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Abstract

This paper describes a mean field approach to defining and implementing policy-
based system administration. The concepts of regulation and optimization are used
to define and evaluate stable equilibria of system configuration, that are associated
with sustainable policies for system management. Stable policies are thus associated
with fixed points of a mapping that describes the evolution of the system. In general,
such fixed points are the solutions of strategic games. A consistent system policy
is not sufficient to guarantee compliance; the policy must also be implementable
and maintainable. The paper proposes two types of model to understand policy
driven management of Human-Computer systems: i) average dynamical descriptions
of computer system variables which provide a quantitative basis for decision, and
ii) competetive game theoretical descriptions that select optimal courses of action
by generalizing the notion of configuration equilibria. It is shown how models can
be formulated using the simple idiom of maintaining an ideal average state. This
approach has been realized in practice in the software configuration agent cfengine.

Key words: Computer models, dynamical system, system administration,mean
field theory

1 Introduction

This paper is about system administration, i.e. the design, running and mainte-
nance of human-computer communities. It explores the viability, the strategies
and the some of the limitations of system administration. The principal aim of
the paper is to show that it is meaningful to regard system administration as
a strategic game, whose short-term aim is to maintain a state of approximate
predictability, and whose long-term aim is to maximize productivity. Along
the way, one encounters stepping stones such as the concept of a stable policy.
This viewpoint forms a well-defined problem which can be solved, subject to
local constraints, by Human-Computer systems. The conclusion is not trivial;
it requires a chain of reasoning which this paper can attempts to summarize
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and exemplify. The conclusion is important, however, because the administra-
tion of systems is still practiced, in many organizations, by allowing systems
to reach failure and then by resetting them. This approach is unjustified in
most cases. The conclusion has both reliability and security implications.

System administration is currently founded on mainly assertion and anecdotal
experience[l], combined with a few ideas from distributed software engineer-
ing[2]. To date, few mathematical analyses of system administration have been
undertaken, and no formal framework has been constructed for undertaking
this task; this has made the expression of objective truths about the field
difficult.

1.1 Awims

The aim of this work is to establish a formal view of system administration
which bridges the conceptual divide: a way of formulating objective discus-
sions about computer management, that are sustainable, using a mathemati-
cal framework based on general assumptions. The notions of convergence and
fixed points of mappings (equilibria) will play a central role in this, since they
provide a definition of stability that is the basis of system maintenance. Other
ideas that feed into this kernel include descriptions of computer systems that
have appeared in physics of computing[3-7]. Each of these ideas adds a piece
to a jigsaw puzzle that culminates in a definition of dynamical stabilty and
the maintenance processes that make it possible.

What should a theory of system administration be about? The task of elu-
cidating this sounds straightforward, but it is a slippery business. System
administration, in reality, is based on mainly qualitative, high level concepts,
which mix technical and sociological issues at many levels. Although it is clear
to system administrators that there is a body of technical principles involved
in the discipline, it remains somewhat intangible from the viewpoint of a sci-
entist. It is hard to find anything of general, reproducible value on which to
base a more quantitative theory.

One of the obstacles to formulating such a theory is the complexity of interac-
tion between humans and computers. There are many variables in a computer
system, which are controlled at distributed locations. Computer systems are
complex in the sense of having many embedded causal relationships and con-
trolling parameters. Computer behaviour is strongly affected by human social
behaviour, which is largely unpredictable. The task of identifying and com-
pletely specifying the ideal state is therefore a non-trivial one. It is nonetheless
this task which this paper attempts to address. Can one formulate a quanti-
tative theory of system administration, which is general enough to be widely



applicable, but which is specific enough to admit analysis?
The plan for this paper is as follows.

(1) Section 2 develops a self-consistent and sustainable definition of policy for
a human-computer system, in terms of functional mappings and system
specifications. It is shown that a sustainable policy requires there to be
system maintenance, and describes what maintenance means.

(2) In setion 2.8, a theorem is proven, which shows that there must exist a
class of policies which lead to sustainable behaviour in the system. This
theorem is general and makes no reference to specific semantics of policy.
The result is important in motivating the remainder of the paper, since
it turns attention away from discussions of possibility to acceptance of
possibility and methodology: i.e. to examine the relative value of different
routes towards attaining this goal. The theory of games will play this role.

(3) Given the existence proof, that a desirable policy can be created, section
3 comments on how specific variables can be measured and modelled as
a basis for formulating policy in terms of empirical metrics[8]. This is the
second prerequisite for the culminating synthesis: it allows one to place a
relative value on different approaches or strategies to achieving a stable
policy.

(4) In section 4, the pieces are combined: strategies for maintaining a sus-
tainable policy are formulated in a game theoretical framework, which
allows different pathways to stable equilibrium (strategies) to be pitted
against one another. An example game illustrates the method for a simple
example, reproducing intuitive results.

1.2 Scope of system administration

One of the first obstacles in discussing the theory of system administration
is limiting the scope of the discussion. System administrators are called upon
to perform all manner of tasks as part of their duties. This battery of skills
has no particular cohesion or structure to it, so it often resists formalization.
One must improve on this situation, by restricting to core activities, in order
to make progress in forming a theoretical framework. These core activities
will include insuring availability, efficiency, and security for all users; fault
diagnosis of the system is also a natural inclusion. These include issues such
as software installation and upgrades, which can be classified under availability
and efficiency. It also includes user management at a high level, though it will
not be useful to address the issue of creation of user accounts in this context.

Even a limited theory of system administration should cover some key aspects
of the problem:



Policy determination and evaluation,

Strategic decisions about resource usage,

Interaction between users and system for resources.
Productivity considerations (the economics of the system),
Empirical verification of strategies and policies,

Efficiency of policy and of policy implementation,
Efficiency of the system in doing its job.

More pragmatic details, such as the need for software installation and upgrade,
will have to be tackled at an abstract level, in terms of productivity, probability
of failure, resource usage, risk and so on. Software bugs can be addressed in
terms of productivity, risk or security. Security, in turn can be viewed as a
contest for resources at the level of the system.

1.3 On scales and coding

Complex systems are often so disparate in their nature, at different scales, that
quite different descriptions are required to capture the full essence. A theory
of system behaviour at, say the microscopic level of system calls, need not
resemble a theory for the behaviour at a macroscopic scale of larger entities,
such as patterns of user behaviour. Both are needed in order to understand
the whole hierarchy of things going on. This has implications for maintenance
of systems.

Predictability depends on the sustainability of assumptions about a system.
In a predictable system there is an approximate separation of scales, so that
high and low level details can be described independently. This means that
the functioning of a system at a high level is not strongly dependent on the
implementation details of the system at lower levels (see the examples below).
This idea allows a notion of high level stability in the coming sections. How-
ever, scale separability is only an approximate quality. The price one pays
for assuming the integrity of lower level details is a finite uncertainty in the
behaviour of the high level system, whose magnitude depends (inversely) on
the truth of the assumption of separability.

Example 1 A database is a high level system. It may be implemented with
paper and filing cabinets, or with electronic storage on Uniz or Windows com-
puters — the low level implementation does not alter the information transac-
tions themselves. This is a desirable quality, which promotes several important
design principles; however, low level details can affect the high levels in the case
of an anomaly. For instance, a paper record might unexpectedly be damaged
or lost; an electronic record is vulnerable to power failures. If low level details
like these can be corrected at the lower level then the high level assumption



of ignoring low level detail can still be maintained, otherwise an unpredictable
change will be seen to occur at the high level. Thus, while one would like to
keep the high level view for simplicity, this requires a commitment to detail
in the lower levels to preserve the property of scale-separability, otherwise the
high level view becomes an over simplification, because information about the
lower levels has been ignored.

Example 2 The separation of scales in time is also a desirable property, since
it leads directly to a notion of stability in the coming sections. Suppose one
measures the hourly average behaviour of a variable, like CPU usage, for ver-
ifying the behaviour of a critical system that normally varies slowly. This av-
erage s representative of the system, provided low level fluctuations are only
small. The presence of a sudden anomaly (occurring within minutes or sec-
onds) could break this assumption, unless the anomaly were countered quickly
enough to prevent any serious consequences. A fast (low level) repair, can
maintain a slow (high level) notion of stability.

In taking a high level view, one conceptually separates an average view from
a low level detailed view; this is like the procedure of information hiding
in creating directory structures or use of subroutines in programming. The
expression ‘averaging over’ then applies also to the concealment of dynamical
detail: i.e. the suppression of small, short-term changes by choosing to look at
average behaviour over a longer time-scale.

To summarize, a description of system behaviour at a high level is, for many
purposes, independent of specific details of the lower levels, or shorter time
scales, but this assumption can be damaged in an unpredictably environment.
This implies an potential uncertainty in the behaviour each new level. Sys-
tem administration is a problem which is tackled at a high level, and over
traditionally long time scales, since it addresses the interaction of users with
the system through high level interfaces. This means that there can always
be an intrinsic uncertainty in understanding the detailed system, and a cor-
responding uncertainty in any changes made. A high level change introduced
to curb a lower-level problem is intrinsically limited. This problem is partic-
ularly important because computer systems are stochastic in nature[9] and
the fluctuations of the low level system are generally more detailed than the
consequences that human administrators can address through any interface.

The implication here is that computer systems cannot be micro-managed with
complete predictability, as long as there are parts of the system which are
not completely determined by the system administrator. Systems can only
regulated, because one cannot exert certain control over low-level changes,
with only high level interfaces. This limitation must be taken into account in
managing the system.



1.4 Generic computer models

In order to elucidate the results and goals of computer configuration and main-
tenance, it is necessary to identify the main characteristics of the interactions
between computer systems and their users, at a suitable level of abstraction.
This includes finding:

Relevant variables,

Invariance properties,

Persistent structures,

Sources of information loss (entropy),

which affect the principal goals. Several studies of computer systems have
attempted to identify such qualities[3,4,9,5] and it is supposed here that a
suitably abstracted description can be built on principles such as those iden-
tified by these authors.

The basic model proposed for a computer is that of a dynamical ‘community’
of processes and resources, coupled to an external environment of users. The
environment is represented as a source or sink which generates the stochastic
influences of all of the users of the system, and any other computer systems
which communicate with hosts within the perimeter of one’s own system.
As pointed out in ref. [10], the issue of networking does not increase the
complexity of the administration problem, only its localization and perhaps
its absolute magnitude. A set of networked hosts, sending external messages,
is no different, for present purposes, from a single virtual host with internal
inter-process communication.

There is a need for at least two distinct types of theoretical model for the
computer-user interaction in system administration: models for impartial eval-
uation, and models for strategic planning and adaptation. These may be re-
ferred to as passive (type I) and strategic (type II).

e Type I models are passive descriptions of resource usage, as stochastic
processes; they describe the changing array of variables which character-
izes host state. Type I models can be verified by empirical measurement
of computer systems and used to predict the passive aspects of computer
behaviour. They form the basis for a type II model.

Example 3 Type I models have described the rates of starting and stopping
of processes on a computer, the expedition of network service transactions,
and the accumulation of disk usage, as functions of time. One could model
distributions of the relative level of usage of different computer programs,
and their effects on the rest of the system. These are based on random arrival
of requests, the multi-periodic work patterns of users. Models such as these
lead to an understanding of how resources are used, and the distributions of



requests.

e Type II models introduce a user-level, semantic interpretation of the sys-

tem based on a set of values. They evaluate strategies for effectively achiev-
ing the goals of the system, i.e. planning and maintaining policy. They
apply knowledge learned from type I models, in order to compare and con-
trast the effect of different policy decisions on the system, and determine
optimal strategies for achieving some goal.
Example 4 Type Il models have been created to determine the best strate-
gies for deleting temporary files from user-disks, so as to prevent disks from
filling. Games for mazimizing system availability, and for locating network
infrastructure, with the constraint of limited resources have been suggested.
Service Level Agreements (SLA) are included in this. Psychological and tech-
nical strategies for encouraging users to follow basic system rules could be
modelled, based on type I studies of user attitudes and the relative merits of
these in a larger context. Such models would have security implications.

Thus, a type I model provides a substantive basis for discussing system man-
agement in concrete terms, whereas a type II model introduces a value system
into the analysis: a notion of what is desirable or undesirable. This must be
quantified somehow, thus one requires a currency, or notion of wealth and
poverty of purpose, in relation to system policy. It is in type II models that
system policy takes centre stage.

1.5 The role of time

Time plays a central role in the understanding of system administration,
because computing systems are dynamical systems. Several important time
scales emerge, and are important in separating the details of the response
of the system to different influences. The passage of system time in a com-
puter system occurs through the iteration of the fetch-execute cycle, thus the
time-development of a computer is thus discrete at the microscopic level. Over
longer time periods, this fine-grain discreteness is unimportant however, and
the system may readily be approximated as a function of continuous (dif-
ferentiable) time. Furthermore, this approximation can be made at several
levels, which will be described in the next section. This allows one to deal
with changes of interest, while suppressing changes which have no immediate
bearing.

The time scale at which users work, reflects changes in the system’s internal
resources as a result of human work patterns. This situation has been studied
empirically and it is found that the average behaviour can most clearly be
seen on a periodogram spanning a working week, with a resolution of approx-
imately one hour[9]. Superimposed on top of this coarse trend, is the more



microscopic fluctuation behaviour, which reflects environmental complexity.
This can be shown to see changes on the order of seconds up to about 5 min-
utes. A computer system is an arena in which users and processes compete
for limited resources. The situation one aspires to is one of relative stability,
with slow long-term changes on a background of rapid fluctuations.

2 The meaning of policy

In order to formulate the purpose of system administration explicitly, one
requires a basic ‘world view’ of the problem: one regards computers as con-
strained dynamical, but stochastic systems; later they can be developed as
purposeful semantic systems. This is a somewhat heretical viewpoint in com-
puter science, but is directly analogous to the view taken by Shannon in de-
veloping his theory of communication[11]. The semantic content of a system
is not required to discuss many of its aspects; it returns only in the latter part
of the paper to discuss strategy.

This major section elaborates on that viewpoint and culminates in the con-
clusion that one only manages the average behaviour of systems. It presents
the notion of convergent behaviour, and argues that convergence is a desirable
(and approximately necessary) condition for stability of systems.

We begin by taking the following heuristic definition of policy, as a description
of how a system is configured and used, as an axiom:

Assumption 1 A policy is a description of what is intended and allowed of a
system and its behaviour. The exact nature of policy remains to be determined.

Example 5 The set of all executable programs installed on a computer, to-
gether with configuration decisions, a code of conduct for users and for us-
age, form a policy. This contributes to determining the activities which will
be performed by the computer. Access controls are also a part of policy: some
programs can be restricted, by access controls or resource limitations. Rules ap-
plied to users are less predicatable than rules applies to machines: some users
will misuse the programs, either by accident or by will, thus a policy can never
be identified with absolute control.

In simple terms, it is a detailed specification of the human-computer system.
The purpose of this section is to refine this concept into a form which approx-
imates the real situation experienced in system administration. Policy must
somehow encompass the issues above and be formalized to the point at which
it can be submitted for analysis.



The identification of a computer as a dynamical system, obeying clear laws
and methods of analysis, is central to the attempt to model its behaviour by
a variety of analytical and numerical techniques. The motivation for this is to
achieve a level of abstraction which is appropriate to a high-level description of
the user-machine-administrator interaction. The study of dynamical systems
has a long history and serves as a highly convenient framework for discussion.

Assumption 2 A computer system is a dynamical system whose average be-
haviour can be modelled by continuous functions of time q(t) for the purpose
of discussing rates of change within the system. This continuum approrima-
tion is valid for descriptions of computer behaviour over sufficiently long times
compared to the discrete time scale of its instruction cycle.

A justification of this assumption follows in the next section. The main reason
for adopting this viewpoint is that is allows one to simplify the description of
system changes, in the case where there is an approximately regular pattern
of discrete changes.

2.1 Administrative configuration space

The basic states of a computer system are coded within its memory, consisting
of both primary (RAM) and secondary (disk) storage. The memory takes the
form of a pattern of bit values, written on memory that is referred to here as
the configuration space of the system R!.

Definition 1 Let x; € R', label the coordinate (address) of a bit in the one-
dimensional configuration space R!, where z; ranges over its dimension
0 < 1 < Dy. This is the space of objects onto which a configuration is written.

The time-evolution of a computer system is driven by its most primitive oper-
ation: the fetch-execute cycle. This means that time is discrete at its highest
resolution. However, for the purpose of describing averages, it is useful to allow
t to take on arbitrary real values, denoted by R.

Definition 2 Let t € R label the time coordinate at which an event occurs
within the system.

Example 6 The fundamental system time is discrete; it belongs to the set of
integers multiplied by a basic clock time scale T, 1.e. t = 0,1, 21, ..., ,nI,
where n s an integer but we might use t to label the mid-point of such an in-
terval, or other arbitrary point when grouping such intervals in coarser grains.

Since 7, yields far greater resolution than one needs to discuss the adminis-
tration of a system, we shall be looking at times thousands of times longer



than this and greater. At these scales, the discrete nature of time can be made
irrelevant by locally averaging over small details (see below).

Written onto the configuration space of bits is a pattern of values, zero or one,
which changes over time; thus, a configuration may be defined as follows:

Definition 3 A lowest level configuration q,(z1,t), on R, is a pattern of
values associated with each point on the configuration space, for each position
x1 at tame t:

¢ R'® R — {0,1}, (1)

where ® denotes an outer product of two sets or spaces. The state space of
q1 1s the discrete set {0,1}.

A configuration at z; = z for some z, is a chain, or process which develops in
time (see appendix A for a review of chains). The whole configuration ¢ (z, t)
can therefore be thought of as a set of D; parallel interdependent chains.

Example 7 The configuration space R' is the array of bits in a computer
memory (including RAM, disk and other registers), which ezhibits a bit-pattern
q1(z1,t) at time t. The bit pattern changes in time as a result of the fetch-
erecute cycle. The variation with x1 s a result of the coded instructions for
the development of the system. Since a computer approximates a Universal
Turing machine, this can be thought of as the Turing tape.

The language of chains is more appropriate here than the language of state ma-
chines because it is not the function of the system, rather its consistency with
time and its maintenance that one is concerned with in system administration.
It is assumed for the remainder of the paper that programming instructions
can be coded within the configuration ¢;(x1,t) in order to instruct the system.
These instructions will clearly become a part of the system policy.

There are now two points to be made: i) averaging leads to a different state
space with a higher density of values in a given range, ii) high level coding
of information on R! allows us to view the basic objects of the system not
as bits, but as objects with a greater range of values. Combining coding and
averaging, one can view a computer system as a new set of interdependent
processes with a high resolution. It becomes reasonable to approximate their
development using a continuum model, in which any marked discreteness can
be handled explicitly, but the actual resolution of the system can be ignored.

The discrete nature of the time ¢ is not normally perceived by the users or
the high level software running on the system, since the time interval is too
small to be resolved by them. This is certainly true at the time scales over
which system administration takes place. It is therefore convenient to consider
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only the average behaviour of the system over longer, more appropriate time
intervals At > T.. The procedure of averaging over short-term detail is also
a strategy by which one can understand the long term behaviour of processes
without attention to irrelevant detail. The process of averaging a discrete
function of system time is denoted here by expectation value angle brackets
(-..). The effect of averaging a portion of a function over a number n of discrete
points is as follows:

() =3 L 2

Note that there is a division by the number of points. Applying this to discrete
time intervals, where n = At/T,, about the mid-point of the interval £ one has

At/2 2
Fanpy= 5 o

t=t—At/2

(3)

We shall make frequent use of this construction. Averaging of f, over n steps,
makes the range of values of the configuration take on values from the rational
numbers:

T .
(q1(z1,t)) € m {Kct X (max ¢ — mlnql)} , (4)
for integer m = 0,...,n — 1. Since ¢; consists of bits, (max¢; — ming;) = 1.

As a mapping from parameter domain to range:

(@) 1 (R"® R') = Qu ()

where composition operator ® denotes the product space and @), is the set

Ql(At)={%},m20,1,...,n—1. (6)

As At — oo, the range of ()(At) approximates that of an open interval of
real values between 0 and 1, over longer discrete intervals. Because the basic
time scale T is so much shorter than the scale of seconds and minutes at
which administrative and user events take place, one can locally average over
time intervals hundreds of times longer than 7, and still have sufficient time
resolution to be able to ignore the discrete nature of the coarse grained time.

Assumption 3 Over time scales much greater than the basic time interval T¢,
the average properties of a computer system may be treated in a continuum
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approximation, as real functions of time. This leads to many notational and
descriptive simplifications. The state space of this coarse grained description
will be denoted by Qg, where ¢ will take a value explained in the next section.

2.2 Coded information

Although computer systems are bit-configurations, operated on by low level
rules, this viewpoint ignores an important issue, which is the layered coding of
information used to represent user-level data. Even the basic ASCII symbols
nowadays require a representation of 7-bits; most data and processes require
complicated representations that require one to deal with high level objects
such as files and directories. It is at these levels that both the usage and
the administration of the system take place, so it is this level to which one
must address a model of administration. Describing change in such high level
objects is subtle because the content is semantically ordered on R!, but for
the purpose of discussing rates of change, one may ignore the interpretation
of the high level objects and view them as closed containers. This is analogous
to a local averaging in time, and means that a representative numerical value
can be used for each object.

The transition from low level to high level is accomplished by successive levels
of grouping smaller objects into larger ones, such as the hierarchy of objects
expressed in table 1. For simplicity, we shall assume that all the objects have
the same size. This is not the case in practice, but the assumption serves to
avoid unnecessary additional specification and does not alter the argument,
only the details.

Level | Example objects

Groups, departments, LANs

Users, virtual machines, agents

6
5
4 Compound objects, files and attributes
3 int, float, char etc

2

bytes, words

1 bits (RAM,ROM,disk)
Table 1
A separation of scales in a computer system. At a certain level, human users begin
to interact with the system, and thus form part of it.

These items represent effective properties of the system, i.e. new alphabets of
non-overlapping objects. This partitioning is an endomorphism. At level ¢, the
system may be considered /-dimensional, since there are up to £ independent
degrees of freedom.
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Fig. 1. A partitioning of the configuration space into higher level objects, is a map-
ping from one to two dimensions. The vertical scale is the range of the coding level,
as the level increases so does the range of values taken by objects at that level.
For the purpose of discussing rates of change, these values can be represented as
numerical values.

Definition 4 Let R’ be the set of D, objects of level £, and let Q, be the set
of dy sub-objects within each element of R® (see fig. 1). A high level coding
of the configuration space R', is an endomorphism L, which coarse-grains a
set of Dy lower level objects into Dyy1 higher level objects, of size dgyq:

Ly : R* — R™. (7)

The set of high level objects has coordinates xy411 € {0,..., Dgi1}.

A high level configuration is thus no longer defined in terms of bits, but in
terms of high level objects such as numbers, symbols or file objects. The range
of values represented by such objects increases exponentially in proportion to
their size.

Definition 5 A level £ configuration qi(ze,t) is a homomorphism from the
coded configuration space at each discrete time t € R, to the object

ge: (R'® R') — Qu(At) (8)
where Qg is the set of states represented by a range of 1...d, rational values.

Example 8 The configuration space R® is a set of high level objects in a
computer memory which contains a set of high level data qo(xe,t) at time t.
This pattern of high level data changes in time as a result of the operation
of software, like the operating system. The number of different values in the
range of {(q¢) is of the order 2% x At/T..

Definition 6 A variable ¢(z,t) at z, is a synonym for qu(ze,t).
Q(,’E,t) = QK(Q%t)- (9)
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This notation is used for convenience; a subscript £ is deliberately suppressed
on q(x,t), as well as on the coordinate x. If £ is chosen at some fized level
which characterizes the lowest level of interaction between users and computer
system, then the set q(x,t) may be called a level ¢ state of the system at time
t.

Influences from outside the system, i.e. from users, are limited by the way the
interaction (system interface) is coded at a high level. Users actions are filtered
through high level interfaces. The environment of the system (next section)
presents itself to the computer as a interaction which is effectively coded at
a level /. Even though the intrinsic information content of the environment
is greater than can be represented by level ¢ resolution, the environment’s
projected image cannot exceed this level of detail in R. There is thus an
intrinsic uncertainty in the response of the system to its environment, which
occurs because the interaction has a digital granularity. The entropy of the
environment therefore limits the maintainability of the system S.

2.8 Systems and dynamics

This section presents a view of computer systems interacting with external
agents, such as users and network clients. This interaction is important to
system administration because the arrival of information from external sources
affects the configuration state. The information from the environment has a
potentially very high entropy.

Definition 7 Let a closed dynamical system S be defined to consist of
i) a fized configuration space Rf, i) an initial configuration q(z,t;) on R
at time t = t;, and i) a rule for subsequent time development, mapping a
configuration q(x,t) to a new configuration at q(x,t'), wheret' =t +dt, for a
small increment dt > At. The mapping is an endomorphism, represented by
a transition matriz

U:RRORQQ, —» REQR @ Q, (10)

where each iteration yields

U : q(z,t) = q(z,t +dt), (11)
so that the nth application of the map to q(z,t;) yields q(z,t; + ndt). Repre-
sented as a transition matriz operator U(t,t"), this becomes

q(z,t + dt) = Uy(t + dt, t)q(z, 1) (12)
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The functions q(x,t) will be considered at least once differentiable with respect
to time, i.e. piecewise continuous. *

Example 9 A physically isolated computer which receives no input, from any
device, is a closed system. The computer has a fized amount of memory (con-
figuration space). Its initial configuration is the installed software, plus the
contents of all files and registers at start-up. The rule for time development
1s determined by the processor’s fetch-execute cycle on the software which is
part of the initial configuration. It takes memory locations, operates on them
and alters other memory locations. The mapping is not one-to-one; e.g. ad-
dition 1s two-to-one, but all the operations are completely determined by the
configuration inside the memory R'. Another example of a closed system is
a physically isolated human being. The dynamical system is thus an abstract
definition of a process.

Closed dynamical systems are completely determined by U; and ¢(z,t), for
all times, but this is not the case for true computer systems, since any use-
ful computer must receive input and output. This requires it to interact by
coupling to the outside world.

Definition 8 An interaction U; between two dynamical systems S1 and So
is an endomorphism on the combined systems (Sy U Ss), such that both sys-
tems determine the time developments of one another. Let the configuration
space of S1,Sy be Ry, Ry, with coordinates x1,x9, respectively, and let these
have configuration functions qi,qo. The interaction between the systems is a

mapping

Ur: (R'®Qu)1U(R'® Qp)z = (R* ® Qo)1 U (R ® Qu)a, (13)

such that configurations in qi(x1,t + dt) and ga(z2,t+ dt) depend on the state
of both systems at time t, i.e. the probability for the transition {(q:(t')|q:1(%))
depends on q,(t) and qa(t) for some domain of t < t'. In matriz operator
form, this can be represented as

¢ (x1,t + dt) _ Uy Ura ¢ (x1,t) (14)
go(xe, t + dt) 021 022 q2(2,1)

where the presence of non-zero Uis and Uy tmplies an interaction.

Example 10 Consider two isolated systems, e.g. two computers, or a com-
puter and a human, or two processes within a computer system, and equip

1 Note the use of the continuum approximation is only for convenience in what
follows. It is not a necessary device, only a notational convenience.
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them with a communications channel. The ability to communicate means that
values in the configuration of one can be result in an alteration of values in the
other, and vice versa. There is thus a generalized mapping of the two systems
into one another, according to the rules contained in both.

The effect of an interaction is to modify the behaviour of each system. The
resulting dynamics must be viewed in the combined system S; U Sy to observe
the full closure of the system; but usually it is viewed in only one of the sub-
systems S or Sy as the projective image (S; U Ss) N Sy, where n = 1,2. The
meaning of N, in vector form, for a user in Sy is thus

¢ (z,t) = (1,0) (15)

at any time ¢, thus the influence of Sy seems non-deterministic.

In the example above, one might consider the effect of input on a local com-
puter, from a remote computer, by looking only at what happens in the local
computer. This is not the full picture, and thus the behaviour of the inter-
acting local computer will not be completely predictable based only on the
information in the local system. This lack of predictability presents a real issue
to be dealt with in the administration systems coupled to users and networks.

The interaction which is of principal interest in the case of computer systems,
is that with the users of the system, and with networked peers. This ensemble
of influences is the combined effect of an external world of considerable com-
plexity. We can now define the environment of a computer system in a more
precise way, using the foregoing definitions.

Definition 9 The environment of a system S refers to an ensemble of mu-
tually interacting systems, interacting with S. An ensemble E of mutually
interacting systems develops by the following rule:

¢ (x1,t + dt) Uy Uy --- Ui ¢ (x1,1)
Q2($2,?5+ dt) _ [7.21 Uss 112(33'2;75) (16)
gn(zN,t + di) Ui Unn gn(zn, 1)

If the system S has configuration qi(x,t), then the environment of S is the
remainder of the configurations ga U qo . ..U qy.
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In computers coupled to users and networked hosts, the informational com-
plexity of E is generally assumed to be much greater than that of S.

Example 11 Two computers, with a direct cable between them, interact di-
rectly by sharing and exchanging information. These computers are each oth-
ers’ environments. Computers interact indirectly through third parties, or by
chains of interactions which lead to multiple, n-th order and cyclic dependen-
cies. A user and a computer interact directly via a keyboard, or indirectly by
passing through another user or computer etc. An environment can be any of
these scenarios, but usually it is a vast, complex web of such inter-relationships
with a very high informational complexity. In general, the environment of a
system is anything external which can affect it in any way.

The significance of this definition is that it illustrates that the environmental
interaction of a local computer system, which leads to unpredictability within
the scope of the local system, is nothing more than an ensemble of systems
which are essentially comparable to the local system. In the case of a stan-
dalone computer, with no network connection, the environment is limited to
a single user, but this user interacts with the rest of the world. This leads
to great complexity, and thus the interaction is normally viewed as being a
stochastic process.

In the study of dynamical systems, the environment is not normally modelled
as a detailed entity owing to its complexity; rather one considers the projected
image of the environment in the main system of interest. The essence of the
definition is that the environment leads to a projected component in S which
appears to be partially random (stochastic), because the information about
cause and effect is not available. This causes S to behave as an open dynamical
system.

Definition 10 An open dynamical system is the projection of an ensemble
of interacting systems E = {S1,Ss,...,Sn}, onto Sy. The time development
of the open system, may be considered an endomorphism over a noisy channel,
since information from the rest of the ensemble affects q1(x,t). The closed rule
for development 1s:

Un 012 - Uy Q1(371:t)

Uy Usy ga(x2,t)

¢ (z1,t+dt) = (1,0,...,0) (17)

A A

Un1 Unn gn(zn,t)
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This definition is an admission of unpredictability in a system that is open to
outside influence. Indeed, this unpredictability can be stated more precisely:

Lemma 1 The configuration state of an open system S is unpredictable over
any interval dt ~ T,.

Proof 1 This follows trivially from eqn. (17).

qi(z1,t+ dt) # UQ1($1,15), (18)

for any U coded within S, since q1(z1,t + dt) is determined by information
unavailable within S, iff U;; # 0 for © # j, which defines the open system.O

We now wish to attempt to describe a class of systems that interact with
a real world environment. These systems must be able to perform a useful
computing function, so completely arbitrary systems need not be considered.
In such a system, it is convenient to decompose the time-evolution of ¢(z, ?)
into slowly varying stable parts and rapidly varying noise. This is only possible
for systems which exhibit “sufficient stability”, but the meaning of sufficient
stability can be explained by appealing to self-consistency and the notion
of maintainability. This will be done by introducing the statistical notion of
persistent states.

2.4 Maintainability and fluctuations

The notion of system administration is closely allied with that of maintenance.
One of the aims of this work is to discuss the implications of maintenance,
without bringing the semantics of maintenance into the discussion, i.e. to think
of maintenance as a stochastic process. There is a parallel here to Shannon’s
discussion of communication theory[11]. To overlay the language of stochastic
systems onto the maintenance process, one needs to make a separation into
what is normal and what is anomalous. Contrary to what one might expect,
this separation can be made self-consistently, without any reference to the
semantic content of a policy. To begin with, one requires a basic axiom:

Assumption 4 The short-term stability of a system s a desirable quality,
which enables it to perform a function predictably. One is not interested in
managing systems which cannot achieve this minimum level of stability, since
these cannot perform any reliable function.

This assumption of medium-term stability guarantees that it will be possible to
make the separation of normal and anomalous. Not all systems admit to such
a separation (e.g. systems which exhibit approximate statistical self-similarity
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Fig. 2. An schematic picture of the separation of scales in an open dynamical system,
which satisfies eqn. 19. The jagged line represents the highest resolution view of what
q(t) is doing. The solid curve is a short-interval local average value of this behaviour,
and the solid blocks (dotted line) are a much coarser local average. The order of

magnitude of the system’s approximate oscillations is w™?.

do not have this behaviour, but they are not of interest here, since one cannot
begin by assuming that the system is hopelessly out of control). The meaning
of normal and anomalous is not automatically clear, but studies have indicated
that it is self-consistent to associate these with slowly and rapidly varying
changes, on the time scale of user-behaviour|[9].

Example 12 Computational processor operations are the fastest changes which
occur in a computer. Rates of human behaviour are millions of times slower
than this, and may be called medium term. Long term changes, over months
and years, are hundreds or thousands of times longer than this again. In or-
der for humans to perceive computers as useful, the rapid changes must leave
general features of the computer approrimately constant over medium, human
time-scales. A human definition of what is normal thus refers to something
reqular or constant over a time scale which is greater than that of the medium,
human scale of changes.

The separation of slowly and rapidly changing configurations can be made
precise by observing the system through a local averaging procedure. This is
the aim of the next sections. We shall refer to the schematic diagram in fig. 2.

Suppose that such a definition exists for the separation, as it does in the cases
of interest to; one may then write the exact configuration of the system, at
any time, as a sum of two parts:
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q(z,t) = (q(, 1)) + dq(z, 1), (19)

where (gq) refers to a slowly-varying, local average value of ¢, and dg refers
to a rapid fluctuating, stochastic remainder. This decomposition will be used
later; its principal advantage is in isolating which parts of the environment of
users lead to a stable (smooth) average configuration and which parts tend to
be rough and unpredictable. In systems of interest, one expects |0g| < |{g)]|.

Note also that, by definition, (0¢) = 0, thus the fluctuations are evenly (though
not necessarily symmetrically) distributed about the local mean value. This
means that, if fluctuations tend in one particular direction, they will drag the
mean value with them, preserving their zero mean. If one wishes to avoid a
change in the mean value, then one must either offer dynamical resistance to
this kind of monotonic drift, or respond to it with a counter-change, which
balances it on average. This concept of preserving the mean behaviour provides
us with a notion of maintenance.

Definition 11 Let a task 7(t) be a system contained within a subspacer € R*
of a system S:

7(z,t) = q(z,t) : z €1, (20)

where the restricted coordinates x ranges only over the subspace. A task is
a representation of an autonomous process executed on related chains (see
appendiz), and thus evolves in time according to its own irreducible transition
matriz Uy. A task is closed if it is a closed system, and open if it is an open
system.

The concept of a task is needed to discuss a part of a system which operates
autonomously for some purpose, such as maintenance.

Example 13 A task is an autonomous sub-part of a system, like a computer
program or external changes made by a user. A computer program is a task
which consists of a text segment and some workspace, coded and stored within a
subset of the the high level configuration of the system. If the program is closed,
it does not affect anything outside of its own resources; if the program is open it
can affect the state of the rest of the system also. In a distributed environment
a program on one host can affect the state of a program on another host. The
actions of a human interacting with the system can lead to a task.

We now have a representation of programs running on the system as well as
processes carried out but external agents (other computers and humans). One
can now define maintenance in terms of the effect of sub-systems on the total
system, as a fluctuation-dissipation result.

Definition 12 Let qp(x,t) be a task in a system S with configuration sub-
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space r, and qu,(z,t) be the complement to the subspace, i.e. the remainder
of the configuration of S, with configuration subspace r.; then qu(z,t) is said
to be a maintenance task if {qu(x € r,t)} is an open system and

(S g0 + S towan ) < & (S logad). @1

zTET YETC YETC

In other words, the presence of a maintenance task ¢,; reduces the total rate of
change of the average configuration state ¢(z,t) in S; i.e. it exerts a balancing
influence on fluctuations dg within any coarse time interval At. If the rate of
maintenance is less than the rate of fluctuation, it will lead to a window of
uncertainty in the value of (g), which can result in a real change of average
state. Note that the logarithms make the ordering and scale of the changes
unimportant (see appendix A). This is a characterization of the change of
information in the configuration, where the spatial ordering is unimportant.

The definition of maintenance allows for gradual evolution of the idealized
persistent state, since the average value can be slowly modified by persistent
fluctuations. This change of the persistent state is said to be adiabatic in
statistical mechanics, meaning slow compared to the fluctuations themselves.
A summary of time scales is shown in table 2.

Stochastic open system Timescale

Fluctuations, system operations dq Te~T, <T

environmental changes

Cycles of persistent behaviour T = 27w !

A coarse grain of N cycles | At = NT > T ie. (N > 1)

User/policy time scale T,>T

Long term behavioural trends T, > T,
Table 2
The separable time-scales for changes in a computer system interacting with an
environment.

In order to describe and implement a system policy, for managing the be-
haviour of a computer system, it must be possible to relate the notion of
policy to rules and constraints for time-evolution which are programmed into
q(z,t). Such rules and constraints are coded as software in ¢(x,t),or are issued
verbally to users in the environment of the system. The behaviour of the con-
figuration state is not completely deterministic and is therefore unpredictable.
By separating slowly and rapidly varying parts, using a local averaging pro-
cedure, we find an average part that is approximately predictable.
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We note, as a commentary, that while this shows that the rate of change in
the system can be arranged to maintain a particular state over a consistent set
of time-scales, it does not specify a unique route to such a state through the
state space (including space and time scheduling) of the Human-Computer
system[12,13]. The existence inequivalent different routes must be handled by
a framework in which they can be compared in some system of returned value.
The theory of games, as presented in the final sections of the paper, is suitable
for selecting such a route. The existence of a unique path has been addressed
in ref. [14].

2.5 Symmetries in q(x,t) and equivalent policies

A high level partitioning of the configuration space, which evolves according
to rules for time-development at the same level, leads to the appearance of
symmetries, with respect to the dynamical evolution of a computer system. A
symmetry may be identified, whenever a change in a configuration does not
affect the further evolution of the system except for the order of its elements.
The configurations of the system which are symmetrical, in this sense, form a

group.

Definition 13 A group G of transformations

g:R'— R (22)

is a symmetry of the high level configuration q(x,t), if for some x C R and
time t, the transformation of the configuration domain

q(z,t) = q(g(2),1), (23)
s an identity, and g € G is a bijection.

Thus the permutation of process address labels in unimportant to the con-
figuration, as is any change in U, which leads to a relabelling in the future.
Since the deterministic part of the mapping U is coded in q(z,t), this includes
changes in the way the system evolves with time.

Definition 14 A group ' of transformations

v Q@ — Q(. (24)

is a symmetry of the state space @y, if
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q(z,t) = (q(z,1)), (25)
s an tdentity, and v € I' is a bijection.
Thus the content of a state does not necessarily have a fixed order.

Symmetries are hard to describe formally (they include issues such as the
presence of comments in computer code, irrelevant orderings of objects, and
so on), but they have a well-defined meaning in real systems.

Example 14 One possible symmetry transformation on a system would be
to rename every reference to a given file: the result would have no effect on
the behaviour of the system. Another example would be to intersperse instruc-
tions with comments, which have no systemic function. Another an important
symmetry of systems is independence of the system to changes in parts of the
configuration space R* which are unused by any of the programs running on
the system.

The presence of symmetries is of mainly formal interest here, but their inclu-
sion is necessary for completeness. The notion of equivalence motivates the
definition of a factor set of inequivalent configurations

Yz q(,1)
Ggenr 7’

which signifies one representative configuration from the set of all equivalent
configurations. This factored system is now uniquely prescribed by an initial
configuration, rules for time development and the environment. It is scarcely
practical to construct this factor set, but its existence is clear in a pedantic
sense.

P(t)

(26)

Up to stochastic noise, the development of the open system is completely
described by this configuration, which includes the programs and data which
drive it. Conversely, the behaviour at level £ is completely determined by the
specification of a P(t). This is therefore a natural object to identify with
system policy.

In practice, only a part of the configuration will directly impact on the evo-
lution of the system at any time. If a constant part of P(¢) can be identified,
or if P(t) is sufficiently slowly varying, then this quantity plays the role of a
stable policy for the system. If no such stability arises, then the policy and
configuration must be deemed unstable.

How does this definition of policy fit in with conventional, heuristic notions of
policy? A heuristic definition is i) a system configuration, ii) rules for behaviour
of the system (programmed), iii) rules for human users (requested), and iv) a
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schedule of operations. Of these, i) and ii) may be coded into the configuration
space without obstacle. iii) needs to be coded into the environment, however
the environment is not a reliable channel, and can only be expected to obey
policy partially, thus there will be an unpredictable component. iv) is also
programmed into the computer, but there is also a schedule of random events
which belongs to the environment; this also leads to an unpredictability. The
resulting ‘error’ or tendency towards deviation from steady behaviour must
be one of two things: a slow drift AP = P(t) — P(t') (systematic error) or a
rapid random error JP(t) (noise). In order to use a definition of policy such
as that above, one is therefore motivated to identify the systematic part of
system change.

2.6 Convergence

The notion of convergence is related to the idea of the fixed point of a map-
ping[15]. If ¢’ = U(q) is any mapping, then a fixed point ¢* is defined by,

¢ =U(q"). (27)

This definition is too strict in a dynamical system, rather we need a limiting
process that allows for some fuzziness:

¢ —-U(q") <e. (28)

As defined, a policy is neither a force for good nor for evil, neither for sta-
bility nor for chaos; it is simply an average specification of equivalent system
behaviours. Clearly, only a certain class of policies has a practical value in real
systems. This refers to policies that lead to short term stability, thus allowing
a stable function or purpose to be identified with the system. A system which
modifies itself more rapidly than a characteristic human time-scale 7}, will
not have a stable utility for humans.

The notion of convergence is especially useful[16-18] for regulating systems.
A system which possesses a cycle that persists over a given interval of time
can be defined as having predictable behaviour over that interval.

Definition 15 A convergent policy P(t), of order n, is one whose chain
of time transitions ends in a fized point configuration q(x,ts), for all values x
and times t; > ty. i.e.

A

(U)"q(z,t;) = q(z, ty), for some n > 0,t; < ;. (29)
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The fixed configuration on which the time development ends is sometimes said
to be ‘absorbing’, since once the system has entered that state, it does not
change again. In the language of system administration, one says that the
system has converged. In a stochastic, interacting system, this finality cannot
be guaranteed precisely. Within a short time period a change away from the
final state can occur at random, thus it is useful to define the notion of average
convergence.

Definition 16 A convergent average policy P(t), of order n, is one whose
average behaviour in time ends in a fived average state (q(x,ts)) between any
two times t; and ty, such that ty —t; > At.

<(Ut)"q(:1:,t,~)> = (q(z,ty)), for somen > 0,t; < ty, (30)

where (...) is any local averaging procedure.

This condition is weaker, because it allows the final state of exhibit fluctuations
that are balanced within the time of the averaging interval.

A discrete chain interpretation of periodicity may be found in [19]; it is con-
venient here to use the continuum approximation. Over the time interval, it
can thus have the general form:

(q(z, 1)) = <Qo($) + A(t) Re exp (z%t)>
= Qo(2), (31)

i.e. it has an average value and oscillations whose average effect is zero. Since
@ is positive, A < (/2. Notice that a process that has converged becomes
memoryless, i.e. its dependence on previous states becomes irrelevant.

A policy in which the average resource resource usage is constant over the
policy timescale 7T}, is a convergent average policy; e.g. a policy of deleting all
old temporary files, killing old processes and so on, or by adding new resources,
so that that fraction of used resources is constant on a average of a few cycles.

Another example of convergence would be one in which errors in a configu-
ration file, made by human error, were corrected by an automatic process,
within a short time interval, by regular checkups, thus preserving the average
condition. This has already become a common practice by administrators[16],
so convergence is a commonly used strategy for achieving stability.
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2.7 Persistence

Implicit in the foregoing discussion of averages are two notions of stability
which now crave definition, at the level of the continuum description. These
form the basis for a self-consistent definition of convergent system policy, which
show that system administration is a soluble problem, within clear limits.

Definition 17 A locally averaged state (q(z,t)) is a local coarse graining
procedure, i.e. a classification of the time-variation of q(x,t) into intervals
with some characteristic length At > 1/w, Several cycles are averaged over,
and the entire interval is replaced with a common value.

fztj—z?/; q(z, t~) P(Z) di

t+At/2 N 9T
ffj—At//Q p(t) dt

(@)(z,) =

where p(t) is some weighting function, to be specified.

The coarse graining procedure is the analogy of level £ coding in the configu-
ration space, only here it is applies to the time dimension. It is a redigitization
of the time-line. Local averaging procedures are used to separate structures in
the time evolution of systems at different levels. One begins by digitizing a de-
tails function of time into coarser blocks (like a pixelized image). As one zooms
out, the behaviour of a local average looks smooth and continuous again.

Definition 18 A persistent state U(z,t) = ¢(x,t) is a configuration for
which the probability of returning to a configuration V(z,ty) at a later time
U(x,to + At), for At > 0 is 1. In the continuum description, persistence is
reflected in the property that the rate of change of the average state (V) be
much slower than the rate w of 6V

1 d(¥) d
‘(‘IJ} dt ‘ ‘dt s >‘ %)
i.e. the fast variation extends over several complete cycles, of frequency w,
before any appreciable variation in the average is seen.

Example 15 A persistent state is a macroscopic feature, bigger than a cycle.
It means that the cycle persists and that the behaviour has a local stability. If a
system s characterized by a convergent policy, then any fluctuations occurring
at the rate w will be counteracted at the same rate, leading to a persistent state.

See fig. 3.
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Fig. 3. A persistent state is one in which the cycle does not vary appreciably over
many cycles. Here one sees small variations repeated many times, on a slowly varying
background.

Thus the meaning of a convergent policy is its resulting persistence. Thus,
policy itself must be identified with that average behaviour; this is the only
self-consistent, sustainable definition, as long as there are stochastic variables
in the system, due to environmental interaction.

The development of an open system is stochastic and that this naturally mo-
tivates a local averaging procedure. The effect of the time development, with
random noise, is described by the time-evolution (so-called density matrix) op-
erator for an open system pg/(t), which is equivalent to an effective evolution
operator for an open system, i.e.

pp(t —1t) =U(t -1, (34)
this normal time development is a natural averaging procedure.

Lemma 2 The aggregate of incremental changes of state during the time de-
velopment of a system over an arbitrary interval t, centred on its midpoint t
leads to a locally averaged state.

Proof 2 The time development is traced over time, by compounding the effect
of this operator. This is analogous to repeatedly performing the fetch-execute
cycle. This is modelled by integrating the signal over a period of time T, <K
t < T,, where T, is a timescale over which the environment changes and T,
1 a timescale over which policy changes:
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t+1/2

— / dt P(z,1) pu(t) (35)

/2

One now observes that, if one performs this operation over a coarse-graining
interval then, up to a normalizing factor, this is the definition of a local aver-
age. By explicitly dividing by a normalizing factor, one thus determines that
the time-evolution of a stochastic system naturally defines an average over
fluctuations. The split one makes in eqn. (19), therefore ensures that the fluc-
tuations are zero on average, distributed about the average behaviour, so by
blurring out these fluctuations, one is left with a unique description of the
average behaviour. O

This observation is referred to in statistical physics as the mean field approx-
imation. The normalized, coarse-grained policy may now be written:

2 G P p(t
<P(.{E,t)): 1 téig/Q () E( )
g2 Ot pi(t)

= {a(=,1)/(G®T)), (36)

In other words, the short term evolution of policy can be identified with a
local average configuration in time; i.e. a set of locally average variables, at
an appropriate coding level for the system.

2.8 A theorem about maintenance

With the meaning of the local averaged mean-field established, it is now a
straightforward step to show that local averaging leads to persistence, and
hence that this measure of stability applies only to locally averaged states.
We thus approach the end of the lengthy argument of this section, which
shows that policy can only be an agent for average system state. The theorem
suggests that a strategy for maintaining stability in computer systems is to
strive for convergence.

Theorem 1 In any open system S, a policy P(t) specifies a class of persistent,
locally average states {q(t)) equivalent under symmetry groups G and T, if and
only if P(t) exhibits average convergence.

Proof 3 From lemma 1, in an open system S, a configuration is unpredictable
over a time scale T, ~ w™!, hence a configuration can only be guaranteed per-
sistent on average. We thus need only to show that a convergent average policy

28



(P(t)), of order n, is persistent for a time At > T, since, by definition, this
implies a set of equivalent persistent average configurations, under the avail-
able symmetries. Recalling the time scales, we consider an arbitrary interval

At = NT = @, (37)

where N > 1, parameterized by

t—NT/2<t< NT/2. (38)

If P(t) exhibits average convergence, it varies no faster than

P(t) = Py + A(t) Ree ™", (39)

on any part of the interval, for slowly varying amplitude A(t) (where |0;A/A| <K
w) and Py is a constant such that A(t) < Py/2. The local average of this func-
tion is

t+At/2
(PYD) =P+ Re [ A@) e di, (40)
t—At/2

where At > 1/w. The rate of change of this averaged policy may now be
constructed, according to the rules of calculus:

‘d<P> ‘ _ ‘ (P)(t + At) — (P)(?)

dt At
w?An lsin(wt/n)]Z+3At/2 [Sin(wt/n)]ﬂm/2 N
- — | === €
(2mN)? w T+AL/2 w T-At/2
wn B,
<—= 4 x — . 41
SN P2t (41)

The error in evaluating this quantity ¢ < Py/N?, which is of the order or
less than the error due to the continuum approximation itself, and may thus
be neglected. The same result can also be obtained more clumsily without the
continuum picture. Now, since N > n > 1, it follows trivially that,

d(P) ]
A <o r, (42

hence
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and (P) is persistent. Finally, P(t) is associated with a class of states, equiv-
alent under a symmetry group G, which can vary no faster than policy, since
it is a part of the policy, hence a locally average state, resulting from a non-
divergent policy specification is persistent. This completes the proof. O

The maintenance theorem provides a self-consistent definition of what a stable
state is, and hence what a stable policy is, for a computer interacting with
external agents (users, clients etc). The implication is thus that system ad-
ministration can be pursed as a regulation technique[20-24], for maintaining
the integrity of policy, provided one can find a convergent average policy. It
sets limits on what can be expected from a policy in a dynamical environment.
Finally, the argument makes no reference to the semantic content of policy; it
is based purely on information and timing.

It is interesting to note another theorem which is better known but also ap-
plicable (and very similar) to the stochastic and semantic views of policy as
a propagating influence: it is simply a transcription of Shannon’s channel ca-
pacity theorem for a noisy channel[11].

Theorem 2 There exists a policy P(t) which can evolve in time with arbitrar-
ily few errors, i.e. the system can be forced to obey policy to within arbitrary
accuracy.

Shannon’s original theorem stated that “there exists a message coding which
can be transmitted with arbitrary few errors”; i.e. by creating a policy which
is so strictly enforced as to police the activities of users in every detail, one
could prevent users from doing anything which might influence the strict,
predictable development of the system. Such a policy is possible if the average
configuration of the host that it represents has sufficiently low entropy that it
can be compressed into a part of the system dedicated to maintenance (error
correction).

In contrast to the transmission of coded data, one is not interested in com-
pletely eschewing the environment, but adapting to it in a controlled fashion.
Everything users do is formally a part of the environment. As long as the
entropy of the system configuration is kept under a threshold level implied by
the maintenance theorem, a meaningful regularity can be maintained in the
propagation of the system, because the information content of errors will be
much less than the total transmitted information.
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3 Type I models - dynamical systems

The remaining sections of the paper illustrate how to formulate detailed mod-
els for understanding, deciding and optimizing policy, starting with the lan-
guage of dynamical systems. This warrants two approaches: a stochastic type I
approach, and a semantic type II approach. For type I models, some work has
been done in this area already|[3,4,9,5,6], so the details will not be repeated.

In a type I model of system state, the change in persistent state of the system
is described as a stochastic drift (random walk) away from an ‘ideal’ average
state, i.e. that state which is described by policy at an initial time ¢ = ¢;. The
ideal state itself is characterized in terms of incremental changes of averaged
system variables. In such a description, the intentions and individual actions
which led to the state are washed out by the averaging process, and all that re-
mains is a separation of scales into the slow change of averages and the rapidly
changing spectrum of fluctuations. This is the approach used in refs. [3,4,6]
in order to study changing resource usage. This is the simplification afforded
by type I models. While much can be learned from this, it is insufficient to
describe system administration. The main topic for this paper is the type II
model.

4 Type II models: strategic maintenance

By couching system administration as a game of strategy, one can formulate
strategies in a framework that aims to achieve the larger goals of maintaining
a persistent stable state and doing work.

In a type II description, the computer system is viewed as the chequerboard
for a game of competition between motivated individuals[25]. A computer sys-
tem is a community, of limited resources, where many individuals meet with
goals, strategies and personalities. What one user does, affects neighbouring
users; what one area of a network does affects neighbouring parts of the net-
work[26,27].

Traugott and Huddleston have pointed out[10] that it is often pertinent to
view a local computer community as a single virtual machine, rather than
as a conglomeration of individual hosts. In this context, the term computer
system will be used to refer to the collective hosts of a local domain, or some
appropriate logical unit of networked computers. It is taken for granted that
there may be internal competition for resources and even conflict between
competing parties.

31



In order to formulate a strategic theory of system administration we need
to establish a set of possible goals, procedures and obstructions and state
them in formal terms. The aim is then to postulate or derive strategies which
best achieve those goals, given the essential constraints. From section 2, it
follows that a self-consistent goal is to attempt to achieve a persistent state
of dynamical stability.

There is a number of stages in this programme of study, embodied by the
following.

Assumption 5 The short-term aim of benign users and clients is to produce
useful work, with the aid of the system. The short-term aim of malicious clients
1s to mazximize their control over system resources, vandalize the system, or
confound system policy.

Assumption 6 The long term aim of system administration is to optimize
the policy P(t) for mazimum productivity, insofar as this is allowed by local
constraints. The short term aim is to keep the system as close the ideal average
state (q(t)) as possible, by minimizing fluctuations dq.

The long and short term goals are compatible, because if the system is kept
close to an idealized persistent state, it will survive in order to work for users.
However, in a competitive environment, one user can produce work at an-
others’ expense, so there are non-trivial issues to be resolved. This includes
competition between local users and remote users, e.g. users accessing web
services.

This formulation of the ideal is particularly appealing from a mathematical
point of view, because it is a variational definition, which can be tackled as a
problem of regulation. The resulting problem, although a simplification, is a
well-defined goal which seeks to sustain the basic infra-structure of the system
community.

One arrives at the following question which a theory of system administration
must address: is there an optimal, compatible set of strategies for keeping the
system as close as possible to its ideal state, and still maximize productivity?

4.1 Level £ primitive operations and regulation

At coding level £, the operations which alter system configuration are not sim-
ply Boolean algebraic operations on bits. There is a level £ set of operations,
which effects change in accordance with this level of abstraction. Such a set of
operations more closely resembles the actions of a system administrator, or of
management software, than does a discussion in terms of bit operations. One
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therefore wishes to express actions in terms of linear combinations of primitive
actions at this higher level. Let O be a set of such primitive actions, repre-
sented as matrices, where 1 = 0,1, 2,.... Assume further that the operations
are linearly independent, so that no linear combination of the O is equivalent
to any other linear combination. A linear combination may be written:

5C =3 ¢O". (44)

where c; are constant multiples.

An implementation of primitive operations has been considered in ref. [28] in
developing the software configuration engine cfengine. This is also reminiscent
of the transaction model used in ref. [29]. Although these primitives are not
complete in every aspect, they form an approximation to an almost complete
set. The basic operations are:

Primitive operation O*

Create file
Delete file
Rename file
Link file

Unlink file

Edit file

Access control
Request resource
Copy file
Process control

Process priority

Configure device

The operation “edit file” clearly conceals many sub-operations, which do not
necessarily commute; these will not be elaborated upon here.

Are these example primitives above sufficient to implement a policy forbidding,
say, downloading of pornographic material between the hours of 9:00 and
17:00 at a site? If such a policy is implementable, it must be possible to
filter content-specific data, or deny access to data. This requires some kind
of software, with a configuration (file) which would need to be edited. The
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time-dependent behaviour could be handled by a scheduler (more software),
also configured by a file. These configuration details are all implementable
with file editing and process control — regardless of the details of who or what
makes the changes.

4.2 Game theory: the contest for the ideal state

Since it is the system administrator who sets system policy, ‘ideal’ refers to the
viewpoint of the system administrator. Whether or not this reflects the view of
the user, depends on whether the user is cooperative or hostile with respect to
the policy. Contests, which are caused by conflicts of interest between system
policy and user wishes, unfold in this framework as environmental interactions
which tend to oppose convergence and stability.

A framework for analyzing conflicts of interest, in a closed system, is the the-
ory of games[30,31]. Each move in a game affords the player a characteristic
value, often referred to as the ‘payoff’. In system administration, a complete
game takes place on the implicit 2/-dimensional board, spanned by the d vec-
tors, and each move leads to a payoff for one or other of the players. However,
the idea of building a single large game theoretical model for the entire system
is somewhat ambitious, and possibly impractical. Smaller games can also elu-
cidate parts of the whole, in more limited studies, to good effect. An example
of such a game is presented in section 4.5.

Games come in several forms. Some are trivial, one-person games of chance,
and are not analyzable in terms of strategies, since the actions of the players
are irrelevant to the outcome. In a sense, these are related to the stochastic
noise referred to previously. More interesting, is the case in which the outcome
of the game can be determined by a specific choice of strategy on the part of
the players. The most basic model for such a game is that of a two-person zero-
sum game, or a game in which there are two players, and where the losses of
one player are the gains of the other. This model is simplistic, applied as users
versus system, because it seems to say that all users must work contrary to
system policy, which is clearly not true. However, experience shows that it is
mainly those few users who do attempt to confound policy, who need to be
dealt with strategically. Thus, the real ‘battle’ for the ideal state of the system,
is between those factions who are for and those who are against policy. The
majority of neutral users play only a background role (as chance noise) and
do not need to be modelled explicitly.

Many games can be stated in terms of this basic model: it is, for example, the

model taken by current system administration agents such as cfengine[28] and
PIKT[32], as well as several commercial products, to good effect.
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4.3 The payoff currency

In economics, the game currency is money; in the physical sciences it is energy.
In order to apply the idea of a game to system administration, it is to introduce
the idea of a currency of reward for the empirically known value-systems in
which users and administrators compete. In social games, value systems are
often multi-faceted, not simple linear counters. For example, in the popular
game of ‘Civilization’, players fight not only for land and money, but for
intangibles such as education, services, and ‘state of development’. These,
in turn, feed back and allow the acquisition of even greater wealth, leading to
a compounded gain. The final score is an arbitrary mixture of these qualities,
according to a policy, set by the rules of play.

The challenge is to represent user desires and intentions as numerical values
or functions which can be evaluated and compared at different times. Let us
define payoff to one player as a sum of these different value systems:

T =Y Wy, (45)

weighted according to a set of weights w,, which determines the supposed
relative importance of these qualities. The values of 7, are to be based on
quantitative measures and empirical evidence, using the predictions found
from type I models. For example: use of system resources over time, leads to
an accumulation of disk and CPU ‘wealth’ which changes in time according
to a pattern described by a type I model. The amount of disk-space or CPU
resource used by a user are a measure of material pay-off, for following a
particular strategy of usage. Similarly, the good-will accrued as a result of
cooperating with system policy over time could lead to less tangible payoffs,
such as the reward of privileged access to the system, or an increased influence
on system policy.

Two convenient categories can be retained:

T =Tpy + Tg, (46)

i.e. material payoff and social payoff, as described above.

4.4 Strategy and tactics

The system administrator’s strategies should always bring the system closer
to the ideal stable state, while still maintaining productivity.
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In reality, not all users are hostile, in this fashion; most users are neutral in
the conflict between those for and against system policy, and their effect on
the outcome can be absorbed into the generic time-development. Nor does
‘hostile’ necessarily imply malice of any kind: it only means that the net effect
of users’ actions goes against policy, and pushes the system away from its
ideal condition. In Fault Tree Analysis, any pathway which leads to a possible
fault of the system is regarded as being hostile, whether it is intentional or
accidental[33]. However, it is such ‘hostile’ users which one must pay special
attention to in a game theoretical model. Thus it is convenient in what follows
to assume that all of the notable users are hostile.

The administrator can accumulate payoff currency, either by limiting or reduc-
ing the consumption of resources or by extending the resources of the system.
A user can ‘win’, in a pessimistic sense, by moving the actual state so far from
the ideal that the system crashes and thus the game ends, or by gaining total
control of the resources.

As a zero sum, N-person game one could make a more detailed model, in which
users compete against one another in addition to the system administrator.
The system administrator’s task then becomes to act as a kind of ‘Robin Hood’
character, preventing any one user’s consumption of all resources, trying to
distribute resources fairly. Again, the aim of the administrator is to maximize
the duration of the game by keeping the system as close to the ideal state as
possible.

In a realistic situation, both parties in the two-person game would use mixed
strategies. A strategy is:

e A schedule of operations
e A specification of moves and counter-moves (rules)

In addition to simple short-term strategies (tactics), there can be meta-strategies,
or long-term goals. For instance, a nominal community strategy might be to
implement the stability criteria discussed earlier:

e Maintain the stability of the system.
e Maximize total productivity or the generation of work,
e Gain the largest feasible share of resources,

but this might be implemented in the short term by a variety of tactics, such
as policy cooperation, non-cooperation and so on. An attack strategy might
be to

e Consume or destroy key resources.

e Oppose system policy.
e Denial of service.
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Tactics for attaining intermediate goals might include covert strategies such
as bluffing (falsely naming files or other deceptions), taking out an attacker,
counter attacking, or evasion (concealment), exploitation, trickery, antagoniza-
tion, incessant complaint (spam), revenge etc. Security and privilege, levels of
access, integrity and trust must be woven into algebraic measures for the pay-
off. Faced with a problem to the system, one may address it either by patching
symptoms, or by seeking to route out the fundamental cause. Most successful
strategies, including those used by biological life, employ both. A means of
expressing all of these devices must be formulated within a model.

4.5  Ezrample game: disk garbage collection

It is helpful to refer to a specific example, which reproduces verifiable and intu-
itive results in an actual problem. This example has been verified in practice
as an example of the maintenance theorem|[25]. Consider a multi-user com-
puter system, such as that run by an university or Internet Service Provider.
Such a system is used by many users, and they are a wide mixture of different
personalities. Disk usage, in such an environment, is often dominated by the
creation of large temporary files, such as those generated by web browsers
(cached graphics etc.). A convergent policy therefore requires these files to
be cleared away regularly, so that the system does not ‘choke’ on them. The
need for forced garbage collection has been argued on several occasions[34,28].
Here we analyze the problem as a simple two-person, zero-sum game in which
all users compete with the system administrator. A fully convergent policy,
in this context, is not normally possible, since useful work tends to consume
disk space in a legitimate fashion. However, this legitimate increase is slow
compared to actual increase of temporarily needed resources. According to
the central theorem, there is therefore an ideal state in which the system’s
average disk-space is increasing only slowly.

We form a type II model, with characteristic matrix, or pay-off matrices mx
and 7p, where

A +7Tp = O, (47)
for attack by users and defence by the system administrator, as a function

of strategies oa, op. One hopes to find an optimal mixture of convergent
strategies, X, (a linear combination of pure strategies)

1 N
Y= N ;Ci 0;, (48)
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such that, if the dominant mixture of defensive strategies X, satisfies, leads
to a better pay-off than any other combination,

™D (E*Da EA) 2 71-D(EDa EA)) (49)
it can be considered optimal; similarly from the viewpoint of the attacker.

The first issue is to determine the currency of this game. What payment will be
transferred from one player to the other in play? Here, there are two relevant
measurements to take into account: (i) the amount of resources consumed by
the attacker (or freed by the defender), and sociological rewards: (ii) ‘good-
will’ or ‘privilege’ which are conferred to users as a result of sticking to the
policy rules, or, conversely, the ‘bad-will’ incurred on the administrator by
introducing oppressive policies.

A satisfaction measure for the players is used in order to model the goodwill
aspect. A system administrator could clearly prevent users from creating any
new files. This is clearly not a defensible use of the system, since it contravenes
the assumption that a larger goal of strategy is to maximize the usage of the
system, thus the system administrator’s defence strategy should be penalized
for restricting users too much. It is convenient to construct the payoff matrix
for attackers (users), since the consumption of files follows known patterns.
The characteristic matrix, for users (attackers), now has two contributions,

ma = 7r(resources) + 7y (satisfaction). (50)

It is convenient to define

resources won ) . (51)

1
7, = m(resources) = = (

2 \total resources

Satisfaction 7, is assigned arbitrarily from values from plus to minus one half,
such that,

1 1
_§ S (rs S +§
1 1
_5 S Mg S +§
—1 < ma < +1. (52)

The different convergent strategies can now be regarded as duels, or games
of timing in which files are created and removed at competing rates. The
payoff-matrix for ‘attacking’ users has the following form:
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Users/System Ask to tidy Tidy by date Tidy above Quotas

Threshold
Tidy when asked ma(l,1) ma(1,2) ma(1,3)  wa(1,4)
Never tidy ma(2,1) ma(2,2) ma(2,3)  wa(2,4)
Conceal files ma(3,1) 7ma(3,2) ma(3,3)  ma(3,4)
Change timestamps | 7 (4,1) ma(4,2) ma(4,3) ma(4,4)

The elements of the characteristic matrix must now be modelled by suitable
algebraic or constant terms. The rate at which users produce files may be
written

r = NpTy + ngrg’ (53)

Ny + Ty

where 7, is the rate for bad users and r, is the rate for good users. The total
number of users n, = n, + ny. From the authors experience, the ratio ny/n,
is about one percent. The rate can be expressed as a scaled number between
zero and one, for convenience, so that r, =1 — r,.

Empirical evidence suggests that, on average, users consume resources at a
rate which is periodic and polynomial in time[9]:

W (t) o sin(Qt) D cqt™. (54)

With reference to fig. 3, one has, daily tidying 7}, = 24. User numbers are set
in the ratio (ngy,ny) = (99, 1), based on rough empirical ratios, i.e. one percent
of users are considered mischievous. The filling rates are in the same ratio:
76/ Riot = 0.99,7¢/Rioy = 0.01,74/Rior = 0.1. The flat dot-slashed line is |7,
the quota pay-off. The lower wavy line is the cumulative pay-off resulting from
good users, while the upper line represents the pay-off from bad users. The
upper line doubles as the magnitude of the pay-off |r,| > |my,|, if we apply
the restriction that an automatic system can never win back more than users
have already taken. Without this restriction, |7,| would be steeper.

Simplifying this, the payoff in terms of the consumption of resources by users,
to the users themselves, may be written:

T
1 ry (sin(27t/24) + 1)
5 [ e , (55)
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where the factor of 24 is the human daily rhythm, measured in hours, and Ry
is the total amount of resources to be consumed. Note that, by considering only
good user or bad users, one has a corresponding expression for 7, and 7, with
ry replaced by r4 or 7, respectively. An automatic garbage collection system
results in a negative pay-off to users, i.e. a pay-off to the system administrator.
This may be written

1 (sin(27t/T,) + 1)
Ta = —73 3 o6
2 Rtot ( )

where T), is the period of execution for the automatic system, considered ear-
lier. This is typically hourly or more often, so the frequency of the automatic
cycle is some twenty times greater than that of the human cycle. The rate of
resource-freeing r, is also greater than r,, since file deletion takes little time
compared to file creation, and also an automated system will be faster than
a human. The quota payoff yields a fixed allocation of resources, which are
assumed to be distributed equally amongst users and thus each quota slice
assumed to be unavailable to other users. The users are nonchalant, so 7, = 0
here, but the quota yields

1 1
7Tq—+§ (nb+ng> . (57)

The matrix elements are expressed in terms of these.

7(1,1): Here my = —1 since the system administrator is maximally satisfied by the
users’ behaviour. 7, is the rate of file creation by good users 7y, i.e. only
legal files are produced. Comparing the strategies, it is clear that 7(1,1) =
7(1,2) =« (1, 3).

7(1,4): Here m; = 0 since the users are dissatisfied by the quotas, but the sys-
tem administrator must be penalized for restricting the functionality of the
system. With fixed quotas, users cannot generate large temporary files. 7,
is the fixed quota payoff, a fair slice of the resources. Clearly w(4,1) =
7(4,2) = m(4,3) = 7(4,4). This tells us that quotas put a straight-jacket on
the system. The game has a fixed value if this strategy is adopted by system
administrators. However, it does not mean that this is the best strategy, ac-
cording to the rules of the game, since the system administrator loses points
for restrictive practices. This is yet to be determined.

7(2,1): Here 73 = % since the system administrator is maximally dissatisfied with
users’ refusal to tidy their files. The pay-off for users is also maximal in
taking control of resources, since the system administrator does nothing to
prevent this, thus 7, = 7,. Examining the strategies, one find that 7(2,1) =

7(3,1) =7(3,2) =7(3,3) =7(4,1) = 7(4,2).
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Fig. 4. The absolute values of pay-off contributions as a function of time (in hours),
based on a type I model.

7(2,2): Here 7, = % since the system administrator is maximally dissatisfied with

7(2,3): Here 7y = 2

2
users’ refusal to tidy their files. The pay-off for users is now mitigated by the

action of the automatic system which works in competition, thus 7, = 7, —
7,. The automatic system is invalidated by user bluffing (file concealment).
5 since the system administrator is maximally dissatisfied with
users’ refusal to tidy their files. The pay-off for users is mitigated by the
automatic system, but this does not activate until some threshold time
is reached, i.e. until ¢ > t;. Since changing the date cannot conceal files
from the automatic system, when they are tidied above threshold, we have
7(2,3) = 7(4,3).

Thus, in summary, the characteristic matrix is given by:

—5+mg(t) =5+ 7(t) —3 +m(t) T
ﬂ-A(u’ 3) _ %'ﬁ‘ (t) %"‘ ( )+7ra(t) %+7Tu( )-I-ﬂ'a( )H(to—t) ’/Tq( 8)

I+ mu(t) S+ mu(t) 3 T mu(t) Tq

ptm(t)  pAm(t) g ma(t) +ma(t) 0t —t) 7

where the step function is defined by,

Oty —t) = = (59)
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and represents the time-delay in starting the automatic tidying system in the
case of tidy-above-threshold.

It is possible to make several remarks about the relative sizes of these con-
tributions. The automatic system works at least as fast as any human so, by
design, in this simple model we have

1
5 2 || 2 || 2 |mg| 20, (60)

for all times. In addition , for short times m, > m,, but users can quickly fill
their quota and overtake this. In a zero-sum game, the automatic system can
never tidy garbage faster than users can create it, so the first inequality is
always saturated. From the nature of the cumulative pay-offs, we can also say
that

1 1 1

(§+7ru) > (§+7ru+7ra0(to—t)) > (5 + Ty + Ta), (61)
and

1 1

|5+ Tl 2 |y = 5. (62)

One can now apply these results to a modest strategy of automatic tidying, of
garbage, once per day, in order to illustrate the utility of the game formulation.
The first step is to compute the pay-off rate contributions. Referring to figure
4, one sees that the automatic system can always match users’ moves. As
drawn, the daily ripples of the automatic system are in phase with the users’
activity. This is not realistic, since tidying would normally be done at night
when user activity is low, however such details need not concern us in this
illustrative example.

The policy we have created in setting up the rules of play for the game,
penalizes the system administrator for employing strict quota shares. Even
so, users do not gain much from this, because quotas are constant for all
time. A quota is a severe handicap to users in the game, except for very
short times before users reach their quota limits. Quotas could be considered
cheating in such a game, since they determine the outcome even before play
commences. There is no longer a contest. Moreover, comparing the values in
the figure, it is possible to see how resource inefficient quotas are. Users cannot
create temporary files which exceed these hard and fast quotas. An immunity
type model which allows fluctuations is a considerably more resource efficient
strategy, since it allows users to span all the available resources for short
periods of time, without consuming them for ever.
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Any two-person zero-sum game has a solution, either in terms of a pair of
optimal pure strategies or as a pair of optimal mized strategies[30,31]. The
solution is found as the balance between one player’s attempt to maximize his
pay-off and the other player’s attempting to minimize the opponent’s result.
In general one can say of the attacker’s pay-off matrix that

mftx min ;. < min mjix Tres (63)

where the arrows refer to the directions of increasing rows () and columns
(—). The left hand side is the least users can hope to win (or conversely the
most that the system administrator can hope to keep) and the right is the
most users can hope to win (or conversely the least the system administrator
can hope to keep). If we have

mjiX min 7,, = min mjiX Tres (64)

it implies the existence of a pair of single, pure strategies in row-column (r*, c*)
which are optimal for both players, regardless of what the other does. If the
equality is not satisfied, then the minimax theorem tells us that there exist
optimal mixtures of strategies, where each player selects at random from a
number of pure strategies with a certain probability weight.

The situation for our time-dependent example matrix is different for small ¢
and for large ¢. The distinction depends on whether users have had time to
exceed fixed quotas or not; thus ‘small ¢’ refers to times when users are not
impeded by the imposition of quotas.

For small ¢, we have:

1
g =3

. %—i—m—i—wa
max NN Ty =1max .
v ‘ §+7Tu
Lty + a0t — t)
1

The ordering of sizes in the above minimum vector is:

1 1 1
§+7Tu2§+7Tu+71'a9(t0—t)Zﬂu+ﬂa9(t0—t)27rg—§. (66)
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This is useful to know, if we should examine what happens when certain
strategies are eliminated. For the opponent’s endeavours we have

1
min MaX e = m_i)n(ﬁ + T, g + Ty, 3 + Ty, Ty)
1

This indicates that the equality in eqn. (64) is satisfied and there exists at least
one pair of pure strategies which is optimal for both players. In this case, the
pair is for users to conceal files, and for the system administrator to tidy by any
means (these all contribute the same weight in eqn (67). Thus for small times,
the users are always winning the game if we assume that they are allowed to
bluff by concealment. If the possibility of concealment or bluffing is removed
(perhaps through an improved technology used by the administrator), then
the next best strategy is for users to bluff by changing the date. In that case,
the best system administrator strategy is to tidy at threshold.

These results make qualitative sense and tally well with experience. The re-
sult also makes a prediction for system administration tools like cfengine[28].
System administration tools must be able to see through attempts at bluffing
if they are to be an effective opponent against the worst users.

For large times (when system resources are becoming or have become scarce),
then the situation looks different. In this case one finds that

mftx min 7, = min mfxx Tre = Tg- (68)

In other words, the quota solution determines the outcome of the game for
any user strategy. As already commented, this might be considered cheating
or poor use of resources, at the very least. If one eliminates quotas from the
game, then the results for small times hold also at large times.

Two things emerge from the limited analysis here. The first is that purely
dumb automatic systems are inadequate to perform every task in system ad-
ministration today. There can be no zero-maintenance system. Intelligent in-
cursions are required to counter complex problems, because the environment
of users generates intelligent strategies for opposing system policy.

The second, more specific prediction is that the use of quotas is an inefficient
way of counteracting the effects of selfish users. A quota strategy can not
approach the same level of productivity as one which is based on competitive
counterforce. The optimal strategies for garbage collection are rather found to
lie in the realm of the immunity model[9]. However, it is a sobering thought
that a persistent user, who is able to bluff a regulatory system into disregarding
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it (a situation analogous to cancer of the body), will always win against the
resource battle. The need for new technologies which can see through bluffs
will be an ever present reality in the future. With the ability of encryption
and compression systems to obscure file contents, this is a contest which will
not be easily won by system administrators.

4.6 Other games

Many more problems can be analyzed by game theoretical models. Formulat-
ing a problem in game theoretical language can help to relate the chain of
cause and effect to relative likelihood of success. For example:

e Optimal routing configurations based on game theoretical payoff models
have been discussed in ref. [35].

e Service level agreements in competitive environments can be determined by
bargaining equilibria[36].

e System down-time may be characterized as a ratio of Mean Time To Repair
(MTTR) over Mean Time Before Failure (MTBF). Immediately there are
two kinds of strategy for reducing downtime: either one makes the numerator
small, or the denominator large. There is a variety of strategies for both
which could be evaluated in the context of a given organization. At present,
it is common for organizations to perform ‘fire fighting’, i.e. patching small
problems at the expense of a wider consideration of more wide-reaching
improvements.

e The configuration agent cfengine[37]| uses the idea of gaming strategies to
choose actions and schedules for regulatory checks in host-based system
administration, in both pure and mixed strategy patterns. This technology
was implemented as a direct result of the present paper, and gaming ideas
can help to identify and evaluate strategy and policy coding.

e Evaluating the implications of new software at a site: e.g. the Java language
tools have extremely high memory consumption, but simplify many tasks.
Thus social needs place a burden on system stability.

e What are the implications of introducing a firewall, or other inconvenient
security measure. Will users obey the security procedures, or find a way
around them? What incentives can be provided to obey policy and preserve
system integrity?

There are clearly many possibilities. Often, one sees organizations opting for
short-term benefits, by introducing technologies to protect themselves from
only well-known vulnerabilities. The difficulty with this strategy is that is
can lead to an arms-race of tit-for-tat escalation, where users are involved. A
better long-term strategy might be to deflect interest from the assets of the
system, by specific choice of policy.
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Since game theoretical methods are, in the computational sense, variational
methods, they are well suited for automation schemes, such as those han-
dled by systems of decision-making software agents. The possible pathways
of attack and defence can often be analyzed using the methods of fault tree
analysis[33]. Other games will be considered in future work.

5 Summary

This paper presents a framework for analyzing problems of system adminis-
tration, at the level of policy. System administration is identified with a search
for stable equilibria of the system, through judicious use of policy. The paper
defines policy, its extent and limitations, by asking the question: how long can
systems predictably be maintained? The schema is:

(1) Define policy as a scheme of partially reliable rules and constraints for
the evolution of the system, coupled to an unpredictable environment.

(2) Identify policies which have desirable average stability properties, i.e.
those which counter the random component of the environment.

(3) Model the behaviour of the system in general terms, to characterize its
response to different stimuli from the environment. This indicates how
the system will respond to strategically planned change. (Type I model)

(4) Use the knowledge, learned from type I studies, to construct game theo-
retical models that identify and evaluate strategies for optimizing mainte-
nance. This process must take account of the ‘social values’ of the players.
(Type II model)

The approach taken in this paper can be viewed as a more rigorous definition
of the meaning of computer immunology[38,16,39] (i.e. the identification of the
ideal state as the ‘healthy’ state), or as a definition of information physics (i.e.
the dynamics of the human-computer system under a given set of boundary
conditions). Software systems, using the idea of an ideal state are already in
use[28,36].

A mathematical formalism is only a tools for relating assumptions to conclu-
sions, in an impartial way. With a mathematical approach, it becomes easier
to see through the personal opinions and vested interests. However, one can
only distinguish between those possibilities which are taken into account. That
means that every relevant strategy, or alternative, has to be considered, or else
one could miss the crucial combination which wins the game. This requires
intimate and expert knowledge of system.
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This appendix summarizes some of the background on which this paper is
founded, concerning dynamical systems for discrete and continuous processes.
For an excellent reference on this topic, see [19]

A process is a chain of events X, (n = 0,1,..., N), where each event X,
takes a value ¢; (1 = 1,...d) in a state-space Q. d is called the dimension of
the space. The integers n normally label the development of the process in
discrete steps, interpreted as time intervals. In this paper, we describe only
the time development of processes, though the method is more general than
this.

The transition matrix 7;;, defined by,

i
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T:Q®Q —[0,1], (1)

describes the possible transitions between states. It is written in a variety of
notations in the literature, including the following:

Tji = pji = g5la:)
=P(Xp1 = qJ’|Xn = q;). (:2)

It represents the probability that the next event X,,; will be in a state g,
given that it is currently in the state ¢;. By discussing the probability for tran-
sitions, we leave open the issue of whether such transitions are deterministic
or stochastic. There is a number of possibilities. If 7;; = 1 at X,,, for some
1,7, the process is deterministic and one may write the development of the
chain as a rule

Xn+1 = Ut(Xn: SR aXO)a (3)
in the general case. If T;; < 1 at X,,, for all 4, j, n, the process is stochastic.

If T depends only on the current state of the system,

P(Xpi1 = il Xo, X1, .., Xp) = P(Xpp1 = ¢i] Xy), V> 1, (:4)

then the chain is said to be a Markov chain, or memoryless. Markov pro-
cesses are also called steady state, or equilibrium processes. If T' depends on
the whole history of {X}, then it is called a non-equilibrium, non-Markov
process.

A state is called persistent if

P(Xpim = ¢;|Xm = ¢;) = 1,for some n >1 (.5)

and transient if

The terms periodic, aperiodic and ergodic also describe chains in which the
processes return to the same state. Readers are referred to [19] for more about

this.

A set of states () is set to be closed if

20



Two or more parallel chains X,, and Y,, interact if their transition matrices
are not closed with respect to their state spaces:

P(Xn—H = Qw) :P(Xn—H - Q$|Xna Yna .. )
P(Yn-}—l = Qy) = P(Yn+1 = leXna Yo, .. -): (8)

i.e. the state g, is selected in the chain X as a result of the state in both
chains, and similarly for Y.

In some cases, the transition matrix is factorizable into two independent pro-
cesses Y and Z:

P(Xn = ¢ +9q) = P(Yn = q:)P(Zn, = 0q;). (:9)

The two processes thus take place independently, but are superposed. In this
paper, we are interested in processes which can be separated, approximately,
into a non-Markov process with states ¢; and a Markov process d¢g;. This is
called the adiabatic approximation in statistical mechanics and it applies when
it is possible to separate two scales of variation: a slowly varying change and
a rapidly very change. This is an important feature of this paper, because it
means that a process has an approximately steady behaviour, modulated by
a trend.

The transition to continuous processes is straightforward. A discrete chain

XOZQiaXIZQja-"XRZQka (10)

is replaced by a function ¢ of a continuous parameter ¢, so that a time interval
from an initial time #; to a final time ¢ maps into the state space Q:

q(t) « [ti t7] — Q- (.11)

The discrete event notation X, is now redundant. A set of parallel chains,
labelled by a parameter z, and development parameter ¢ is thus written ¢(z, t).

The transition matrix is now a function of two times:

T(t, 1) = [{g(t")|g(t))|* = T(%,7) (-12)
where

t=t—t

f:%(t—i—t’). (13)
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If there is no dependence on the absolute time ¢, the process is said to be ho-
mogeneous or translationally invariant, otherwise it is inhomogeneous.
The deterministic time development operator U, has the property:

at) = [ Ut t)a(0) e, (.14)

which may be written in a condensed notation as

o) = Tk, 1)q(2). (.15)

The derivative of a configuration ¢(z, t), discussed in the text, is defined in the
normal way, in terms of the smallest granular steps that can be represented:

dg(z,t)  qz,t+6t) —q(,t)
dt At ' (-16)

In calculus one then assumes that the limit At — 0 can be taken. Similarly, in
the continuum approximation, one assumes that — over time scales relevant
to the problem — the error incurred by the finite size of At is too small to
be of interest. In the text, one is particularly interested in the value of the
so-called conformal rate of change

glog g(z,t) 1ldg

= . 1
dt « q dt (17)

This is independent of the scale «, and represents the rate of change of infor-
mation (e.g. bits per second, for base 2 logarithm) in the variable at z. The
ordering of the information is not known or required in order to make this
characterization. Hence the existence of a symmetry group o € G ® I, seeks
further to emphasize the unimportance of the ordering for this rate of change.
The characterizations of policy rates (e.g. eqn. 43) are therefore presented in
this scale invariant manner.
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