
A TINY OVERVIEW OF CFENGINE: CONVERGENT
MAINTENANCE AGENT

Mark Burgess
Oslo University College

P.O. Box 4, St. Olavs Plass, Oslo 0230, Norway
Email: mark@iu.hio.no

Keywords: Autonomous agents, network management, feedback systems.

Abstract: Cfengine is a distributed agent framework for performing policy-based network and system administration
that is used on hundreds of thousands of Unix-like and Windows systems. This paper describes cfengine’s
stochastic approach to policy implementation using distributed agents. It builds on the notion of ‘convergent’
statements, i.e. those which cause agents to gravitate towards an ideal configuration state, which is implied
by policy specification. Cfengine’s host classification model is briefly described and the model is compared to
related work.

1 INTRODUCTION

Cfengine is an on-going research project, looking
at distributed system administration. Since its incep-
tion in 1993, the cfengine tool-set has been adopted
by a broad range of users from small businesses to
huge organizations(Burgess, 2000a). It is currently
running on an estimated several hundred thousand
nodes around the world. Since its inception, cfengine
has developed considerably, although the basic frame-
work and key principles have remained the same.

Cfengine falls into a class of approaches to sys-
tem administration which is called policy-based con-
figuration management (Sloman and Moffet, 1993).
To some extent, policy-based configuration can be
seen as a reaction to the inadequacies of control
and monitoring software, now typified by many
Simple Network Management Protocol (SNMP) im-
plementations. Although developed independently,
cfengine has developed many features in common
with multi-agent systems (Ferber, 1999). Adminis-
trative schemes, employing autonomous agents, are
the only administrative solutions which scale to large
numbers of hosts (Burgess, 1998), because this does
not rely on the funnelling of configuration instructions
through a serial queue, governed by a human. Today,
the approach is used by many large organizations to
manage anything from a handful to thousands of sys-
tems.

2 KEY IDEAS IN CFENGINE

Cfengine’s task is to configure the files and pro-
cesses running on networked computers, e.g. Unix or
Windows workstations.

• Policy (P ) is a description of intended host con-
figuration. It comprises a partially ordered list of
operations or tasks for an agent to check.

• Operators(Ô) or primitive skills/actions are the
commands that carry out maintenance checks and
repairs. They are the basic sentences of a cfengine
program. They describewhat is to be constrained.

• Classesare a way of slicing up and mapping out
the complex environment into discrete (‘digital’)
regions that can then be referred to by a symbol or
name. They are formally constraints on the degrees
of freedom available in the system parameter space.
They are an integral part of specifying rules. They
describewheresomething is to be constrained.

• A cfenginestate is a fuzzy region within the to-
tal system parameter space. It is defined formally
with symbolsclassesthat define the environment
in which a policy rule lives and by the speci-
ficity of the policy rules themselves with respect
to the internal characteristics of the operators (e.g.
file permissions, process characteristics). States
have the form: (address,constraint) =
(class,values)



Cfengine differs from similar approaches to con-
figuration management in that it embraces a stochas-
tic model of system evolution. Rather than assuming
that transitions between states of its model occur only
at the instigation of an operator, or at at the behest
of a protocol, cfengine imagines that changes of state
occur unpredictably at any time, as part of the envi-
ronment to be discovered.

The cfengine project and derivative work (Burgess,
2003) accepts the idea of randomness in the inter-
action with environment. User interaction (Burgess
et al., 2001) forms a mixture of signals which
tends to disorder the system configuration, over time.
Cfengine holds to a set of principles, referred to as the
immunity model(Burgess, 2004b), for seeking cor-
rectness of configuration. These embody the follow-
ing features:

• Centralized policy-based specification, using an
operating system independent language.

• Distributed agent-based action; each host agent is
responsible for its own maintenance.

• Convergent semantics encourage every transaction
to bring the system closer to an ‘ideal’ average-
state, like a ball rolling into a potential well.

• Once the system has converged, action by the agent
desists.

In an analogous way to the healing of a body from
sickness, cfengine’s configuration approach is to al-
ways move the system closer to a ‘healthy’ state
(Burgess, 1998), or oppose unhealthy change: hence
the name ‘immunity model’. This idea shares several
features with to the security model proposed in refs.
(P.D’haeseleer et al., ; Somayaji et al., ). Convergence
is described further below.

A ‘healthy state’ is defined by reference to a lo-
cal policy. When a system complies with policy, it is
healthy; when it deviates, it is sick. Cfengine makes
this process of ‘maintenance’ into an error-correction
channel for messages belonging to a fuzzy alphabet
(Burgess, 2002a), where error-correction is meant in
the sense of Shannon (Shannon and Weaver, 1949).

In ref. (Burgess, 2003) it was shown that a com-
plete specification of policy determines an approxi-
mate configuration of a software system only approx-
imately over persistent times. There are fundamen-
tal limits to the tolerances a system can satisfy with
respect to policy compliance in a stochastic environ-
ment.

3 COMPONENTS

The main components of cfengine are (see table 1
and fig. 1):

Component Cfengine 1.x Cfengine 2.x
Agent cfengine cfagent
Server cfd cfservd
Scheduler cron,cfwrap cfexecd
Poller cfrun cfrun
Key Gen cfkey cfkey
Long term state – cfenvd
State grapher – cfenvgraph

Table 1: Components in cfengine

• A central repository of policy files, which is acces-
sible to every host in a domain.

• A declarative policy interpreter (cfengine is not an
imperative language but has many features akin to
Prolog (Couch and Gilfix, 1999)).

• An active agent which executes intermittently on
each host in a domain.

• A secure server which can assist with peer-level file
sharing, and remote invocation, if desired.

• A passive information-gathering agent which runs
on each host, assisting in the classification of host
state over persistent times.

Figure 1: Cfengine components.

4 CLASSES AND ENVIRONMENT

Setting configuration policy for distributed soft-
ware and hardware is a broad challenge, which must
be addressed both at the detailed level, and at the
more abstract enterprise level. Cfengine is deployed
throughout an environment andclassifiesits view of
the world into overlapping sets. Those tasks which
overlap with a particular agent’s world view are per-
formed by the agent.



A class based decision structure is possible because
each host knows its own name, the type of operating
system it is running and can determine whether it be-
longs to certain groups or not. Each host which runs a
cfengine agent therefore builds up a list of its own at-
tributes (called the classes to which the host belongs).
Some examples include:

1. The identity of a machine, including hostname, ad-
dress, network.

2. The operating system and architecture of the host.

3. An abstract user-defined group to which the host
belongs.

4. The result of any proposition about the system.

5. A time or date.

6. A randomly chosen strategy element.

7. The logical combination of any of the above, with
AND (.), OR (|), NOT (!) and parentheses.

The environment is large and complex and we can-
not describe it in precise terms, so cfengine classifies
it into coarse abstract properties that are suitable for
management purposes. The classifiers form a patch-
work covering of the environment (see fig 2). Given

monday tuesday

solaris

host_grouplinux

smtp
www

anomaly

laptops

Figure 2: Overlapping classes form a covering of the envi-
ronment parameter space.

that the agent, running on a host, can determine the
class attributes for that environment, it can now pick
out what guidelines it needs from a globally specified
policy, since each policy task is also labelled with the
classes to which it applies. This policy predicates the
agent’s application of skills according to broad crite-
ria, encompassing distributed collaborations.

A command or action is only executed if a given
host is in the same class as the policy action in the
configuration program. There is no need for other
formal decision structures, it is enough to label each
statement with classes. For example:
linux:: linux-actions

solaris:: solaris-actions
More complex combinations can perform an arbitrary
covering of a distributed system (Comer and Peterson,
1989), e.g.
AllServers.Hr22.!exception host::

actions

where AllServers is an abstract group, and
exception host is a host which is to be excluded
from the rest. Classes thus form any number of over-
lapping sets, which cover the coordinate space of
the distributed system(h, c, t), for different hostsh,
with software componentsc, over time t. Classes
sometimes become active in response to situations
which conflict with policy. Class predication allows
policy to encompass many-to-one maps and one-to-
many maps. Many hosts can belong to the same
class, and therefore policy actions can be common
to many hosts. Similarly, each host can be charac-
terized by many different classes or attributes which
label its intended state, recognizing the multiple func-
tions of each node in the virtual community, and the
distributed nature of software systems.

Additional classes are automatically evaluated
based on the state of the host, in relation to ear-
lier times. This is accomplished by the additional
cfenvddaemon, which learns and continually updates
a database of system averages, which characterize
“normal” behaviour.

5 STATES

The inherent unknowability of the host environ-
ment means that cfengine does not operate with any
single notion of state; it has effectively several tem-
plate definitions. Administrators do not use the same
mental model to describe network arrival processes as
they do the permissions of files, even though the es-
sential nature of maintenance is the same.

A state is defined by policy. The specification of
a policy rule is like the specification of a coordinate
system (a scale of measurement) that is used to ex-
amine the compiance of the system. The full policy
is a patchwork of such rules, some of which overlap.
A cfengine state does not appear as a digital string,
but rather as a set ‘language’ classes(Lewis and Pa-
padimitriou, 1997), often represented in the form of a
number of regular expressions, that place bounds on

• Characterizations of the configuration of operat-
ing system objects (cfagent digital comparisons of
fuzzy sets).

• Numerical counts of environmental observations
(cfenvd counts or values with real-valued aver-
ages).

• The frequency of execution of closed actions (cfa-
gent locking).

Figure 3 illustrates schematically how a state can be
a fuzzy region consisting of values that are ‘as good
as one another’ This is called internal stability in the
language of graph transitions (Burgess, 2004a). If the
value of an object strays outside of the set of internally



��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

q
?

Figure 3: A cfengine state has both value and address. The
address is a potentially fuzzy region, i.e. it is a constrained
region rather than a necessarily unique point.

stable values, it is deemed to be a different state. A
cfengine operator is then required to restore the value
of the object to any one of the values in the stable set.
For example, given the cfengine rule:

files:

/etc/passwd mode=a+r,o-w owner=root

we see that this is not a unique specification of file
permissions, but a set of acceptable ‘equally good’
values. The mode specification says that the accept-
able state must be readable by all and must not be
writable by any other than the owner of the file or its
group owner. There is thus an implicit wildcard here.

6 MAINTENANCE MODEL

The maintenance model, underpinning cfengine,
was outlined in ref. (Burgess, 2000b) and is fully de-
scribed in ref. (Burgess, 2003). Although a precise
description of the cfengine viewpoint is involved, the
idea is rather simple. Each computer system that is to
be managed by cfengine is treated as an autonomous
system embedded in an environment (see fig. 4). It
is important here to divide the system into two parts:
host and environment because these are fundamen-
tally different representations of processes that occur
in the human-computer system.

The environment of a computer is a stochastic sys-
tem. The behaviour of a host, on the other hand, is
governed by a relatively simple computer program,
with easily digitizable content. The level of complex-
ity or information (Cover and Thomas, 1991) in the
computer is much less than that of the environment.
This distinction between the impulses that a computer
receives from its environment and those that are pro-
grammed into it means that we must form a hybrid
model for describing the changes that occur in a com-
puter system.

Users

Network

Maintenance agentConfiguration

Environment Local system

Policy specification

Observation / Monitoring

Corrective actions

Interaction

Arrivals

(stochastic) (alphabetic)

Human operator

timetime

Figure 4: A schematic view of the management model. We
define host and environment. The environment leads to ran-
domness in the configuration of a host as it ‘propagates’ into
the future. The maintenance agent responds in a finite time
to repair the changes that are contrary to policy.

In reference (Burgess, 2003), a computer policy
is described as an average specification of what we
would like a human-computer system to do, from the
viewpoint of the computer; it allows for short-term
errors. Implicit in this definition is the projection of
a complex human-computer system onto a simplistic
digital computer system. We cannot therefore treat
the computer system as a rule-based deterministic au-
tomaton, because we cannot predict the input from
users and network. We have two options: we can iso-
late the computer from all random input (by making
it a closed batch device), or we are forced to deal with
the problem of stochastic change within the digital
system. Since system administration is about human-
computer interaction, we must take the latter view.

7 POLICY

The view of policy taken in ref. (Burgess, 2003)
is that of a series of instructions, coded into the com-
puter itself, that summarizes theexpectedbehaviour.
The precise behaviour is not enforcable, so there is
no sense in trying to specify it at each computational
timestep.

Cfengine does not attempt to provide a complete
description of system policy. It deals with a specific
problem: how to configure the alphabetic properties
of the system of a single host, given that we cannot
fully predict what changes are taking place. This, in
turn, can affect the human aspects of policy through
access control and other behavioural constraints.

Policy is a really description about what we con-
sider to be normal. A description of normality is a
decision about how we define errors. If we cannot
equate normality with policy then we have not even
a partially predictable system to manage and the con-



cept of ‘management’ would be meaningless.
This is where the split between system and envi-

ronment has a fundamental conceptual bearing on our
description of it. There are two kinds of normality
that pertain to:

• Properties that we feel confident in deciding for
ourselves (permissions of files, processes etc).
These are decided and enforced. Deviations from
these ‘digital’ specifications can be repaired or
warned about directly by Shannon-like error cor-
rection.

• Properties that are controlled by the environment
and must be learned (number of users logged in,
the level of web requests). These have fluctuating
values but might develop stable averages over time.
These cannot normally be ‘corrected’ but they can
be regulated over time (again this agrees with the
maintenance theorem’s view of average specifica-
tion over time).

Cfengine deals with these two different realms differ-
ently: the former by direct language specification and
the latter by machine learning and by classifying (dig-
itizing) the arrival process.

Learning an environmentally controlled state re-
quires extra processing. First, the environment dae-
mon cfenvd collects data and learns the normal state
of the system using machine learning methods, then
the state of the system is measured relative to the
learned average state.

8 CONVERGENT REGULATION

The Shannon communication model of the noisy
channel has been used to provide a simple picture of
the maintenance process (Burgess, 2002a). Mainte-
nance is the implementation of corrective actions, i.e.
the analgoue of error correction in the Shannon pic-
ture. Maintenance appears more complex than Shan-
non error correction, however. What makes the anal-
ogy valid is that Shannon’s conclusions are indepen-
dent of a theory of observation and measurement. For
alphabetic strings, the task of observation and correc-
tion is trivial.

To view policy as digital, one uses the computer
science idea of a language (Lewis and Papadimitriou,
1997). One creates a one-to-one mapping between
the basic operations of cfengine and a discrete symbol
alphabet. e.g.
A -> ‘‘file mode=0644’’
B -> ‘‘file mode=0645’’
C -> ‘‘process email running’’ Since

policy is finite, in practice, this is denumerable. The
agent interprets and translates the policy symbols
into actions through operations, also in one to one

correspondence.

1. Cfagent observes : X

2. Policy says :X → A

3. Agent says :A → Ôfile(passwd, 0644, root)

Although the space of all possible policies is poten-
tially very very large (though never truly infininte due
to finite memory etc), only a small fraction of the
possibilities is ever realized on a real system and this
problem is not a limitation.

There is a larger point here: this is indeed what
we mean by management. If we cannot reduce pol-
icy to a finite number of assertions and tasks then we
have effectively lost control of the system and the idea
of management becomes meaningless. We can define
manageabilty as the ratio (Burgess, 2004a)

M =
Information in environment

Information in policy

It can therefore be assumed that the number of realis-
tic policies and desirable operations is finite and that
these can be defined and enumerated into a set of al-
phabetic operations.

These presumed and observed states of the system
feed into the definition of the policy (Burgess, 2004b;
Couch and Sun, 1994). However, if one defines the
operations into classeŝO1, Ô2, ... etc, then these form
a strict alphabet of ‘black box’ objects. The fuzziness
in the operations can be eliminated by introducing a
new symbol for each denumeration of the possible pa-
rameters. Here is an example operation, simplified for
the purpose of illustration.

files:

/etc/passwd mode=0644 owner=root

This is actually a special instance of

files:

<filename> mode=<permissions>
owner=<username>

which tells the agent to assert these properties of the
named file object. Since there is a finite number of
files and permissions and users, there is no imped-
iment to listing every possible permutation of these
and assigning a different alphabetic symbol to them.
In operator language, the above action might be writ-
ten:

Ôfile(name, mode, owner) (1)

Let us suppose that example above evaluates to the
alphabetic symbol ‘A’. When the agent observes these
properties of the named object it comes up with a
symbol value based upon what it has measured. Sup-
pose now that a user of the system (who is formally



part of the environment) accidentally changes the per-
missions of the password file from mode=0644 to
mode=0600. Moreover, we can suppose that this new
value evaluates to the alphabetic character ‘X’.

The transmission medium in this process is time
itself. We regard the system (as is normal in the phys-
ical sciences) as being propagated from its current lo-
cation to exactly the same place, over time. In other
words, the time development of the system is just the
transmission of the system into the future over no dis-
tance.

The primitive nature of the basic cfengine opera-
tions makes this set of operations fall into the follow-
ing categories:

• Orthogonal (non-overlapping) operations that are
strictly independent alphabetic atoms.

• User defined operations, outside of cfengine’s
framework, that cannot be guaranteed to be inde-
pendent and might therefore ‘overlap’ with other
alphabetic symbols.

• Operations entirely outside of cfengine’s jurisdic-
tion.

Cfengine introduced the notion of ‘convergence’
into system administration. This was orginially only
implicit in the early work, but was named explicitly in
the Computer Immunology essay in (Burgess, 1998)
and was immediately taken up by Couch et al (Couch
and Gilfix, 1999) and formed the basis of the con-
figuration management workshops. This concept was
quickly understood to be important.

A key part of avoiding uncontrolled behaviour are
cfengine’s transaction locks (Burgess and Skipitaris,
1997). These were designed to ensure three things:

• Consistency of the outcome of atomic operations,
i.e. avoid contention due to concurrent execution
of multiple agents.

• To limit the frequency with which operations could
be repeated.

• To ensure that operations would not be able to hang
indefinitely.

Behind these, is the assumption that new cfengine
agents will be spawned frequently to check for main-
tenance operations.

One would like to secure the property that changes
made to a configuration move towards a definite state,
terminate after a small number of iterations, and that
the route taken back towards the ideal state is unique
and unidirectional. If this were not the case, then con-
tradictions and non-terminating cycles would result.
We require there to be absorbing states, or for oper-
ations to behave like semi-groups (Couch and Sun,
2003; Burgess, 2004a).

Cfengine uses the idea ofconvergenceto an ideal
state. This means that, no matter how many times

cfengine is run, its state will only get closer to the
ideal configuration. This is a stronger condition than
idempotenceas in Couch’s interpretation (Couch and
Sun, 2003; Couch and Sun, 1994). Since idempotence
requires onlyÔ2 = Ô, while convergence is relative
to a specific policy stateq0 (Burgess, 2004a):

Ôq = q0

Ôq0 = q0. (2)

The point of convergence over multiple runs is that
multiple orthogonal, convergent operations will al-
ways lead to the correct configuration, no matter
which part of the configuration is incorrect, or in what
order things occur. Complex operations might not
complete within a single scheduled iteration, if exter-
nal factors intervene in an untimely manner; but they
will always converge eventually. This is proven in ref.
(Burgess, 2004b).

Cfengine addresses convergence in two ways: by
making each successful operation convergent in a sin-
gle step, and by checking for contrary sequences. If
a single step should fail or be undermined, for what
ever reason (crash, interruption, changing conditions,
loss of connectivity etc), it can be repeated later; this
is sufficient to ensure that simple configurations con-
verge. We now consider how this works.

If two operations areorthogonal, it means that they
can be applied independently of order, without af-
fecting the final state of the system. Using a lin-
ear representation of vectors and matrix valued op-
erators, this is equivalent to requiring their commuta-
tivity. The construction of a consistent policy compli-
ant configuration has been subject to intense debate
since it was understood that cfengine actions are not
generally order dependent (Burgess, 2004b; Traugott,
2002; Couch and Sun, 1994).

The identification of convergence with order-free
configuration led S. Traugott to formulate an alter-
native philosophy which he referred to as ‘congru-
ence’ (Traugott, 2002). The concept was the oppo-
site of the cfengine view and suggests that extreme
ordering is the answer to reliability. Instead of always
being able to find a path to the correct configuration
from a given configuration, Traugott proposes simply
destroying a faulty machine and building it up from
scratch, like the differentiation of a biological stem
cell. The argument about the necessity of ordering has
been successfully refuted in (Burgess, 2004b; Couch
and Sun, 1994), with certain qualifications. The two
approaches can both be made to work, but only the
convergent approach can be used for realtime mainte-
nance.

A little-discussed but relevant part of the ordering
problem is the matter of cfengine’s adaptive trans-
action locking (Burgess and Skipitaris, 1997). The
transaction locks allow cfengine processes to ‘flow



0 50 100 150 200
0

10

20

30

40

50

60

70

Figure 5: Weekly average (with standard deviation error
bars) of incoming web request events as learned by cfenvd.
Apart from some outliers we see a periodic pattern with
peaks for Monday, Tuesday, etc, i.e. for each day of the
week.

through’ one another and avoid going into infinite
regression and also prevents agents from repeating
themselves too often, or getting stuck on a problem.
If an agent gets stuck, another one will destroy it and
take over.

Game theory has been suggested as a way of opti-
mizing decisions about system policy (Burgess, 2003;
Burgess, 2004a). Cfengine can be thought of as a
gaming agent that plays in a game against system
‘gremlins’, always trying to do their worst. Some-
times these gremlins are motivated users, at other
times they might be the forces of chance.

9 ANOMALIES

In cfengine, an extra daemon (cfenvd) is used to
collect statistical data about the recent history of each
host (approximately the past two months), and clas-
sify it in a way that can be utilized by the cfengine
agent. The agent learns. Data are gradually aged
so that older values become less important (Burgess,
2002b) (see fig. 5).

The current data include the number of users, num-
bers of processes, etc.; cfenvd is also able to learn
a number of network traffic anomalies. The daemon
automatically adapts to the changing conditions, but
has a built-in inertia which prevents anomalous sig-
nals from being given too much credence. Persistent
changes will gradually change the ‘normal state’ of
the host over an interval of a few weeks. Unlike some
systems, cfengine’s training period never ends.

Cfenvd sets classes in cfagent which describe the
current state of the host in relation to its recent his-
tory (see fig. 6). The classes describe whether a pa-
rameter is above or below its average value, and how
far from the average the current value is, in units of
the standard-deviation (see above). This information

0 10 20 30 40 50 60 70
0

1000

2000

3000

4000

5000

6000

Figure 6: Distribution of outgoing network traffic about
mean. This shows that there is a sharp expected value but
that there is sometimes less tha this amount. The shape
of this distribution is used to define a relativistic policy for
anomalous behaviour.

could be utilized to arrange for particularly resource-
intensive maintenance to be delayed until the ex-
pected activity was low. For instance: disk backups.

One way of understanding cfengine’s behaviour in
relation to environment and policy is as a Markov
fluctuation model of change (Grimmett and Stirza-
ker, 2001), seeking an equilibrium configuration. In
the original model, only first order Markov processes
were available; everything about the system had to be
deduced from the environment upon each new invo-
cation. The only exception was the use of adaptive
locks, which were used to regulate repetition. That
approach has succeeded in solving many problems,
but it lacked the ability to track long-term changes to
the system, such as seasonal variations and changing
patterns of usage.

The immunity analogy is also useful here. Im-
munological memory is like a stack of previously
combatted problems, which works like an ordered list
of changing priorities. This enables repeatedly actual
problems to be dealt with more quickly than other-
wise. It represents a change in biological policy to-
ward threat. The same problem arises in configura-
tion management, in the face of unpredictable faults
or attacks.

The challenge of future anomaly detection is the
find a stochastic anomaly language for a reactive
agent policy. For statistical characteristics one has the
shape of the distribution about the mean, the mean it-
self and the scales represented by the moments of the
distribution. Recently the entropy of the distribution
of originating IP addresses has been used to predicate
anomalies (Burgess, 2002b):



10 Summary

This summary of cfengine outlines how the gen-
eral theory of system maintenance is applied and im-
plemented in the software. Further information about
the detailed software implementation may be found
in the extensive manuals at (Burgess, 1993). The key
points to understanding cfengine management are

• The stochastic nature of the environment and hence
we must expect randomness in hosts.

• The discrete nature of host configuration which
must be constrained.

• Classification of environmental changes into a
patchwork of sets.

• Policy constraints on hosts.

• Operator responses to policy deviations (anomalies
and countermeasures).

• Convergence and idempotence of configuration
countermeasures.

Cfengine is an on-going project and, at present, it is
being re-written to more directly reflect the theoreti-
cal model that has emerged in tandem with its devel-
opment, and extended to allow more general software
control of robotic systems.

REFERENCES

Burgess, M. (1993). Cfengine www site.
http://www.iu.hio.no/cfengine.

Burgess, M. (1998). Computer immunology.Proceed-
ings of the Twelth Systems Administration Conference
(LISA XII) (USENIX Association: Berkeley, CA), page
283.

Burgess, M. (2000a). Evaluation of cfengine’s immunity
model of system maintenance.Proceedings of the 2nd
international system administration and networking
conference (SANE2000).

Burgess, M. (2000b). Theoretical system administration.
Proceedings of the Fourteenth Systems Administration
Conference (LISA XIV) (USENIX Association: Berke-
ley, CA), page 1.

Burgess, M. (2002a). System administration as communi-
cation over a noisy channel.Proceedings of the 3nd
international system administration and networking
conference (SANE2002), page 36.

Burgess, M. (2002b). Two dimensional time-series for
anomaly detection and regulation in adaptive sys-
tems. IFIP/IEEE 13th International Workshop on
Distributed Systems: Operations and Management
(DSOM 2002), page 169.

Burgess, M. (2003). On the theory of system administra-
tion. Science of Computer Programming, 49:1.

Burgess, M. (2004a).Analytical Network and System Ad-
ministration — Managing Human-Computer Systems.
J. Wiley & Sons, Chichester.

Burgess, M. (2004b). Cfengine’s immunity model of evolv-
ing configuration management.Science of Computer
Programming, 51:197.

Burgess, M., Haugerud, H., Reitan, T., and Straumsnes, S.
(2001). Measuring host normality.ACM Transactions
on Computing Systems, 20:125–160.

Burgess, M. and Skipitaris, D. (1997). Adaptive locks
for frequently scheduled tasks with unpredictable run-
times. Proceedings of the Eleventh Systems Admin-
istration Conference (LISA XI) (USENIX Association:
Berkeley, CA), page 113.

Comer, D. and Peterson, L. (1989). Understanding naming
in distributed systems.Distributed Computing, 3:51.

Couch, A. and Gilfix, M. (1999). It’s elementary, dear wat-
son: Applying logic programming to convergent sys-
tem management processes.Proceedings of the Thir-
teenth Systems Administration Conference (LISA XIII)
(USENIX Association: Berkeley, CA), page 123.

Couch, A. and Sun, Y. (1994). On observed reproducibil-
ity in network configuration management.Science of
Computer Programming, (to appear).

Couch, A. and Sun, Y. (2003). On the algebraic structure of
convergence.Submitted to DSOM 2003.

Cover, T. and Thomas, J. (1991).Elements of Information
Theory. (J.Wiley & Sons., New York).

Ferber, J. (1999).Multi-agent Systems: Introduction to Dis-
tributed Artificial Intelligence. Addison Wesley.

Grimmett, G. and Stirzaker, D. (2001).Probability and ran-
dom processes (3rd edition). Oxford scientific publi-
cations, Oxford.

Lewis, H. and Papadimitriou, C. (1997).Elements of the
Theory of Computation, Second edition. Prentice Hall,
New York.

P.D’haeseleer, Forrest, S., and Helman., P. An immunolog-
ical approach to change detection: algorithms, anal-
ysis, and implications. In Proceedings of the 1996
IEEE Symposium on Computer Security and Privacy
(1996).

Shannon, C. and Weaver, W. (1949).The mathematical the-
ory of communication. University of Illinois Press,
Urbana.

Sloman, M. and Moffet, J. (1993). Policy hierarchies for
distributed systems management.Journal of Network
and System Management, 11(9):1404.

Somayaji, A., Hofmeyr, S., and Forrest., S. Principles of
a computer immune system.New Security Paradigms
Workshop, ACM, September 1997:75–82.

Traugott, S. (2002). Why order matters: Turing equiv-
alence in automated systems administration.Pro-
ceedings of the Sixteenth Systems Administration Con-
ference (LISA XVI) (USENIX Association: Berkeley,
CA), page 99.


