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Abstract. We discuss an approach to reducing the number of events ac-
cepted by anomaly detection systems, based on alternative schemes for
interest-ranking. The basic assumption is that regular and periodic us-
age of a system will yield patterns of events that can be learned by data-
mining. Events that deviate from this pattern can then be filtered out and
receive special attention. Our approach compares the anomaly detection
framework from Cfengine and the EventRank algorithm for the analysis
of the event logs. We show that the EventRank algorithm can be used to
successfully prune periodic events from real-life data.

1 Introduction

Time series data mining for anomaly detection and event correlation has pro-
duced a wealth of approaches and publications. Keogh[1] et. al note what they
call an “explosion of interest in mining time series data”. They find, to their
dismay, that most of the approaches are sensible to different data than what is
being used in their respective publications.

In the world of system administration research, we see an effect of Keogh’s
observation: few published detection algorithms make it into mainstream sys-
tem administration tools. Several factors might explain this. Firstly, as a sys-
tems technician at a site, one needs a certain insight into the deployed detection
mechanisms in order to understand the alarms properly. This is simply because
no tools are free from the nuisance of false positives and a human usually has to
check for the validity of an alarm manually. Secondly, most algorithms require
fine-tuning of some chosen parameters in order to work optimally. Finding the
correct parameter for a particular context requires further expertise and exper-
iments from the technician.

One of the important philosophical and technical challenges of anomaly de-
tection is the tension between numerical and symbolic data. Importance or in-
terest ranking is generally based on statistical frequency analyses of classified
symbolic events, while numerical measures such as load-average and traffic
rates have to be digitized and classified into symbols in order to define policies
for responding. Like all forms of signal analysis, analogue to digital conversion
is balanced against numerical statistics of classed events. We move from num-
bers to symbols and back again. Methods of ranking go even further down this



path, taking sequences of events and ordering them numerically by frequency
or by activity.

Classification of such measurables into categories like high/low or nor-
mal/abnormal is supposed to give the system administrator a condensed and
more informative view of the system, and inherently includes a policy aspect
that defines away fundamental uncertainties.

Anomaly detection systems have been used at the Department of Engineer-
ing at Oslo University College for nearly eight years, through the systems man-
agement tool cfengine[2]. Cfengine condenses a steady flow of data down to
anomalies that are passed to the system administrator. These are based on sta-
tistical properties of system variables using two distinct methods. The number
of anomalies seen per machine amounts, according to our policies, to between
300 and 800 per week across different Unix hosts. The vast majority of these
events are benign system behaviour. Cfengine therefore allows the system ad-
ministrator to ignore anomalies as a matter of policy. The remainder are as-
sumed to represent noteworthy behaviour.

One of the aims of detecting anomalous events is to identify those anomalies
which have been most interesting in some sense. However, this seems to be a
subjective judgement fit only for a policy manager to decide. We would like
to provide all possible assistance in making this judgement however. Events
occur periodically and are part of the normal behaviour of the system variables,
within measurement tolerances[3], but there are also events that carry a surprise
value to this normal picture. These are events that we would like to highlight
automatically.

In this paper we apply data mining to a symbolic stream of alarm events
from cfengine, and identify events which are more interesting based on a weekly
profile of arrivals and the EventRank algorithm[4,5]. This approach reduces the
number of events presented to the policy administrator by 65% to 75%. We are
testing this in an analysis tool at our university.

The paper is organised as follows: In Section 2 we briefly present the anomaly
detection framework of cfengine followed by a description of the EventRank al-
gorithm and compare it to other ranking approaches like principal component
analysis (PCA). Section 3 presents our approach and its results. We discuss our
findings and suggest future improvements in Section 4.

2 Background

2.1 Cfengine’s anomaly detection framework

Cfengine’s current anomaly detection framework, cfenvd, is well documented
and discussed elsewhere[3,11]. It uses two statistical methods of analysis on a
number of system variables including measures of memory, load, process activ-
ity and network counters. Some typical variables monitored by cfenvd include:

– users - The number of logged-in users on the system.
– rootprocs - The number of processes owned by the system administrator.



– otherprocs - The remaining number of processes.
– loadavg - The average load on the system.
– diskfree - The percentage of free diskspace on the root partition.
– ssh_in - The number of incoming SSH connections.
– ssh_out - The number of outgoing SSH connections.
– www_in - The number or incoming WWW connections.

All of these counters are presently numerical quantities. Cfenvd extracts sta-
tistically significant patterns from the influx of data events and then calculates
adaptive measurement scales based on standard deviation from expected val-
ues by a process of machine learning. The frequencies of these deviations are
also measured and used to determine distributional properties of data[11].

Two-Dimensional time-series analysis The fundamental model for analysis is
the two-dimensional time series approach[3] (2DTS) which uses the periodicity
observed on computer resources and divides the time series into slices of period
P (one week has been determined optimal[12]). An observed data point at time
t is described as belonging to the position τ in the n’th iteration of the period P
using the relation

t = nP + τ.

For all iterations of the period P , one can average the points observed at
each τ and calculate the mean and standard deviation. In words, this means
that, for every time during a week, cfengine calculates what can be described
as a typical state for every variable it observes. The variance observed at each
point affects the standard deviation and consequently what can be considered
normal behaviour of that variable. A learning profile is considered to be accu-

Fig. 1. A schematic illustration of the 2DTS profile with period P = 1 week.



rate after six to eight weeks[12].
Learning is only useful if certain information is also forgotten. We would

like to remember only interesting or important knowledge and forget things
that are irrelevant. Relevance is time-sensitive. Knowledge goes out of date
eventually. Forgetfulness is therefore introduced into the algorithm so that the
recent observations weigh more in the calculations than the older ones. The
profile is updated constantly with the new data.

A detection threshold is policy determined, and we typically use two stan-
dard deviations from the observed mean for every τ . If a new observed value
is higher than the threshold, an symbolic event is defined by cfengine when the
agent runs the next time. The 2DTS is described in detail in [3,11].

Leap-Detection Test The periodic model above gives stable results that are
quite insensitive to local variability, once variances have been learned. This
spanning of multiple weeks does not allow us to effectively resolve local events
on a short time scale however. A second method of analysis is therefore used: a
statistical test based on the χ2 test for the detection of leaps in time series data.
The leap-detection test (LDT) for time series data was proposed by Cochran[6]
and later pointed out by [7]. The formula of the test is given as:

χ2 =
(x1 + x2 + . . . + xi − i ∗ xi+1)2

i ∗ (i + 1) ∗ x

where x1, x2, . . . , xi are previously observed values in the time series and xi+1

is the most recent observation. The value of i therefore denotes the size of the
memory. The mean x includes all i+1 values. Basically, what the test addresses is
a hypothesis that the latest value is significantly different of the observed pop-
ulation so far. The χ2 value is compared to a threshold value which is typically
chosen in accordance with a confidence policy level, and levels of uncertainty.
Cfenvd adjusts this threshold automatically by automatic learning and adap-
tation. Alternative approaches use tables or let the decision fall on the local
system administrator.

The number of measurements one uses to calculate LDT influences the ac-
curacy and the adaptability of the LDT. A shorter memory will increase the
forgetfulness of the algorithm and make it adapt more quickly to stable changes.
A long memory will be prone to false alarms after a leap is detected. The de-
fault memory length is 10 intervals. With cfenvd evaluating its data every 2.5
minutes, it makes for a memory that spans 25 minutes.

Both the above methods are used in an independent cause model to trigger
events measured in units of standard deviations which can then be either hid-
den or revealed as a matter of policy. Cfagent, the configuration management
part of cfengine, has a programmable behaviour based on the alarm events from
cfenvd. Every time cfagent is run, it handles the set of events that have been
triggered since last time. Every type of event can only be handled once even if
the corresponding alarm has been raised several times since the last time cfa-



gent ran. Also, cfagent does not know of the order in which an event arrived.

Definition 1 (Cluster). We define a cluster as the current set of events that are active
when cfagent runs. We write it as a colon-separated list like the following:

rootprocs_high_dev2 : loadavg_high_ldt : www_in_high_ldt

Each word represents an event in terms of the anomaly detection method used and
the variable.

Cfagent is typically configured to analyze the stream of events every 15
minutes, in our testbed, which is close to the autocorrelation time of the mea-
sured variables. During our experiments, all events in the cluster are logged by
cfengine to a file which we are then able to analyze off-line.

With these two anomaly detection algorithms, the number of alarms per
machine amounts to between 600 to 800 per week for servers, and 300 to 400
per week for workstations if one would allow all possible events to be con-
sidered. Many of these events, especially those related the LDT test, are harm-
less and describe nothing but a normal "burstiness" in certain variables. What
is needed is a method to automatically filter the uninteresting events without
prior knowledge. We assume, that events would be interesting, i.e carry more
information, if they appeared at times in the week when it was not common
for them. This is analogous to the 2DTS anomaly detection method, as it also
classifies values as unnormal if they are very deviant from what is usual in that
time of the week.

2.2 EventRank

Several approaches to deciding event importance have been tried in the past.
We have previously discussed the use of principal component analysis[8] for
understanding the relevance of correlations in alarms around a network. Prin-
cipal eigenvector approaches have been criticized for taking too static a view of
interactions between networked hosts however. The EventRank algorithm[4,5]
is a ranking algorithm designed to rank individuals in a social network based
on their participation in “collaborative events”, such as publishing a paper to-
gether or receiving the same emails.

The authors of EventRank assign each individual an amount of potential
(they all start out with the same amount) based on their record of participa-
tion in the network, and also relative to the level of participation of the other
individuals. For every time an individual does not participate, it will decrease
its potential and the participants will increase theirs. This means, that an active
individual will receive alot of potential but will start losing it again if it remains
inactive for a longer period. The total amount of potential is conserved.

EventRank terminology conflicts slightly when compared to ours. What the
EventRank algorithm would call an "event" is in our case actually the cluster.
And each individual or participant is considered an event in our terms. Thus,



each of our events, e.g. rootprocs_high_ldt, can be a participant in a clus-
ter. Every time one of the events participates it will receive potential.

We denote the potential of event e ∈ E at time ti by Ri(e) which takes on
values from [0,1]. All events start out with the same potential 1

|E| where |E|
is the number of events in E. The combined potential will always remain the
same, meaning that once an event has potential 0, it cannot "give" any more
potential to others. Ri(e) at time i with the current cluster Ci is defined as

e ∈ Ci : Ri−1(e) + αi ·
Ri−1(e)∑

d∈Ci
Ri−1(d)

e 6∈ Ci : Ri−1(e) · (1 −
αi

TNi−1

)

The impact of each cluster is adjusted by αi where 0 ≤ α ≤ TNi−1 and TNi−1

is the total amount of potential held by the events not part of the current cluster
Ci. Ri−1(e) denotes the reverse of the potential of e, i.e 1 − Ri−1(e). We follow
the approach from EventRank own literature and define αi as

αi = f · TNi−1

where f is a constant, in our case 0.4.
One of the key aspects of the EventRank algorithm is that it adapts to the

temporal aspects of the data. The probability of an event is not so important
compared to whether or not the event has been active lately.

The information of an event e, as known from information theory[10] and
applied in [9], is defined to be I(e) = −log|E|Prob(e) where E is the set of events
and Prob(e) is the probability of event e ∈ E appearing. Its interpretation is
that a seldom event carries more information to the system operator. An event
which is very active for a short time period will have increased its statistical
probability throughout the rest of the data, yet in the EventRank algorithm, it
will lose its potential soon after the burst is over. This form of forgetfulness will
ensure that only data from the immediate past are given weight.

2.3 EventRank versus PCA

The EventRank algorithm is argued by its authors to better make use of tempo-
ral aspects in the data compared to other ranking methods for event-based data
that base themselves on a graph, like the principal component analysis (PCA)
method. Their argument is that instead of analysing the graph as an end-result,
one can rather re-calculate the rank from the temporal arrival of events and who
has participated lately. Previous experience with the PCA method has shown
us that it can be hard to apply on time-series data in certain cases[8]. The use of
this alternative approach is therefore interesting as our data strongly fits their
event-based approach.

Figure 2 shows this in greater detail. Six clusters of events and six different
events make up the example. For each time two events appear in the same



cluster, they increase the weight of the edge between them in the graph. The
result shows the EventRank algorithm ranking e1 and e6 the highest, based
on their very recent appearance. The PCA ranks e4 and e2 the highest. Even
though we just saw e6 in two of the last three clusters, it is ranked lowest. The
level of information I(e) rank e6, e3 and e5 as carrying the same amount of
information. This is obviously because they appear the same amount of time
and not related to when or together with what other events they appear.

Fig. 2. A comparison of the different ranking results using EventRank, PCA and I(e) =
−log|E|Prob(e). The rankings differ based on the different types of input they use. The
EventRank uses the order of arrival of the event clusters while the PCA method consid-
ers the resulting adjacency matrix based on the graph.

The EventRank algorithm shows us which events, due to recent activity,
are the most usual. But due to their frequency, they become less informative
to the system administrator. We follow the philosophy of [9] in that the most
interesting events are the events that appear that do not have a high potential.
A low potential and rank means that the event is unusual and therefore carries
more information and surprise. An event has a low potential if it is below its
starting point of 1

|E| . In the example above, that would make below 1/6.
Principal Component Analysis (PCA) shows us the most dominant events

using connectedness with the other events it has appeared with. The interpreta-
tion of a high ranked event in PCA would be an event that has appeared many
times together with many other events. PCA considers to a greater extent the
relationship between the different events but how should one apply seldomness
or surprise value in PCA? One problem is that there is no clear threshold like
in the EventRank approach. It becomes difficult to classify the events based on
a ranking. A hard-coded limit, like the bottom 25%, is also difficult to apply be-
cause it is arbitrary and artificial, compared to the EventRank algorithm where
in fact all but one event could become low potential. If we were to identify the
most frequent event which happened together with other frequent events, then
PCA would be more beneficial than EventRank, since a single event appearing



alone over several times would get the highest potential. However, since our
events signify neither malignant user behaviour nor system faults, we are more
interested in filtering away those that appear very often with very many other
events.

A further point made by the authors in [4] is that EventRank is attractive
because it is fairly understandable. For large numbers of events and many clus-
ters combined with PCA, the resulting graph and matrix may be too complex
in order to for a human to get extra support for its findings.

The most convincing argument, however, for EventRank versus PCA in our
context is the intrinsic functionality for forgetfulness in the EventRank algo-
rithm. The same could be achieved with PCA through a sliding window and
the removal of weight. However the optimal length for this window is an open
question we would welcome the investigation into this in a follow-up project.

3 EventRank in offline analysis of logs

Event data from two servers and two workstations were collected over a time
period of three months. The data were parsed for each machine and divided
into a weekly profile in the same way as cfenvd’s own approach. All the data
up to the last week are considered as a training set, and in the last week we
test whether the events have a lower potential than their initial 1

|E| . The weekly
profile is divided into hours, e.g Monday 08:00 - 09:00, Thursday 22:00 - 23:00
and so on to a total 168 time-slots in the profile. All event clusters arrive at a 15
minute interval and are stored in the appropriate slot in the weekly profile.

For the last cluster we compare if any of the events have a low potential. If
so, only they are reported to the system administrator. We compare the number
of events reported to the original amount. For comparison, we also calculate the
level of information, or surprise, as used in [9] using Prob(e) = countie

clustersi
, i.e the

number of times the event e was shown in a cluster divided on the total amount
of clusters for time-slot i. Note, that we calculate the EventRank relative to the
time-slot that the cluster is in. This means that each time-slot will have its own
rank. This means also, that an event will be considered as interesting only if it
appears in a time-slot where it has a low potential.

Two types of potential are recorded for each event: the transient potential
is the current value of potential for the event and is bound to change for each
new cluster that arrives. The cumulative potential is the sum of potential earned
over time and is in essence the integral of the transient potential. Although the
cumulative potential is not used by us to decide on the level of information for
each event, it is included in this analysis for eventual further improvement of
the approach.

On all four systems, the number of events was reduced to between 1/3 and
1/4 of its original amount. The low potential events were still spread across the
time-slots but appeared mostly alone or in pairs.



Fig. 3. An illustration of the data-mining process. Each cluster of events is evaluated
according to their weekly profile and only those events with a low profile will continue
on to be analyzed further by the system administrator.

Fig. 4. A plot showing the cumulative and transient potential from the EventRank al-
gorithm for the events for the time-slot Fridays between 15:00 and 16:00. The transient
potential is much more bursty and as a result the ranking changes often.



The EventRank plot (in Figure 4) for the time-slot Fridays between 15:00
and 16:00 shows the transient potential to be unstable. An event will increase
its potential quickly but loose it more slowly. This results in the tails on the
right side of most peaks. A dotted line of +’s shows the threshold of 1/|E| that
divides between low- and high-potential events. If an event appears in a new
cluster while the potential is below that threshold, it will be considered inter-
esting. The cumulative rank shows that some of the events quickly rise above
the others and maintain their position over time. A sharp increase of potential
over a certain period will make the cumulative potential sharpen its curve. A
low potential will result in a near-flat curve.

Machine Last weeks events Low-profile events Factor
server1 687 250 0.36
server2 800 198 0.247

workstation1 432 157 0.36
workstation2 363 105 0.29

Table 1. The reduction of events on the four systems on the Department of Engineering
network.

The type of events that was reported as low potential was predominantly
concerned with services, such as ftp_in_high_ldt and not so much with the
system variables, like rootprocs_high_ldt and loadavg_high_ldt. Fur-
ther investigation into the system events that had a high potential revealed to
us that they in fact showed up regularly and almost everywhere and therefore
contained no surprise or information. In the transient potential plot in Figure
4, we can see that some events rise high quickly but never fall down below the
threshold. They produce a jagged line well above the threshold for a long pe-
riod. These event happen so often in this time-slot that they remain "uninterest-
ing". The events that were reported as low-potential appeared in the event-logs
seldom enough to fall back below the threshold. They can be recognized in the
transient potential plot as those small peaks which then glide down again. We
see this as a successful pruning of the event flow using the EventRank algo-
rithm.

The information ranking for the low potential events using I(e) did not cor-
respond directly to EventRank. Low potential events had usually a mid-range
level of information, indicating that they were not completely unknown in the
profile.

4 Discussion and Conclusions

Anomaly detection is about looking for the unusual amongst the regular and
the uninteresting. This is an inherently ambiguous pursuit and it needs some
guidance from policy to narrow down its goals. We have to say what we mean



by interesting, and we have explored one possible criterion here. Our main goal
in this paper was to reduce the workload of the system administrator by elimi-
nating uninteresting events. This makes policy decisions about relevance better
informed by analysis.

We should point out that what we attempt here is not the same as the prob-
lem of reducing “false positives” in Intrusion Detection Systems (IDS). Such a
classification into “real” and “false” events cannot be made in our case. In the
case of Intrusion Detection “true” means that an actual intrusion took place,
something that can be verified. The task of an anomaly classifier, on the other
hand, is less clear than this. It makes no sense to speak of black-and-white true
and false positives, there are only shades of grey in deciding how interesting
events are. Policy enters into this decision, but we must also try to inform pol-
icy with rational analysis. An algorithmic ranking like the ones used here can
play an important role in this.

The EventRank algorithm removes common and repetitive events without
prior knowledge. There still to be room for improvement here. The main facility
to adjust the EventRank algorithm is to choose the level of impact αi each clus-
ter of events ought to have. Would a different impact lead to different results?
A lower value for f , say 0.2, would decrease the number of reported events
slightly more, but can it be done in a better way? In every anomaly system
there is an arbitrary choice that we cannot escape – a part of policy[11].

In ref. [4] several alternative formulae for αi that are based on prior knowl-
edge of the data are discussed. A specialized αi that considers a prior classi-
fication of the events might improve the ranking further. An example of such
would be that clusters that contain events which address critical services have
less impact and thereby more likely to fall below the threshold again quickly.

We are developing a data-mining tool that runs in batch-like fashion on data
snapshots of from cfengine and which allows the system administrator to see
which events are picked out as most interesting. Several other forms of analysis
have been included into this tool, such as several ways to plot and visualize the
most frequent combinations of events as well as detailed information about the
trend of each event.

The InfoMiner[9] project has a noteworthy and similar approach which has
inspired us to some extent in this work. It looks for surprising periodic pat-
terns in a sequence of symbolic events. It derives a measure of surprise for a
pattern by the level of information for each event in the pattern relative to the
frequency of the pattern. Although the approach has the same aim, extracting
events with a higher information from a noisy event stream, the data used in
this reference is a strict sequence of events unlike ours. Furthermore, the pat-
terns, like (e1, ∗, e4, e2) assume that the events in a certain order are significant
and that repetition makes them more interesting while we only have clusters of
events and assume that seldomness alone make events interesting.

We shall return to the outstanding issues of anomaly ranking in later work.
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