for the convergent operators based on a different use of
commutative rings as a parameterization of the zeroed outcome, and end with non-commutative,
non-invertible representations. Let [ signify a field, with the usual field axioms.

We use a Y-algebra X = {|q) |, 0,®, o, C'}, and this is understood to extend the field
algebra Alg(Xp, Er). Thus, for any index set labels «, /3, labeling the underlying field ¢, we have
signature:

signature ¢

sorts : [ F'
constants
lq) = F
operations (42)

C: FxF —F
D : C(F x F)— C(F)
o: C(F)x C(F)— C(F)
end (43)

And equations:

equations F¢ :

Cal) = Clga)la) = l4a) (44)
CooCs = C, 45)
(CaoCg)oCy = Coo(Czol) (46)
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Ca SP) CB - Ca+ﬂ (47)
(Co ® Cg) ®C, = Ci® (Cﬁ S7) Cﬂ/) 48)
end (49)

Naturally, these are true for all «, 3,7, and we are working with Alg(Xr U X, Er U E¢). The
possibly opque formalism belies a simple structure. Every state |¢) is fully specified by a field
value ¢ € F. Similarly, every convergent operator C'(q) is fully specified by a field value ¢ € F,
and results in a new value g € F', which obeys the zero property (44). Thus the C'is a transformer
which takes any input state and outputs a specific state given by its label (but importantly, only
one at a time). This has the ‘zero’ property of ejecting initial state and replacing it wholesale with
particular one. Clearly, the operators must be idempotent from (45).

The representation in (36) is useful to see how a tuple-representation quickly captures this
algebra. We say that the repeated operation of an operator C(qy) ‘converges’, as it always returns
the system state to its fixed point |go). This algebra describes the behaviour of a single ‘convergent
operator’ or ‘promise’ in Cfengine[9, 10]. We cannot define C~! because the symbol 0~ is not
defined in the underlying field F', but we may totalize the field[13] with corresponding merits and
conditions to assign a meaning to a reversal or ‘roll-back’.

11 Re-calibration - change of policy

There is only a single fixed point for each operator C'(¢gy). What happens when we want to change
the outcome of a ‘promised state’, i.e. change the value of ¢,? The homomorphism A on states, in
eqn. (35) allowed us to calibrate a single singular outcome to any field value by shifting the zero,
but this is less useful than modifying the operators themselves to bring about the desired result.
This transformation then has the simple interpretation as an operator the re-calibrates the system
baseline.

Lemma 8 Each operator has only one singularity, i.e. let F' be a field, totalized or not, and let 0,
and 0y be zero elements for -, then 0; = 0.

The proof follows by substitution of the field axioms: 0,z = 01, Oz = 09, setting x = 05 in the
former, implies 0; = 0,. Hence the zero element is unique in a field.

This means that we cannot have more than one policy fixed point per field. In configuration
terms, one cannot have more than one policy for a data item, so any path of changes parameterized
by chaining ¢y can be uniquely characterised.

This leaves only the possibility of shifting the fixed point by re-calibration, or change of policy.
This is no longer a journal of deltas, but a kind of ‘teleportation’ or ‘large transformation’ in
the group theoretic sense. Given this, and the utility of formulating policy changes as applied
operations, it is useful for the purpose of making contact with reference [8] to reformulate the
values in terms of vector spaces. The specification of a vector space is somewhat similar to that of
a ring or field except that it is not automorphic.

Let F be a field (totalized or not) and S be a set. A vector space of F'is a triple (.5, +, -), with
the equations:

signature
sorts : F,S
constants
0g : — 8
lp : = F
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operations (50)
+ . SxS5—=56,

— = Sx58—=56,
FxS—S8,
end (51)
with properties:
equations (52)
(V€ 5) r+0s = O0g+az=u,
(Ve e S,—x € 5) r+(—z) = (—x)+z=0g,
(Va,y € 5) r+y = y+u,
(Vz,y,2€S) (x4+y) +z = x4+ (y+2),
Vo, B € Fyz € 95) (af)z = a(Bz),
(Vz € S,) lpx = zlp=uz,

Vo, € F,xelS) (a+p)xr = ax+ fr,
NVae Fx,yeS) alz+y) = azr+ ay,
end (53)

The usefulness of this map is that it involves an external ‘promise’ or ‘policy’ field F' from
which we may construct the set of C,, not merely an automorphic image of a single set. Thus we
can separate policy from changes with convergent, fixed-point zero-operators 04 € Fy4, all acting
on a single set of states ¢ € S. We thus arrive, by a different route, at the formulation as a vector
space in ref. [8].

We note finally that a change of calibration cannot be a commutative ring.

Lemma9 Let C'y and Cg be zeros of F4 and Fg. Then C4 and Cpg cannot commute unless
A= B.

Proof 3 The proof is similar to the earlier proof of uniqueness of zero in a ring. We have C,q =
Cy, and Cgq = Cpg for all q. Substituting ¢ = C'g in the former, we have

Ca(Cg)g = CaCp=0Cy
CB(CA)CI = (CgCs=Cp (54)

Thus the commutator
[C4,Cpl =CaCp —CpCa=Cy —Cp#0 (A+# B) (55)

This proof does not depend on the representation of F'y and Fg, thus it applies equally to higher
dimensional tuple formulations also.

12 Predicting outcome with roll-back-safe change

The problems of indeterminism cannot be addressed without absolute change operations, but these
do nothing to repair the problem of unsafe reversals. The C' operations allow us to basically forget
about indeterminism, but not irreversibility. We therefore need to find an approach analogous to
that of [13] during non-commutative strings of system re-calibrations. We have one advantage
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here: a lack of commutativity. This is in fact a strength as it makes the need for reversal practically
irrelevant. In our view, there is then only one natural choice for C~! or J~! and that is to apply or
re-apply the current policy C'(¢): it is absolute, idempotent and it overrides any previous ‘mistakes’.

We have also one disadvantage compared to [13] and that is that time is relevant: we cannot
undo the potential consequences of being in a bad state unless we manage to totality of state within
the system. For real computers, that might be almost the entire Internet (e.g. during the spread of
viruses).

Other weaker arguments can be made for resetting state to a baseline, e.g. (1) Use an arbitrarily
chosen baseline state |ginitia1) OF |to) SO that an arbitrary journal of convergent changes Jo

tanal) = Joltimitial)
= ...0201 |tinitia1) (56)
has an inverse such that
J()_1|tﬁnal> = |tinitia1>- (57)
Assuming the existence of an operator Oinitial Such that Oinitial\q> = |tinitial, then clearly
Jo ' = Ohnitial- (58)

These two choices are both forward-moving absolute changes since they both involve an arbitrary
decision and they both move forward in time. However the latter is less natural, since it affects to
return to a time in the past which might have nothing directly to do with where one needs to be in
the present. Our study was motivated by predictability. The principal advantage of these remedies
lies in knowledge of the outcome, in the absence of a complete specification.

13 Multi-dimensional operators

In the discussion above, we have restricted ourselves to the maintenance of a single scalar system-
value. The issue of dependencies amongst system changes enters quickly as the complexity of
layered models of a system grows. It was shown in [9] that one can develop a spanning set of
orthogonal operations that covers the vector space like a coordinate system, simply by embedding
in a geometrical tuple-fashion. In the simplest expression, one sees this by extending the matrix
representation to higher dimensions.

One way to do this is to consider a system as a controlled by a vector of its individual configu-
ration parameters X;, where each parameter is embedded into the field of rationals and encoded in
the obvious way:

= : | (59)

As large as current systems may be, they remain finite and can be modelled by finite vectors. We
define relative operators for individual parameters in a state as

01
Moo= T, (60)
0 1
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(where ¢ appears in the (n + 1)st column of the ith row). Likewise, absolute operators are defined
as

10 - 0
01

=" T4 61)
0 1

(where ¢ appears again in the (n + 1)st column of the ith row), and multiplicative operators as

10 --- 0
01

= (62)

0 1
(Where q appears in the ¢th row and column). Thus we propose to model configuration changes in
a system via a set of matrices with rational entries.

This completes the construction of the Cfengine operators. Clearly the zero inverse solution

applies independently to each of these diagonal operators in this basis, but becomes rapidly more
entangled in other parameterizations, where dependencies occur.

14 Concluding remarks

We have shown that neither the outcome of a journal of changes, nor an attempted reversal (undo
operation) is generally meaningful in an incompletely specified i.e. open, or non-deterministic
system. A deterministic outcome can only be obtained by grounding a system in an absolute way
to a policy-defined state, analogous to a ‘zero’ in a field. This is a move from a relativistic view of
error correction to an absolute determination of outcome.

By formulating this problem algebraically, the discussion is distanced from the sometimes
emotional standpoints that bind system administrators to the notion of rollback: desperately want-
ing does not make it possible. The discussion about totalisation of fields is particularly useful, as it
maps nicely to the flaws in this thinking. To deal with the inverse of a many-to-one map, one must
invoke a policy or arbitrary selection.

In computation, division by zero is ambiguous because it seeks to ‘reverse’ a number of relative
transformations with an absolute change, while the latter has no definitive remedy within the scope
of an expression itself. In system management, the rollback is ambiguous due to the incomplete
information about transitions arrising from parallel processes, whose history is not available within
the scope of the system itself. In both cases, external information is required to compensate for
the incompleteness of the information. The generic remedies proposed for the abstract, algebraic
totalisation of fields have clear analogues in the practical world of systems, and bring rationality
to the argument.

Even keeping a history of every transition made does not solve all the issues of rollback: revers-
ing states locally does not make time travel possible. Neither the ‘restoration of state by roll-back’
nor ‘division safe calculation’, a la Bergstra and Tucker, can take us backwards in time to undo an
absolute mistake throughout the entire scope of the world: errors propagate. A local reversal might
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merely break the synchronisation of the local system with the remainder of the environment, e.g.
trying to undo a conversation between two automata by rolling back one of them.

The arguments both here and in the work of Bergstra and Tucker thus focus on how one goes
a meaningfully forwards to repair a lack of synchronicity, given that a poorly formulated reversal
of a singular change was attempted. A classic answer is ‘well, don’t do that’ — but we know that
someone will always attempt to perform ill-defined operations and thus our story has considerable
importance.

The remedies proposed here mirror ways in which the problem of singularities is handled in
other areas of mathematics, e.g. in complex analysis one has analytical continuation[23], in which
a path or history through the states can be defined such that the final result avoids touching the
singular cases; similarly in algebraic topology, the uniqueness of the result can then depend on the
path and cohomology. The totalization remedies described by Bergstra and Tucker thus underline
an approach to a wider range of problems of incomplete information. The ultimate conclusion
of this work is that ‘rollback’ cannot be achieved in any well-defined sense without full system
closure, which is not generally possible. A choice about how to go forward is the only deterministic
remedy.

For the future, there are plenty of topics we have not touched upon here.

Problem 1 We have not taken into account fields in which external min-max boundary values are
imposed on S. Then we would have further fixed points in the total history of a system to contend
with:

{méin, 04,03, ... msgtx} (63)

Each of these might be a reasonable candidate for ‘re-grounding’ the system in an undo/reset —
ours has been an orthogonal decomposition of the problem. What conditions might be imposed
when 0 4 falls outside the range [ming, maxg]|.

Problem 2 We have not taken into account operators that depend on one another in non-orthogonal
fashion[24]. Dependencies between operators add potentially severe complications to this ac-
count.

There is a deeper issue with roll-back in partial systems. If a system is in contact with another
system, e.g. receiving data, or if we have partitioned a system into loosely coupled pieces only one
of which is being changed, then the other system becomes a part of the total system and we must
write a hypothetical journal for the entire system in order to achieve a consistent rollback.

Problem 3 The partial restoration can leave a system in an inconsistent state that it has never
been in before and is not a state that was ever intended.

The results in this paper are directly applicable to to hands-free automation, or ‘computer
immunology’, as demonstrated by Cfengine. Opponents of automation have look for ways of
arguing that traditional journaling approaches to system maintenance are necessary|[19], preserving
the role of humans in system repair. However, we argue that the role of humans is rather in
deciding system policy: it is known that the computational complexity of searching for convergent
operations is in PSPACE and NP complete[25, 26], thus it remains the domain of heuristic methods
and system experts to find these convergent in more complex cases.

Acknowledgment: MB would like to thank John Tucker for generous advice and encourage-
ment during the finalization of the manuscript.
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